JPH10325527A - Exhaust gas passage wall structure - Google Patents

Exhaust gas passage wall structure

Info

Publication number
JPH10325527A
JPH10325527A JP13544797A JP13544797A JPH10325527A JP H10325527 A JPH10325527 A JP H10325527A JP 13544797 A JP13544797 A JP 13544797A JP 13544797 A JP13544797 A JP 13544797A JP H10325527 A JPH10325527 A JP H10325527A
Authority
JP
Japan
Prior art keywords
exhaust gas
heat transfer
temperature
wall
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP13544797A
Other languages
Japanese (ja)
Inventor
Suminao Tomoyasu
純直 友保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP13544797A priority Critical patent/JPH10325527A/en
Publication of JPH10325527A publication Critical patent/JPH10325527A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Gasification And Melting Of Waste (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate the fear of high-temperature corrosion of a heat transfer tube on an external wall by flowing water in the heat transfer tube outside a metallic flow passage arranged over substantially whole outer circumferential surface of a refractory wall to absorb and recover the heat of the hot exhaust gas into water. SOLUTION: An exhaust gas flow passage wall structure 2 is provided with an external wall 10 to form a flow passage of the hot exhaust gas G2 generated through combustion of the waste and a heat transfer tube 3 in the flow passage arranged in the exhaust gas flow passage surrounded by the external wall 10. The external surface of the heat transfer tube 3 in the flow passage is covered with a refractory material 4 so as not to be brought into direct contact with the hot exhaust gas. The air flowing in the heat transfer tube 3 in the flow passage absorbs and recovers the heat of the hot exhaust gas G2. The external wall 10 is provided with a refractory wall 13 provided on the side opposite to the hot exhaust gas G2 and a metallic heat transfer tube 11 outside the flow passage arranged over approximately whole outer circumferential surface of the refractory wall 13. Water flows in the heat transfer tube 11 outside the flow passage as the thermal medium to absorb and recover the heat of the hot exhaust gas G2 in water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、廃棄物(家庭やオ
フィスなどから出される都市ごみなどの一般廃棄物、廃
プラスチック、カーシュレッダー・ダスト、廃オフィス
機器、電子機器、化粧品などの産業廃棄物など、可燃物
を含むもの)を都市ごみ焼却炉や産業廃棄物焼却炉等で
燃焼して生じた高温排ガスの流路を形成する外壁と、該
外壁で囲われた前記排ガス流路に配設された流路内伝熱
管とを備え、該伝熱管内を流れる空気に前記高温排ガス
の熱を吸収させて回収する排ガス流路の路壁構造及びそ
れを用いた廃棄物処理装置に関する。
The present invention relates to industrial waste such as waste (general waste such as municipal waste from homes and offices, waste plastic, car shredder dust, waste office equipment, electronic equipment, cosmetics, etc.). Such as those containing combustible materials) in the municipal waste incinerator, industrial waste incinerator, etc., and the outer wall forming a flow path for high-temperature exhaust gas, and the exhaust gas flow path surrounded by the outer wall. The present invention relates to a path wall structure of an exhaust gas flow path that includes a heat transfer pipe in the flow path, and absorbs the heat of the high-temperature exhaust gas into the air flowing in the heat transfer pipe to recover the waste gas, and a waste treatment apparatus using the same.

【0002】[0002]

