JPH10330916A - Electrically conductive laminated body - Google Patents

Electrically conductive laminated body

Info

Publication number
JPH10330916A
JPH10330916A JP14499697A JP14499697A JPH10330916A JP H10330916 A JPH10330916 A JP H10330916A JP 14499697 A JP14499697 A JP 14499697A JP 14499697 A JP14499697 A JP 14499697A JP H10330916 A JPH10330916 A JP H10330916A
Authority
JP
Japan
Prior art keywords
film
conductive
layer
conductive laminate
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14499697A
Other languages
Japanese (ja)
Inventor
Chiharu Okawara
千春 大川原
Kunio Takeda
邦夫 武田
Megumi Kojima
めぐみ 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP14499697A priority Critical patent/JPH10330916A/en
Publication of JPH10330916A publication Critical patent/JPH10330916A/en
Pending legal-status Critical Current

Links

Landscapes

  • Position Input By Displaying (AREA)
  • Non-Insulated Conductors (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lightweight electrically conductive laminated body excellent in resistance, low curling-properties, adhesion, bendability, transparency or the like. SOLUTION: Relating to an electrically conductive laminated body of which the surface is provided with an electrically conductive layer composed of indium- tin oxide and for which a plastic base-mateal is used, the electrically conductive layer is composed of crystalline particles having <=20 n, average particle size, the superior crystal orientation thereof is <111>, the surface roughness Rms is regulated to <=1.5 nm, the volume receptivity of the electrically conductive laminated body is regulated to <=4×10<-4> Ωcm, and the height of curling is regulated to <=20 mm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、構成層としてプラ
スチック基材層とインジウムスズ酸化物(以下「IT
O」という)からなる導電層を含んでなる軽量であり、
抵抗性、低カール性、密着性、耐屈曲性、透明性等に優
れた導電性積層体に関する。
[0001] The present invention relates to a plastic substrate layer and indium tin oxide (hereinafter referred to as "IT") as constituent layers.
O ").
The present invention relates to a conductive laminate excellent in resistance, low curl, adhesion, bending resistance, transparency and the like.

【0002】[0002]

【従来の技術】従来、種々の電子部品等においてガラス
基盤にITO膜を製膜した導電性積層体が使用されてき
たが、近年、軽量化を図る上で、プラスチック製のフィ
ルムないしはシートを基材とした導電性積層体の開発が
進みつつある。かかる導電性積層体は、フレキシブルE
L(Electro Luminescence)パネ
ルや液晶ディスプレイ、太陽電池等の透明電極、タッチ
パネル、透明スイッチ、メモリ、センサ、静電遮蔽、電
磁シールド、帯電防止等への用途が広がりつつある。
2. Description of the Related Art Conventionally, a conductive laminate having an ITO film formed on a glass substrate has been used in various electronic parts and the like. However, in recent years, in order to reduce the weight, a plastic film or sheet has been used. The development of a conductive laminate as a material is progressing. Such a conductive laminate is a flexible E
Applications for L (Electro Luminescence) panels, liquid crystal displays, transparent electrodes such as solar cells, touch panels, transparent switches, memories, sensors, electrostatic shielding, electromagnetic shielding, antistatic, and the like are expanding.

【0003】[0003]

【発明が解決しようとする課題】従来のITO膜をガラ
ス基材上に製膜する場合は、一般に200℃以上の高温
成で製膜、熱処理することにより低抵抗化が達成され
る。しかしながら、基材ガラスをプラスチックフィルム
に代替することにより、ITOをより低温で成膜しつ
つ、且つ、低抵抗化を実現させる必要がある。
When a conventional ITO film is formed on a glass substrate, the resistance is generally reduced by forming the film at a high temperature of 200 ° C. or higher and performing a heat treatment. However, by substituting the base glass with a plastic film, it is necessary to realize a lower resistance while forming the ITO at a lower temperature.

【0004】ところが、低温成膜での非結晶性ITO膜
では、抵抗値の経時変化が大きい傾向があり、耐久性に
問題がある。また、基材をプラスチックフィルムした場
合には、得られる導電性積層体がカールしやすいなどの
ガラス基板の場合には生じなかった新たな問題もある。
一方、プラスチック基板の特性を活かして湾曲した形状
の製品も考えた場合、新たに耐屈曲性やITO膜の基材
に対する密着性等を改良しておくことが望ましい。
However, a non-crystalline ITO film formed at a low temperature tends to have a large change in resistance with time, and has a problem in durability. In addition, when the substrate is made of a plastic film, there is a new problem that does not occur in the case of a glass substrate such that the obtained conductive laminate easily curls.
On the other hand, when considering a product having a curved shape utilizing the characteristics of the plastic substrate, it is desirable to newly improve the bending resistance, the adhesion of the ITO film to the base material, and the like.

【0005】[0005]

【課題を解決するための手段】本発明者等は、上記課題
に鑑み鋭意検討を行った結果、プラスチックを基材とし
てITO膜を低温成膜する場合においても、特定の結晶
性のITO膜を成膜させた場合においては、低抵抗化が
実現され、且つ、熱、湿度、電気、機械的な力などの外
的な影響を受けても抵抗率の経時変化が小さく、また、
低カール性、耐屈曲性、密着性、透明性等の諸物性も良
好であることを見いだし、本発明に到達した。
Means for Solving the Problems The present inventors have conducted intensive studies in view of the above-mentioned problems, and as a result, even when forming an ITO film on a plastic substrate at a low temperature, a specific crystalline ITO film is formed. In the case of forming a film, low resistance is realized, and the temporal change in resistivity is small even under external influences such as heat, humidity, electricity, and mechanical force.
Various physical properties such as low curl property, flex resistance, adhesion, and transparency were also found to be good, and the present invention was reached.

【0006】即ち、本発明は、表面にインジウムスズ酸
化物からなる導電層を設け、且つ、プラスチック基材を
用いてなる導電性積層体において、導電層が平均粒径2
0nm以下の結晶性粒子から構成され、その優勢な結晶
配向方位が<111>、表面粗さRmsが1.5nm以
下であって、且つ、導電性積層体の体積抵抗率が4×1
-4Ωcm以下、カール高さが20mm以下であること
を特徴とする導電性積層体に存する。
That is, according to the present invention, in a conductive laminate having a surface provided with a conductive layer made of indium tin oxide and using a plastic substrate, the conductive layer has an average particle size of 2.
It is composed of crystalline particles of 0 nm or less, the dominant crystal orientation direction is <111>, the surface roughness Rms is 1.5 nm or less, and the volume resistivity of the conductive laminate is 4 × 1.
The present invention provides a conductive laminate characterized by having a curl height of 0-4 Ωcm or less and a curl height of 20 mm or less.

【0007】[0007]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明の導電性積層体の基材層であるプラスチック原料
としては、フィルム又はシートとして利用されるような
プラスチック原料であれば特に制限はない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The plastic raw material as the base layer of the conductive laminate of the present invention is not particularly limited as long as it is a plastic raw material used as a film or a sheet.

【0008】具体的な例としては、エチレン、プロピレ
ン、ブテン等の単独重合体又は共重合体等のポリオレフ
ィン(PO)系樹脂、環状ポリオレフィン等の非晶質ポ
リオレフィン樹脂(APO)、ポリエチレンテレフタレ
ート(PET)、ポリエチレン−2,6−ナフタレート
(PEN)等のポリエステル系樹脂、ナイロン6、ナイ
ロン12、共重合ナイロン等のポリアミド(PA)系樹
脂、ポリビニルアルコール(PVA)樹脂、エチレン−
ビニルアルコール共重合体(EVOH)等のポリビニル
アルコール系樹脂、ポリイミド(PI)樹脂、ポリエー
テルイミド(PEI)樹脂、ポリサルホン(PS)樹
脂、ポリエーテルサルホン(PES)樹脂、ポリエーテ
ルエーテルケトン(PEEK)樹脂、ポリカーボネート
(PC)樹脂、ポリビニルブチラール(PVB)樹脂、
ポリアリレート(PAR)樹脂、エチレン−四フッ化エ
チレン共重合体(ETFE)、三フッ化塩化エチレン
(PCTFE)、四フッ化エチレン−六フッ化プロピレ
ン共重合体(FEP)、四フッ化エチレン−パーフルオ
ロアルコキシエチレン共重合体(PFA)、フッ化ビニ
リデン(PVDF)、フッ化ビニル(PVF)、パーフ
ルオロエチレン−パーフロロプロピレン−パーフロロビ
ニルエーテル三元共重合体(EPE)等のフッ素系樹
脂、ラジカル反応性不飽和化合物を有するアクリレート
化合物より成る樹脂組成物、このアクリレート化合物と
チオール基を有するメルカプト化合物より成る樹脂組成
物、エポキシアクリレート、ウレタンアクリレート、ポ
リエステルアクリレート、ポリエーテルアクリレート等
のオリゴマーを多官能アクリレートモノマーに溶融せし
めた樹脂組成物等の光硬化性樹脂、及びこれらの混合物
などが挙げられる。
Specific examples include polyolefin (PO) resins such as homopolymers or copolymers such as ethylene, propylene and butene, amorphous polyolefin resins (APO) such as cyclic polyolefins, and polyethylene terephthalate (PET). ), Polyester resins such as polyethylene-2,6-naphthalate (PEN), polyamide (PA) resins such as nylon 6, nylon 12, and copolymerized nylon; polyvinyl alcohol (PVA) resins;
Polyvinyl alcohol-based resin such as vinyl alcohol copolymer (EVOH), polyimide (PI) resin, polyetherimide (PEI) resin, polysulfone (PS) resin, polyethersulfone (PES) resin, polyetheretherketone (PEEK) ) Resin, polycarbonate (PC) resin, polyvinyl butyral (PVB) resin,
Polyarylate (PAR) resin, ethylene-tetrafluoroethylene copolymer (ETFE), ethylene trifluoride ethylene chloride (PCTFE), ethylene tetrafluoride-propylene hexafluoride copolymer (FEP), ethylene tetrafluoride Fluororesins such as perfluoroalkoxyethylene copolymer (PFA), vinylidene fluoride (PVDF), vinyl fluoride (PVF), terpolymer of perfluoroethylene-perfluoropropylene-perfluorovinylether (EPE), A resin composition comprising an acrylate compound having a radical-reactive unsaturated compound, a resin composition comprising this acrylate compound and a mercapto compound having a thiol group, and oligomers such as epoxy acrylate, urethane acrylate, polyester acrylate, and polyether acrylate. Chestnut rates monomers photocurable resin in the resin composition or the like brought melt, and the like and mixtures thereof.

【0009】以上の中では、偏光性、平坦性、耐熱性等
に優れたAPO、PET、PES、PC、PARが好ま
しく、APOの中では環状ポリオレフィンが特に好まし
い。なお、以上のプラスチック原料中には、公知の添加
剤、例えば、帯電防止剤、紫外線吸収剤、可塑剤、滑
剤、フィラー、着色剤等を添加することができる。以上
のようなプラスチック原料を本発明の導電積層体の基材
として用いる場合は、通常、フィルム状ないしはシート
状のものが好ましく、中でも軽量で連続生産に適したフ
ィルム状のものが一般に用いられる。フィルムの厚さ
は、所望の機械強度、可撓性、透明性あるいは用途等に
応じ、適宜選択することができるが、通常5〜500μ
mである。かかるフィルムは、未延伸フィルムでもよい
し延伸フィルムでもよい。また、他のプラスチックフィ
ルムと積層されていてもよい。
Among them, APO, PET, PES, PC and PAR which are excellent in polarization property, flatness and heat resistance are preferred, and among APO, cyclic polyolefin is particularly preferred. Known additives such as an antistatic agent, an ultraviolet absorber, a plasticizer, a lubricant, a filler, and a coloring agent can be added to the above-mentioned plastic raw materials. When the above-mentioned plastic raw material is used as the base material of the conductive laminate of the present invention, usually, a film-like or sheet-like material is preferred, and among them, a light-weight film-like material suitable for continuous production is generally used. The thickness of the film can be appropriately selected depending on the desired mechanical strength, flexibility, transparency, application, and the like.
m. Such a film may be an unstretched film or a stretched film. Further, it may be laminated with another plastic film.

【0010】更に、該フィルムには、コロナ放電処理、
火炎処理、プラズマ処理、グロー放電処理、粗面化処
理、薬品処理等の従来公知の方法による表面処理や、薄
膜とフィルムとの密着性を向上させるためにアンカーコ
ート処理などを行うこともできる。本発明の導電性積層
体は、上記プラスチック層を基材層とし、表明層に導電
層としてインジウムスズ酸化物(ITO)を用いる。I
TOは酸化インジウムと酸化スズの混合酸化物であり、
通常、酸化インジウムを99〜90重量%、酸化スズを
1〜10重量%を含むものが、導電性、透明性の面から
望ましい。
Further, the film is subjected to a corona discharge treatment,
A surface treatment by a conventionally known method such as a flame treatment, a plasma treatment, a glow discharge treatment, a surface roughening treatment, and a chemical treatment, and an anchor coat treatment for improving the adhesion between the thin film and the film can also be performed. The conductive laminate of the present invention uses the above-mentioned plastic layer as a base material layer, and uses indium tin oxide (ITO) as a conductive layer for the assertion layer. I
TO is a mixed oxide of indium oxide and tin oxide,
In general, those containing 99 to 90% by weight of indium oxide and 1 to 10% by weight of tin oxide are preferable from the viewpoint of conductivity and transparency.