【従来の技術】都市ごみ等の一般廃棄物や廃プラスチッ
クなどの可燃物を含む廃棄物の処理装置の一つとして廃
棄物を熱分解反応器に入れて低酸素雰囲気中で加熱して
熱分解し、熱分解ガス(乾留ガス)と主として不揮発性
成分からなる熱分解残留物とを生成し、この熱分解ガス
と熱分解残留物とを排出装置において分離し、更に熱分
解残留物を冷却した後、分離装置に供給してカーボンを
主体とする燃焼性成分と、例えば金属や陶器、砂利、コ
ンクリート片等の瓦礫よりなる不燃焼性成分とに分離
し、燃焼性成分を粉砕し、この粉砕された燃焼性成分と
前記した熱分解ガスとを燃焼溶融炉に導いて燃焼させ、
生じた燃焼灰を該燃焼溶融炉の前記燃焼による燃焼熱に
より加熱して溶融スラグとなし、この溶融スラグを外部
に排出して冷却固化させるようにした廃棄物処理装置が
知られている(特公平6−56253号公報)。前記燃
焼溶融炉で発生した高温排ガス(約1200℃)は後段
に設けられている熱交換器である高温空気加熱器により
熱エネルギーを回収され、更に次の処理工程を経て最終
的にクリーンな排ガスとなって煙突から大気中に放出さ
れる。
2. Description of the Related Art As one of the treatment apparatuses for waste including general waste such as municipal solid waste and combustibles such as waste plastics, the waste is put into a thermal decomposition reactor and heated in a low oxygen atmosphere to perform thermal decomposition. Then, a pyrolysis gas (dry distillation gas) and a pyrolysis residue mainly composed of a non-volatile component were generated, the pyrolysis gas and the pyrolysis residue were separated in an exhaust device, and the pyrolysis residue was further cooled. After that, it is supplied to a separation device to separate a combustible component mainly composed of carbon and a non-combustible component composed of rubble such as metal, pottery, gravel, concrete pieces, etc., and pulverize the combustible component. The combustible component and the pyrolysis gas described above are led to a combustion melting furnace for combustion,
There is known a waste treatment apparatus in which the generated combustion ash is heated by the combustion heat generated by the combustion of the combustion melting furnace to form molten slag, and the molten slag is discharged to the outside to be cooled and solidified. Japanese Patent Publication No. Hei 6-56253). The high-temperature exhaust gas (approximately 1200 ° C.) generated in the combustion-melting furnace is recovered heat energy by a high-temperature air heater, which is a heat exchanger provided at a subsequent stage, and finally passes through a next processing step to finally obtain a clean exhaust gas. And released into the atmosphere from the chimney.

【0003】従来技術に係る排ガス流路の路壁構造は、
廃棄物を燃焼して生じた高温排ガスの流路を形成する外
壁と、この外壁で囲われた前記排ガス流路に配設された
金属製の流路内伝熱管とを備えている。この流路内伝熱
管の外面は高温排ガスに直接触れないよう耐火材で覆わ
れている。更に、外壁部分にも金属製の流路外伝熱管が
配設されている。この流路外伝熱管もその排ガス流路側
が高温排ガスに直接触れないよう耐火材で覆われてい
る。そして、前記両伝熱管内を流れる空気に前記高温排
ガスの熱を吸収させて回収するようになっている。この
ように排ガス流路の路壁構造は、高効率のエネルギー資
源システムであり、回収された熱エネルギーは、ごみの
熱分解、発電及びその他の施設に有効利用される。
[0003] The road wall structure of the exhaust gas passage according to the prior art,
It has an outer wall that forms a flow path for high-temperature exhaust gas generated by burning waste, and a metal-made in-channel heat transfer tube disposed in the exhaust gas path surrounded by the outer wall. The outer surface of the heat transfer tube in the flow passage is covered with a refractory material so as not to directly contact the high-temperature exhaust gas. Further, a metal external heat transfer tube is also provided on the outer wall portion. The heat transfer tube outside the flow path is also covered with a refractory material so that the exhaust gas flow path side does not directly contact the high-temperature exhaust gas. Then, the heat of the high-temperature exhaust gas is absorbed and recovered by air flowing through the heat transfer tubes. Thus, the road wall structure of the exhaust gas passage is a highly efficient energy resource system, and the recovered thermal energy is effectively used for thermal decomposition of refuse, power generation, and other facilities.

【0004】ところで、都市ごみ焼却炉や産業廃棄物焼
却炉で発生した高温排ガスは、ごみや廃棄物に起因する
塩素や塩化水素などの、高温における金属との反応で生
成した生成物が短時間で蒸発消失してしまうような、著
しく腐食性の高い腐食性物質を含む高腐食性のガスであ
る。従って、高温、高腐食性排ガス雰囲気中に晒される
排ガス流路の路壁構造の金属製伝熱管(鋼管)は、高温
の腐食性ガスに対して耐食性を持たせるため前記の如く
耐火材で覆われている。
By the way, high-temperature exhaust gas generated in municipal solid waste incinerators and industrial waste incinerators has a short-term effect on products generated by reaction with metals such as chlorine and hydrogen chloride caused by garbage and waste at high temperatures. It is a highly corrosive gas containing a corrosive substance that is extremely corrosive, such that it will evaporate and disappear. Therefore, a metal heat transfer tube (steel pipe) having a road wall structure of an exhaust gas passage exposed to a high-temperature, highly corrosive exhaust gas atmosphere is covered with a refractory material as described above in order to impart corrosion resistance to a high-temperature corrosive gas. Have been done.