【0011】以下、本発明の導電性積層体におけるIT
O膜導電層の物性について説明する。ITO膜の膜厚は
特に制限はないが、結晶性、透明性、可撓性、生産効
率、コスト等から考え合わせると、通常10〜500n
m、好ましくは50〜200nmである。一般に膜厚が
厚くなるほど膜の結晶性が高まるが、透明性や可撓性は
低下する傾向がある。また、膜厚は膜の各部分より均一
であることが望ましい。
Hereinafter, the IT in the conductive laminate of the present invention will be described.
The physical properties of the O film conductive layer will be described. The thickness of the ITO film is not particularly limited, but is generally 10 to 500 n in consideration of crystallinity, transparency, flexibility, production efficiency, cost, and the like.
m, preferably 50 to 200 nm. Generally, as the film thickness increases, the crystallinity of the film increases, but transparency and flexibility tend to decrease. Further, it is desirable that the film thickness is more uniform than each part of the film.

【0012】ITO膜はITOの粒子の集合体として構
成されるが、そのITO粒子は結晶性粒子であって、そ
の平均粒径は20nm以下、好ましくは15nm以下で
ある。また、粒子形状、粒径分布のが揃っている方が望
ましい。粒径が20nmより大きくなると、電気抵抗が
大きくなる傾向があるので好ましくない。ITO粒子が
小さいほど粒子が密に充填されやすくなり、また、膜表
面もなめらかとなり、抵抗が小さくなるものと推定され
る。なお、ここで言う平均晶粒径とは、ITO膜の表面
を垂直方向から電界放射型2次電子顕微鏡で観察したと
きのITO膜表面の多角形状粒子の対角線距離あるいは
円形状粒子の直径の平均値を意味する。また、ITO成
膜時の基板温度や後工程の熱処理によって、それらの粒
子が一つの領域内で集合した形態であるドメイン構造を
採る場合もある。このドメイン構造径は、通常100〜
1000nmである。
The ITO film is formed as an aggregate of ITO particles. The ITO particles are crystalline particles and have an average particle size of 20 nm or less, preferably 15 nm or less. Further, it is desirable that the particle shape and the particle size distribution are uniform. If the particle size is larger than 20 nm, the electric resistance tends to increase, which is not preferable. It is presumed that the smaller the ITO particles, the easier the particles are to be densely packed, the smoother the film surface, and the lower the resistance. Here, the average crystal grain size means a diagonal distance of polygonal particles on the surface of the ITO film or an average of diameters of circular particles when the surface of the ITO film is observed from a vertical direction with a field emission secondary electron microscope. Mean value. In addition, a domain structure in which the particles are aggregated in one region may be adopted by a substrate temperature during ITO film formation or a heat treatment in a later step. This domain structure diameter is usually 100 to
1000 nm.

【0013】また、本発明のITO膜の表明粗さRms
(自乗平均平方根値)は1.5nm以下、好ましくは
1.0nm以下である。この表面粗さRmsは原子間力
顕微鏡を用いて1μm角を測定し、得られたITO膜表
面の3次元像に対して傾斜補正処理を行い、粗さ解析に
より求める。この表面粗さRmsが1.5nmより大き
くなると抵抗も顕著に大きくなるので好ましくない。
Further, the surface roughness Rms of the ITO film of the present invention is described.
(Root mean square value) is 1.5 nm or less, preferably 1.0 nm or less. The surface roughness Rms is obtained by measuring a 1 μm square using an atomic force microscope, performing a tilt correction process on the obtained three-dimensional image of the ITO film surface, and performing a roughness analysis. If the surface roughness Rms is larger than 1.5 nm, the resistance is also undesirably increased.

【0014】更に、ITO膜には、一般に結晶性のもの
と非結晶性のものと両方が存在するが、本発明でのIT
O膜は結晶性のもの、結晶性のものでも特定の構造を有
するものを使用する。その結晶構造は、薄膜X線回折で
酸化インジウム成分に由来する結晶ピークの検出により
判別する。結晶性のITO膜では、薄膜X線回折におい
て、主に酸化インジウムの(222)面、(400)
面、(440)面、(622)面等のピークが検出され
るが、そのうち(222)面と(400)面のピーク強
度比の大きさにより、優勢な結晶配向方向が判明する。
具体的には、(400)面の結晶ピーク強度I(40
0)に対する(222)面の結晶ピーク強度I(22
2)の比I(400)/I(222)が0.33未満で
ある場合を優勢な結晶配向方位が<111>であると言
い、逆に0.33以上である場合を優勢な結晶配向方位
が<100>であると言う。この0.33は酸化インジ
ウムのランダム配向している場合のASTM値である。
そして、本発明でのITO膜の優勢な結晶配向方向は<
111>であり、好ましくは、前記のピーク強度比が
0.25以下、即ち、<111>配向性がより強いもの
である。
Further, there are generally both a crystalline film and an amorphous film in the ITO film.
As the O film, a crystalline one or a crystalline one having a specific structure is used. The crystal structure is determined by detecting a crystal peak derived from an indium oxide component by thin-film X-ray diffraction. In a crystalline ITO film, in the thin film X-ray diffraction, the (222) plane and the (400) plane of indium oxide are mainly used.
The peaks of the (440) plane, the (622) plane, etc. are detected, and the predominant crystal orientation direction is determined by the magnitude of the peak intensity ratio between the (222) plane and the (400) plane.
Specifically, the (400) plane crystal peak intensity I (40
0) to the (222) plane crystal peak intensity I (22)
When the ratio I (400) / I (222) of 2) is less than 0.33, the predominant crystal orientation is <111>, and when it is 0.33 or more, the predominant crystal orientation. Say the orientation is <100>. This 0.33 is an ASTM value when indium oxide is randomly oriented.
And the predominant crystal orientation direction of the ITO film in the present invention is <
111>, preferably, the peak intensity ratio is 0.25 or less, that is, the <111> orientation is stronger.

【0015】なお、ITO膜の電気的性質は、不純物、
結晶構造学上の酸素欠陥や格子欠陥、結晶粒界などの種
々の要因が影響すると考えられており、本発明の導電性
積層体においては上記の結晶構造のものを用いている
が、他の結晶構造を有するITO膜や非結晶性のITO
膜が導電膜として常に不適当であるとは判断できるもの
ではない。
The electrical properties of the ITO film include impurities,
It is thought that various factors such as oxygen defects and lattice defects on the crystal structure, crystal grain boundaries and the like are affected, and in the conductive laminate of the present invention, those having the above crystal structure are used. ITO film with crystalline structure or amorphous ITO
It cannot be determined that the film is always inappropriate as a conductive film.

【0016】以上のような本発明の導電性積層体の表面
に存するITO膜は、本発明で規定する物性要件を満た
すものであれば、成膜方法などは特に制限はないが、通
常、成膜方法としては、真空蒸着、イオンプレーティン
グ、スパッタリング、化学気相成膜法(CVD)等の方
法が採用される。また、成膜は、酸素ガスや水蒸気、不
活性ガス等のガス存在下で実施してもよい。あるいは、
ITO膜の低抵抗化のため、大気中又は真空中で、プラ
スチック基材の変形が生じない程度の条件下で熱処理を
行ってよい。
The ITO film present on the surface of the conductive laminate of the present invention as described above is not particularly limited as long as it satisfies the physical properties defined by the present invention. As a film method, methods such as vacuum deposition, ion plating, sputtering, and chemical vapor deposition (CVD) are employed. The film formation may be performed in the presence of a gas such as oxygen gas, water vapor, or an inert gas. Or,
In order to reduce the resistance of the ITO film, heat treatment may be performed in the air or in a vacuum under such a condition that the plastic substrate is not deformed.

【0017】本発明の導電性積層体は、基本的には、以
上のプラスチック基材層とITO膜からなる導電層の2
層から構成されるが、導電性積層体の性能の安定性ない
し耐久性向上のために、プラスチック基材層と導電層と
の間に、いわゆる接着層やガスバリア層の役割を有する
中間層層を介在させてもよい。かかるた中間層として好
ましいものとして、紫外線又は電子線硬化樹脂層があ
る。この紫外線又は電子線硬化樹脂層は、一般にハード
コートと呼ばれる塗膜であり、公知のプレポリマー及び
若しくはモノマーを混合し、塗布、硬化させた膜であ
る。例えば、ポリエステル、又はポリエーテル、又はウ
レタン、又はエポキシ系のアクリレート又はメタクリレ
ートのモノマー及びオリゴマーの単独物或いは混合物が
挙げられる。具体的には、トリメチロールプロパントリ
アクリレート、トリメチロールプロパントリメタクリレ
ート、ペンタエリスリトールアクリレート、ペンタエリ
スリトールトリメタクリレート、ペンタエリスリトール
テトラアクリレート、ペンタエリスリトールテトラメタ
クリレート、ジペンタエリスリトールヘキサアクリレー
ト、ジペンタエリスリトールヘキサメタクリレート、イ
ソアミルアクリレート、エトキシジエチレングリコール
アクリレート、メトキシジエチレングリコールアクリレ
ート、N−ビニルピロリドンなど、1個以上の炭素−炭
素2重結合を有する単官能及び多官能のアクリルモノマ
ー、メタクリルモノマー、ビニルモノマー類などであ
る。また、必要に応じて、シランカップリング剤等の接
着性改良剤、重合開始剤、希釈剤等を添加してもよい。
コート方法としては、公知のグラビアコート、リバース
ロールコート、キスロールコート、スピンコートなどが
実施される。硬化後の層厚さは、通常2〜20μmで、
厚さむらがなく表面平坦性が良好であるものが好まし
い。
The conductive laminate of the present invention basically comprises two layers of the above-mentioned plastic substrate layer and the conductive layer composed of an ITO film.
Although it is composed of layers, in order to improve the stability or durability of the performance of the conductive laminate, an intermediate layer having a role of a so-called adhesive layer or gas barrier layer is provided between the plastic base layer and the conductive layer. It may be interposed. Preferred as such an intermediate layer is an ultraviolet or electron beam curable resin layer. The ultraviolet or electron beam curable resin layer is a coating film generally called a hard coat, and is a film obtained by mixing a known prepolymer and / or monomer, and applying and curing the mixture. For example, polyesters, polyethers, urethanes, or epoxy-based acrylate or methacrylate monomers and oligomers may be used alone or as a mixture. Specifically, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, pentaerythritol acrylate, pentaerythritol trimethacrylate, pentaerythritol tetraacrylate, pentaerythritol tetramethacrylate, dipentaerythritol hexaacrylate, dipentaerythritol hexamethacrylate, isoamyl acrylate And monofunctional and polyfunctional acrylic monomers, methacrylic monomers, and vinyl monomers having one or more carbon-carbon double bonds, such as ethoxydiethylene glycol acrylate, methoxydiethylene glycol acrylate, and N-vinylpyrrolidone. If necessary, an adhesion improver such as a silane coupling agent, a polymerization initiator, a diluent, and the like may be added.
As a coating method, a known gravure coat, reverse roll coat, kiss roll coat, spin coat, or the like is performed. The layer thickness after curing is usually 2 to 20 μm,
It is preferable that the material has no thickness unevenness and good surface flatness.

【0018】また、中間層として、ガスバリア性に優れ
た、インジウムスズ酸化物以外の無機酸化物膜を用いる
ことも好ましい。この場合の無機酸化物としては、金
属、非金属、亜金属の酸化物があり、具体例としては、
酸化アルミニウム、酸化亜鉛、酸化アンチモン、酸化イ
ンジウム、酸化カルシウム、酸化カドミウム、酸化銀、
酸化金、酸化クロム、珪素酸化物、酸化コバルト、酸化
ジルコニウム、酸化スズ、酸化チタン、酸化鉄、酸化
銅、酸化ニッケル、酸化白金、酸化パラジウム、酸化ビ
スマス、酸化マグネシウム、酸化マンガン、酸化モリブ
デン、酸化バナジウム、酸化バリウム等が挙げられる。
以上では、珪素酸化物、酸化アルミニウムは、安価であ
り、且つ、ガスバリア性と透明性も特に優れているので
好ましい。なお、以上の無機酸化物には、微量の金属、
非金属、亜金属単体やそれらの水酸化物、また、可撓性
を向上させるために、炭素又はフッ素成分が適宜が含ま
れていてもよい。以上の無機酸化物薄膜を形成させる方
法は、前記のITO膜を形成させる方法と同様に真空蒸
着、イオンプレーテイング、スパッタリング等である。
以上の無機酸化物薄膜の厚さは、通常5〜500nmで
あり、厚さむらがなく、表面平坦性が良好であるものが
好ましい。
It is also preferable to use an inorganic oxide film other than indium tin oxide, which is excellent in gas barrier properties, as the intermediate layer. Inorganic oxides in this case include metal, non-metal, and sub-metal oxides.
Aluminum oxide, zinc oxide, antimony oxide, indium oxide, calcium oxide, cadmium oxide, silver oxide,
Gold oxide, chromium oxide, silicon oxide, cobalt oxide, zirconium oxide, tin oxide, titanium oxide, iron oxide, copper oxide, nickel oxide, platinum oxide, palladium oxide, bismuth oxide, magnesium oxide, manganese oxide, molybdenum oxide, oxidation Vanadium, barium oxide and the like can be mentioned.
Above, silicon oxide and aluminum oxide are preferable because they are inexpensive and have particularly excellent gas barrier properties and transparency. Note that the above inorganic oxides include a trace amount of metal,
A non-metal, a sub-metal, a hydroxide thereof, and a carbon or fluorine component may be appropriately contained in order to improve flexibility. The method for forming the above-mentioned inorganic oxide thin film includes vacuum deposition, ion plating, sputtering and the like, as in the above-described method for forming the ITO film.
The thickness of the above-mentioned inorganic oxide thin film is usually from 5 to 500 nm, and it is preferable that the thickness is not uneven and the surface flatness is good.