【0005】[0005]

【発明が解決しようとする課題】しかし、高温の腐食性
ガスの雰囲気では、金属製伝熱管を耐火材で覆っても長
い間に高温の腐食性ガスが耐火材の細孔を浸透し金属製
伝熱管を腐食する恐れがある。ところで、塩素分による
ボイラ伝熱面(金属)の腐食は、排ガス温度がほぼ32
0℃近傍から腐食が生じるようになり、特に500℃〜
700℃で急速に進むことが知られている。また150
℃より低い温度になってもやはり腐食が進むことが知ら
れている。上記の両温度領域の間の温度では塩素分によ
る腐食は進行しない。
However, in an atmosphere of a high-temperature corrosive gas, even when the metal heat transfer tube is covered with a refractory material, the high-temperature corrosive gas permeates through the pores of the refractory material for a long time, and the metal heat transfer tube is made of metal. There is a risk of corroding the heat transfer tubes. Incidentally, the corrosion of the heat transfer surface (metal) of the boiler due to the chlorine content is caused by the fact that the exhaust gas temperature is approximately 32%.
Corrosion starts to occur at around 0 ° C, especially at 500 ° C
It is known that it proceeds rapidly at 700 ° C. Also 150
It is also known that corrosion proceeds even at temperatures lower than ℃. At a temperature between the above two temperature ranges, corrosion due to chlorine does not proceed.

【0006】そこで、金属製伝熱管の表面温度が前記の
ような腐食進行温度に至らないようにすれば、すなわち
約200〜300℃程度に保つようにすれば、仮に高温
の腐食性ガスが耐火材の細孔を浸透して金属製伝熱管の
表面に触れても塩素ガス等の腐食成分による腐食は防げ
ることになる。
Therefore, if the surface temperature of the metal heat transfer tube is controlled so as not to reach the above-mentioned corrosion progress temperature, that is, if the temperature is maintained at about 200 to 300 ° C., the high-temperature corrosive gas is refractory. Even if it penetrates through the pores of the material and touches the surface of the metal heat transfer tube, corrosion due to corrosive components such as chlorine gas can be prevented.

【0007】しかし、熱媒体として空気を流す金属製伝
熱管の表面温度は、排ガス流路の路壁構造に用いられる
場合600〜700℃にもなるため、塩素分と接触する
と激しい腐食進行が生ずる恐れがあった。
However, since the surface temperature of a metal heat transfer tube through which air flows as a heat medium is as high as 600 to 700 ° C. when used in a road wall structure of an exhaust gas passage, severe corrosion progresses when it comes into contact with chlorine. There was fear.

【0008】排ガス流路内伝熱管は、特開平08−09
4051号公報に示されるような構造を採用することが
出来るので、金属管へ腐食性ガスが接触しないようにし
て、腐食を防止出来るが、外壁部流路外伝熱管はガス流
路内伝熱管と同一の構造とすることが出来ないので、腐
食性ガスの前記浸透を防ぎにくく、外壁部は腐食を避け
ることが非常に困難であった。この外壁部分の伝熱管が
一部でも腐食すると外壁全体を交換しなければならない
という問題があった。
A heat transfer tube in an exhaust gas passage is disclosed in Japanese Patent Application Laid-Open No. 08-09,08 / 09.
No. 4051, it is possible to adopt a structure as shown in the publication. Corrosive gas can be prevented from coming into contact with the metal tube, thereby preventing corrosion. Since the same structure cannot be used, it is difficult to prevent the permeation of corrosive gas, and it is very difficult to avoid corrosion of the outer wall. If even a part of the heat transfer tube on the outer wall corrodes, there is a problem that the entire outer wall must be replaced.