【0019】以上のような本発明の導電性積層体は低抵
抗性であり、JIS K7197のの四探針四端子法に
て測定した体積抵抗率が4×10-4Ωcm以下、好まし
くは3×10-4Ωcm以下である。また、導電性積層体
ののカール高さは20mm以下、好ましくは10mm以
下である。ここに、カール高さとは、120mm角の大
きさの積層体を水平平坦な場所に荷重をかけず自然に置
いた場合のフィルムを置いた面からフィルムの最大高さ
までの距離である。カール高さは導電性積層体の各層の
性質や密着状態に依存して決まってくると推定される
が、カール高さが上記の値を超えるような場合は導電性
積層体の耐屈曲性や密着性が低下するので好ましくな
い。
The conductive laminate of the present invention as described above has a low resistance, and has a volume resistivity of 4 × 10 −4 Ωcm or less, preferably 3 × 10 −4 Ωcm, as measured by a four-probe four-terminal method of JIS K7197. × 10 −4 Ωcm or less. The curl height of the conductive laminate is 20 mm or less, preferably 10 mm or less. Here, the curl height is the distance from the surface on which the film is placed to the maximum height of the film when the laminate having a size of 120 mm square is naturally placed on a horizontally flat place without applying a load. The curl height is estimated to be determined depending on the properties and adhesion of each layer of the conductive laminate, but if the curl height exceeds the above value, the flex resistance of the conductive laminate and It is not preferable because the adhesion is reduced.

【0020】更に、本発明の導電性積層体では透明性に
優れたものであり、波長550nmにおける光線透過率
が通常85%以上である。この導電性積層体の用途とし
ては、高透明性が要求される場合が多く、かかる場合は
光線透過率が高いほど望ましい。
Further, the conductive laminate of the present invention has excellent transparency, and the light transmittance at a wavelength of 550 nm is usually 85% or more. In many cases, the transparency of the conductive laminate is required to be high. In such a case, a higher light transmittance is more desirable.

【0021】[0021]

【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明はその要旨を越えない限り以下の例に限
定されるものではない。なお、以下の例において、導電
性積層体の評価及び測定を次の方法で行った。 <導電層の厚さ(nm)>積層体の断面を透過型電子顕
微鏡(日立製作所製H−600型)で観察し積層体の導
電層の厚さを測定した。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist of the present invention. In the following examples, the evaluation and measurement of the conductive laminate were performed by the following methods. <Thickness of conductive layer (nm)> The cross section of the laminate was observed with a transmission electron microscope (H-600, manufactured by Hitachi, Ltd.), and the thickness of the conductive layer of the laminate was measured.

【0022】<導電層の結晶性及びその結晶配向方位>
薄膜X線回折装置(リガク製RINTI500型)を用
い、管球Cu(CuKα1線)、管電圧50kV、管電
流200mA、広角ゴニオメータ、サンプリング角度
0.050゜、走査速度3.0゜/分、走査軸2θ、固
定角度1.0゜、回転速度120回/分の条件で測定
し、結晶ピークの有無からITO膜の結晶性を、また、
ピーク強度比I(400)/I(222)から主要結晶
配向方位を調べた。この測定条件の場合、(400)面
の結晶ピークは2θ=30.5゜付近、(222)面の
結晶ピークは2θ=35.4゜付近に検出される。
<Crystallinity of Conductive Layer and its Crystal Orientation>
Using a thin-film X-ray diffractometer (Rigti RINTI500 type), tube Cu (CuKα1 line), tube voltage 50 kV, tube current 200 mA, wide-angle goniometer, sampling angle 0.050 °, scanning speed 3.0 ° / min, scanning Measured under the conditions of axis 2θ, fixed angle 1.0 °, and rotation speed 120 times / min, the crystallinity of the ITO film was determined based on the presence or absence of a crystal peak.
The main crystal orientation direction was examined from the peak intensity ratio I (400) / I (222). Under this measurement condition, the crystal peak of the (400) plane is detected near 2θ = 30.5 °, and the crystal peak of the (222) plane is detected near 2θ = 35.4 °.

【0023】<導電層の結晶粒径>電界放射型2次電子
顕微鏡(日立製作所製S−900型)を用い、傾斜なし
の無蒸着の条件下でITO膜表面を観察し、その10万
倍像から、多角形状または円形状である粒子形状の対角
線距離或いは直径を測定した。 <導電層の表面粗さ>原子間力顕微鏡(セイコー電子工
業製SPI3700型)を用い、共振モード、測定面積
1μm角、走査速度1Hz、512×512分割の条件
で測定し、装置付属ソフトで自動傾斜処理を行い、同じ
く装置付属ソフトで粗さ解析し、表面粗さRmsを求め
た。
<Crystal Grain Size of Conductive Layer> Using a field emission secondary electron microscope (S-900, manufactured by Hitachi, Ltd.), the surface of the ITO film was observed under conditions of non-evaporation without inclination, and 100,000 times the size of the ITO film. From the images, the diagonal distance or the diameter of the polygonal or circular particle shape was measured. <Surface Roughness of Conductive Layer> Using an atomic force microscope (SPI3700, manufactured by Seiko Instruments Inc.), the measurement is performed under the conditions of resonance mode, measurement area of 1 μm square, scanning speed of 1 Hz, and 512 × 512 divisions, and is automatically performed by software attached to the apparatus. A tilt treatment was performed, and a roughness analysis was similarly performed using software attached to the apparatus to determine a surface roughness Rms.

【0024】<導電性積層体の体積抵抗率>80×50
mmの大きさの積層体について、抵抗率計(三菱化学製
LORESTA−SP型)で測定した。 <導電性積層体のカール高さ>120mm角の大きさの
積層体を、水平平坦な場所に荷重をかけず自然に置き、
積層体を置いた面から積層体の最大高さまでの距離を物
差しで計測した。
<Volume resistivity of conductive laminate> 80 × 50
The laminate having a size of mm was measured with a resistivity meter (model LORESTA-SP manufactured by Mitsubishi Chemical Corporation). <Curl height of conductive laminate> A laminate having a size of 120 mm square is naturally placed on a horizontal flat place without applying a load,
The distance from the surface on which the laminate was placed to the maximum height of the laminate was measured with a ruler.

【0025】<導電性積層体の耐屈曲性>ITO膜を内
側にした場合と外側にした場合の2通りとも、10×1
00mm大きさの導電性フィルムを、φ15mmの丸棒
に沿って180゜曲げ30秒保持した後、体積抵抗率を
測定し、曲げる前の体積抵抗率との変化率が1.5以下
である条件を2通りとも満たした場合を○、そうでない
場合を×とした。 <導電性積層体の密着性>10×30mmの大きさの導
電性フィルムを、水温25℃の3%水酸化ナトリウム水
溶液に10分浸漬させた後、水洗、乾燥し、セロハンテ
ープをITO膜に貼って剥がしても、ITO膜が下地に
すべて残っている条件を満たした場合を○、そうでない
場合を×とした。。
<Bending Resistance of Conductive Laminate> Both the case where the ITO film is inside and the case where the ITO film is outside are 10 × 1.
After holding a conductive film having a size of 00 mm along a φ15 mm round bar at 180 ° bending for 30 seconds, the volume resistivity was measured, and the rate of change from the volume resistivity before bending was 1.5 or less. Was satisfied when both were satisfied, and x was determined when not. <Adhesion of Conductive Laminated Body> A conductive film having a size of 10 × 30 mm was immersed in a 3% aqueous solution of sodium hydroxide at a water temperature of 25 ° C. for 10 minutes, washed with water and dried, and a cellophane tape was applied to the ITO film. Even when the ITO film was adhered and peeled, the condition was satisfied when the condition that all of the ITO film remained on the underlayer was satisfied. .

【0026】<導電性積層体の透明性>自記分光光度計
(日立製作所製U−3410型)を用い測定し、波長5
50nmにおける光線透過率を求めた。 実施例1 環状ポリオレフィンフィルム(日本合成ゴム製、アート
ン、厚さ100μm)の片面に、厚さ35nmのSiO
x膜を蒸着させ、その上に厚さ5μmの紫外線硬化樹脂
層を形成させ、またその上に厚さ120nmのITO膜
を成膜して、抵抗率、カール性、耐屈曲性、密着性、透
明性とも良好な導電性フィルムを得た。
<Transparency of Conductive Laminate> Measured using a self-recording spectrophotometer (U-3410, manufactured by Hitachi, Ltd.) and having a wavelength of 5
The light transmittance at 50 nm was determined. Example 1 A 35 nm-thick SiO2 film was formed on one surface of a cyclic polyolefin film (manufactured by Nippon Synthetic Rubber Co., Arton, 100 μm thick).
x film is deposited, and a 5 μm thick ultraviolet curable resin layer is formed thereon, and an ITO film having a thickness of 120 nm is formed thereon, and the resistivity, curl property, bending resistance, adhesion, A conductive film having good transparency was obtained.

【0027】SiOx膜の蒸着は、蒸着材料としてSi
O(住友シチックス製)を用い、高周波誘導加熱源(日
本真空技術製)で、圧力2×10-5Torr条件下で行
った。紫外線硬化樹脂層は、三菱レイヨン製ダイヤビー
ムUR−6521を100重量部と東レダウコーニング
シリコーン製SZ6030を10重量部の割合で配合し
た塗布液をリバースロール方式で塗布し、紫外線硬化装
置(オーク社製)を用い、メタルハライドランプ、積算
光量500mJ/cm2の条件で硬化させた。
The SiO x film is deposited by using Si as a deposition material.
Using O (manufactured by Sumitomo Citix), a high-frequency induction heating source (manufactured by Nippon Vacuum Technology) was used under a pressure of 2 × 10 −5 Torr. The ultraviolet-curing resin layer is coated by a reverse roll method with a coating solution containing 100 parts by weight of Mitsubishi Rayon Diamond Beam UR-6521 and 10 parts by weight of Toray Dow Corning Silicone SZ6030. Using a metal halide lamp and an integrated light quantity of 500 mJ / cm 2 .

【0028】ITO膜の成膜は、蒸着材料としてIn2
3−SnO2(5重量部)焼結体を用い、プラズマガン
装置(中外炉工業製)で、ベース真空度1×10-5To
rr、成膜真空度5×10-4Torr、Ar流量30s
ccm、O2流量100sccm、基板温度150℃、
成膜速度3nm/秒、ガン出力55V、150A、膜厚
120nmの条件下で行った。得られた導電性フィルム
の評価結果を表ー1に示す。
The ITO film is formed by depositing In 2 as an evaporation material.
O 3 -SnO 2 (5 parts by weight) sintered body was used, and a plasma gun device (manufactured by Chugai Furnace Industry) was used. The base vacuum degree was 1 × 10 −5 To.
rr, film formation vacuum degree 5 × 10 −4 Torr, Ar flow rate 30 s
ccm, O 2 flow rate 100 sccm, substrate temperature 150 ° C.,
The film formation rate was 3 nm / sec, the gun output was 55 V, the current was 150 A, and the film thickness was 120 nm. Table 1 shows the evaluation results of the obtained conductive films.

【0029】比較例1 実施例1において、ITO成膜条件の成膜温度を100
℃に代えた他は、同様な方法で導電性フィルムを得た。
評価結果を表ー1に示す。この導電性フィルムは優勢な
結晶配向方位が<100>であり、抵抗率、密着性が不
良であった。 実施例2 比較例1と同様にITO成膜した後、大気下、150
℃、1時間の条件で熱処理を行い、導電性フィルムを得
た。評価結果を表ー1に示す。
Comparative Example 1 In Example 1, the film forming temperature under the ITO film forming condition was set to 100
A conductive film was obtained in the same manner except that the temperature was changed to ° C.
The evaluation results are shown in Table-1. This conductive film had a predominant crystal orientation direction of <100>, and was poor in resistivity and adhesion. Example 2 After forming an ITO film in the same manner as in Comparative Example 1, 150
Heat treatment was performed at 1 ° C. for 1 hour to obtain a conductive film. The evaluation results are shown in Table-1.

【0030】比較例2 実施例1において、紫外線硬化樹脂層の塗布液成分及び
配合を、大日精化製セイカビームEXF−01Bを10
0重量部、東レダウコーニングシリコーン製SZ603
0を10重量部に代えた他は、同様な方法で導電性フィ
ルムを得た。評価結果を表ー1に示す。この導電性フィ
ルムはカール性、耐屈曲性、密着性が不良であった。
COMPARATIVE EXAMPLE 2 In Example 1, the composition and the composition of the coating liquid for the ultraviolet curable resin layer were changed to 10 by Seika Beam EXF-01B manufactured by Dainichi Seika.
0 parts by weight, SZ603 made by Toray Dow Corning Silicone
A conductive film was obtained in the same manner except that 0 was changed to 10 parts by weight. The evaluation results are shown in Table-1. This conductive film was poor in curl properties, bending resistance, and adhesion.

【0031】比較例3 実施例1において、ITO成膜をスパッタ装置で、ベー
ス真空度1×10−5Torr、成膜真空度5×10−
4Torr、Ar流量250sccm、O2流量50s
ccm、基板温度150℃、成膜速度0.2nm/秒、
膜厚120nmの条件下で行った他は、同様にして導電
性フィルムを得た。評価結果を表ー1に示す。この導電
性フィルムは優優勢な結晶配向方位は<111>ではあ
るが、結晶粒径、表面粗さは大きく、抵抗率、カール
性、密着性が不良であった。
Comparative Example 3 In Example 1, the ITO film was formed by a sputtering apparatus using a base vacuum of 1 × 10 −5 Torr and a film forming vacuum of 5 × 10 −5.
4 Torr, Ar flow rate 250 sccm, O 2 flow rate 50 s
ccm, substrate temperature 150 ° C., film formation rate 0.2 nm / sec,
A conductive film was obtained in the same manner as above except that the film thickness was 120 nm. The evaluation results are shown in Table-1. Although this conductive film had a predominant crystal orientation direction of <111>, the crystal grain size and surface roughness were large, and the resistivity, curl properties, and adhesion were poor.

【0032】比較例4 比較例3において、ITO成膜時の基板温度を100℃
に変えた他は、同様な方法で導電性フィルムを得た。評
価結果を表ー1に示す。この導電性フィルムのITO膜
は非晶性であり、抵抗率、カール性、密着性が不良であ
った。
Comparative Example 4 In Comparative Example 3, the substrate temperature at the time of forming the ITO film was 100 ° C.
A conductive film was obtained in the same manner except that the above-mentioned method was used. The evaluation results are shown in Table-1. The ITO film of this conductive film was amorphous, and had poor resistivity, curl, and adhesion.

【0033】[0033]

【表1】 上記表−1においてA〜H欄は以下を意味する。 A:ITO膜の優勢な結晶配向方位 B:ITO膜の結晶粒径(nm) C:ITO膜の表面粗さ(nm) D:導電性積層体の体積抵抗率(Ωcm) E:導電性積層体のカール高さ(mm) F:導電性積層体の耐屈曲性 G:導電性積層体の密着性 H:導電性積層体の透明性(%)[Table 1] In Table 1 above, columns A to H mean the following. A: Dominant crystal orientation of ITO film B: Crystal grain size of ITO film (nm) C: Surface roughness of ITO film (nm) D: Volume resistivity of conductive laminate (Ωcm) E: Conductive laminate Curl height of body (mm) F: Flex resistance of conductive laminate G: Adhesion of conductive laminate H: Transparency of conductive laminate (%)

【0034】[0034]

【発明の効果】本発明によれば、軽量であり、低抵抗
性、低カール性、耐屈曲性、密着性等に優れた導電性積
層体が提供できる。
According to the present invention, it is possible to provide a conductive laminate which is lightweight and excellent in low resistance, low curl, bending resistance, adhesion and the like.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 表面にインジウムスズ酸化物からなる導
電層を設け、且つ、プラスチック基材を用いてなる導電
性積層体において、導電層が平均粒径20nm以下の結
晶性粒子から構成され、その優勢な結晶配向方位が<1
11>、表面粗さRmsが1.5nm以下であって、且
つ、導電性積層体の体積抵抗率が4×10-4Ωcm以
下、カール高さが20mm以下であることを特徴とする
導電性積層体。
1. A conductive laminate comprising an indium tin oxide provided on a surface thereof and using a plastic substrate, wherein the conductive layer is made of crystalline particles having an average particle size of 20 nm or less. Dominant crystal orientation <1
11>, a conductive laminate having a surface roughness Rms of 1.5 nm or less, a volume resistivity of the conductive laminate of 4 × 10 −4 Ωcm or less, and a curl height of 20 mm or less. Laminate.
【請求項2】 プラスチック基材層と導電層との間に紫
外線又は電子線硬化樹脂層を介在してなることを特徴と
する請求項1の導電性積層体。
2. The conductive laminate according to claim 1, wherein an ultraviolet or electron beam curable resin layer is interposed between the plastic substrate layer and the conductive layer.
【請求項3】 プラスチック基材層と導電層との間にガ
スバリア性無機酸化物層を介在してなることを特徴とす
る請求項1又は2の導電性積層体。
3. The conductive laminate according to claim 1, wherein a gas barrier inorganic oxide layer is interposed between the plastic base material layer and the conductive layer.
【請求項4】 プラスチック基材層が環状ポリオレフィ
ンであることを特徴とする請求項1ないし3のいずれか
の導電性積層体。
4. The conductive laminate according to claim 1, wherein the plastic substrate layer is a cyclic polyolefin.
【請求項5】 導電層が平均粒径15nm以下の結晶性
粒子から構成されることを特徴とする請求項1ないし4
のいずれかの導電性積層体。
5. The conductive layer is made of crystalline particles having an average particle diameter of 15 nm or less.
The conductive laminate of any one of the above.
【請求項6】 波長550nmにおける光線透過率が8
5%以上であることを特徴とする請求項1ないし5のい
ずれかの導電性積層体。
6. A light transmittance at a wavelength of 550 nm of 8
The conductive laminate according to any one of claims 1 to 5, wherein the content is 5% or more.
JP14499697A 1997-06-03 1997-06-03 Electrically conductive laminated body Pending JPH10330916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14499697A JPH10330916A (en) 1997-06-03 1997-06-03 Electrically conductive laminated body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14499697A JPH10330916A (en) 1997-06-03 1997-06-03 Electrically conductive laminated body

Publications (1)

Publication Number Publication Date
JPH10330916A true JPH10330916A (en) 1998-12-15

Family

ID=15375053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14499697A Pending JPH10330916A (en) 1997-06-03 1997-06-03 Electrically conductive laminated body

Country Status (1)

Country Link
JP (1) JPH10330916A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307554A (en) * 2000-04-24 2001-11-02 Tosoh Corp Transparent conductive film, its manufacturing method, and its application
JP2001307553A (en) * 2000-04-24 2001-11-02 Geomatec Co Ltd Transparent conductive film, its manufacturing method, and its application
JP2002042559A (en) * 2000-05-19 2002-02-08 Tdk Corp Functional film
JP2002170430A (en) * 2000-11-29 2002-06-14 Asahi Glass Co Ltd Base body with conductive film and its manufacturing method
WO2003012799A1 (en) * 2001-07-31 2003-02-13 Toyo Boseki Kabushiki Kaisha Transparent conductive film and production method therefor, transparent conductive sheet, and touch panel
WO2004055233A1 (en) * 2002-12-18 2004-07-01 Sony Chemicals Corp. Transparent conductive film and film forming method therefor
JP2006202756A (en) * 2006-01-20 2006-08-03 Nitto Denko Corp Transparent conductive laminate
US7348649B2 (en) 2004-06-03 2008-03-25 Nitto Denko Corporation Transparent conductive film
JP2009173546A (en) * 2001-02-28 2009-08-06 Ppg Industries Ohio Inc Photo-induced hydrophilic article and method of producing the same
WO2011046094A1 (en) * 2009-10-13 2011-04-21 東洋紡績株式会社 Transparent conductive laminate film
JP4759143B2 (en) * 1999-02-24 2011-08-31 帝人株式会社 Transparent conductive laminate, method for producing the same, and display element using the same
JP2012103958A (en) * 2010-11-11 2012-05-31 Kitagawa Ind Co Ltd Transparent conductive film
WO2014034575A1 (en) * 2012-08-31 2014-03-06 株式会社カネカ Method for producing substrate with transparent electrode, and substrate with transparent electrode
JP2015146253A (en) * 2014-02-03 2015-08-13 大日本印刷株式会社 Laminate and conductive pattern substrate for touch panel

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4759143B2 (en) * 1999-02-24 2011-08-31 帝人株式会社 Transparent conductive laminate, method for producing the same, and display element using the same
JP2001307553A (en) * 2000-04-24 2001-11-02 Geomatec Co Ltd Transparent conductive film, its manufacturing method, and its application
JP2001307554A (en) * 2000-04-24 2001-11-02 Tosoh Corp Transparent conductive film, its manufacturing method, and its application
JP4625558B2 (en) * 2000-04-24 2011-02-02 東ソー株式会社 Transparent conductive film, method for producing the same, and use thereof
JP2002042559A (en) * 2000-05-19 2002-02-08 Tdk Corp Functional film
JP4678097B2 (en) * 2000-05-19 2011-04-27 Tdk株式会社 Conductive film
JP4586263B2 (en) * 2000-11-29 2010-11-24 旭硝子株式会社 Substrate with conductive film and method for producing the same
JP2002170430A (en) * 2000-11-29 2002-06-14 Asahi Glass Co Ltd Base body with conductive film and its manufacturing method
JP2009173546A (en) * 2001-02-28 2009-08-06 Ppg Industries Ohio Inc Photo-induced hydrophilic article and method of producing the same
WO2003012799A1 (en) * 2001-07-31 2003-02-13 Toyo Boseki Kabushiki Kaisha Transparent conductive film and production method therefor, transparent conductive sheet, and touch panel
WO2004055233A1 (en) * 2002-12-18 2004-07-01 Sony Chemicals Corp. Transparent conductive film and film forming method therefor
US7294852B2 (en) 2002-12-18 2007-11-13 Sony Chemical & Information Device Corporation Transparent conductive films and processes for forming them
US7348649B2 (en) 2004-06-03 2008-03-25 Nitto Denko Corporation Transparent conductive film
US8075948B2 (en) 2004-06-03 2011-12-13 Nitto Denko Corporation Transparent conductive film
JP2006202756A (en) * 2006-01-20 2006-08-03 Nitto Denko Corp Transparent conductive laminate
WO2011046094A1 (en) * 2009-10-13 2011-04-21 東洋紡績株式会社 Transparent conductive laminate film
JP2012103958A (en) * 2010-11-11 2012-05-31 Kitagawa Ind Co Ltd Transparent conductive film
WO2014034575A1 (en) * 2012-08-31 2014-03-06 株式会社カネカ Method for producing substrate with transparent electrode, and substrate with transparent electrode
CN104603320A (en) * 2012-08-31 2015-05-06 株式会社钟化 Method for producing substrate with transparent electrode, and substrate with transparent electrode
JPWO2014034575A1 (en) * 2012-08-31 2016-08-08 株式会社カネカ Manufacturing method of substrate with transparent electrode, and substrate with transparent electrode
CN104603320B (en) * 2012-08-31 2017-04-05 株式会社钟化 The manufacture method of the substrate with transparency electrode and the substrate with transparency electrode
US10138541B2 (en) 2012-08-31 2018-11-27 Kaneka Corporation Method for producing substrate with transparent electrode, and substrate with transparent electrode
JP2015146253A (en) * 2014-02-03 2015-08-13 大日本印刷株式会社 Laminate and conductive pattern substrate for touch panel

Similar Documents

Publication Publication Date Title
CN1134818C (en) Anti-reflection member, manufacturing method thereof and cathode-ray tube
JPH10330916A (en) Electrically conductive laminated body
JP5506011B2 (en) Transparent conductive film with pressure-sensitive adhesive layer and method for producing the same
KR101629060B1 (en) Transparent conductive film, method for fabricating the same and touch panel with it
US8531406B2 (en) Transparent conductive film, electrode sheet for use in touch panel, and touch panel
KR101143281B1 (en) Transparent conductive multilayer body and transparent touch panel
TWI453767B (en) Transparent conductive laminates and touch panels
TWI461305B (en) Transparent conductive film and manufacturing method thereof
JP6279280B2 (en) Transparent conductive film and use thereof
US20120237729A1 (en) Transparent conductive film and touch panel
KR100444398B1 (en) Functional Film
JP2011079219A (en) Gas-barrier film and method for manufacturing the same
JP5590922B2 (en) Substrate with transparent electrode and method for manufacturing the same
JP4068993B2 (en) Transparent conductive laminated film
JPH02213006A (en) Transparent conductive laminated body
JP3767002B2 (en) Gas barrier film and manufacturing method thereof
JP6425598B2 (en) Transparent conductive film and touch panel
JP6458445B2 (en) Transparent conductive laminate, touch panel using the transparent conductive laminate, a method for producing the transparent conductive laminate, and a method for producing a touch panel using the transparent conductive laminate
KR20140082405A (en) Transparent conductive film
JP2005071901A (en) Transparent conductive laminated film
JP2010020951A (en) Method for manufacturing transparent conductive film
JP3564919B2 (en) Thin gas barrier film
JPH1034798A (en) Transparent conductive film
JPH10244601A (en) Manufacture of base material plastic film for thin gas-barrier film
KR102020990B1 (en) Transparent electrode film for smart window, Manufacturing method thereof and PDLC smart window containing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051129