【0009】本発明の課題は、外壁にある伝熱管の前記
高温腐食の恐れを解消し、耐久性を著しく向上させた排
ガス流路の路壁構造を提供することにある。
An object of the present invention is to provide a road wall structure of an exhaust gas flow passage which has eliminated the risk of the high-temperature corrosion of the heat transfer tube on the outer wall and has remarkably improved durability.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、外壁を250〜300℃の水冷壁にすることによっ
て塩素による高温腐食を防ぐ。但し、水冷壁の表面温度
は250〜300℃であり、これは流路内の高温空気加
熱器の伝熱管(流路内伝熱管)の表面温度(500〜8
00℃)よりはるかに低い。従って、水冷壁をそのまま
の状態で放置すると、これによって高温空気加熱器が冷
却され、高温空気加熱器の伝熱が阻害される。これを防
止するために、水冷壁表面を断熱性の高い(熱伝導率の
低い)耐火物で形成された耐火壁で覆う。
In order to achieve the above object, high temperature corrosion due to chlorine is prevented by making the outer wall a water-cooled wall of 250 to 300 ° C. However, the surface temperature of the water cooling wall is 250 to 300 ° C., which is the surface temperature of the heat transfer tube (heat transfer tube in the flow passage) of the high-temperature air heater in the flow passage (500 to 8 ° C.).
00 ° C). Therefore, if the water-cooled wall is left as it is, the high-temperature air heater is cooled, and the heat transfer of the high-temperature air heater is hindered. In order to prevent this, the surface of the water cooling wall is covered with a refractory wall formed of a refractory having high heat insulation (low heat conductivity).

【0011】即ち、本発明は、廃棄物を燃焼して生じた
高温排ガスの流路を形成する外壁と、該外壁で囲われた
前記高温排ガスの流路に配設された流路内伝熱管とを備
え、該流路内伝熱管内を流れる空気に前記高温排ガスの
熱を吸収させて回収する高温空気加熱器を内装する排ガ
ス流路の路壁構造において、前記外壁は、前記高温排ガ
スに面する側に設けられた耐火壁と、該耐火壁の外周面
に略全面にわたって配設された金属製の流路外伝熱管と
を備え、該流路外伝熱管内に熱媒体として水を流し前記
高温排ガスの熱を該水に吸収させて回収するようにした
ことを特徴とするものである。前記外壁を、前記の如
く、水を流す流路外伝熱管を耐火材で内張りした水冷耐
火壁構造にしたものは、金属製の流路外伝熱管の表面温
度を塩素ガス等の腐食成分による腐食が防げる温度に保
つことができるため、仮に高温排ガスが耐火壁の細孔を
浸透して外壁の金属製伝熱管の表面に触れても、温度的
に腐食の恐れがない。更に、上記排ガス流路の路壁構造
において、前記流路外伝熱管の表面温度が前記高温排ガ
ス中に含まれる塩素分に基づく腐食進行温度に至らない
ように維持されたものである。すなわち約200℃〜3
00℃に維持されたものである。この温度範囲に維持さ
れたものは、高温排ガス中の塩素が耐火壁を漏洩して該
伝熱管表面に直接触れても一層確実に腐食を防止でき
る。また、廃棄物を熱媒体によって熱分解し、熱分解ガ
スと主として不揮発性成分からなる熱分解残留物とを生
成する熱分解反応器と、該熱分解反応器で生成された熱
分解ガスと熱分解残留物とを分離して排出する排出装置
と、該排出装置から排出された前記熱分解残留物を燃焼
性成分と不燃焼性成分とに分離する分離装置と、前記熱
分解ガス及び前記燃焼性成分を移送し燃焼させる燃焼溶
融炉と、該燃焼溶融炉で生じた高温排ガスの熱を回収す
る高温空気加熱器を内装する排ガス流路とを備えた廃棄
物処理装置において、前記排ガス流路の路壁構造は前記
いずれかのものであることを特徴とする。廃棄物処理装
置が上記いずれかに記載の排ガス流路の路壁構造を備え
たものは、上記いずれかに記載の排ガス流路の路壁構造
の作用を有し、廃棄物の処理効率が向上する。
That is, the present invention provides an outer wall forming a flow path of high-temperature exhaust gas generated by burning waste, and a heat transfer pipe in a flow path provided in the flow path of the high-temperature exhaust gas surrounded by the outer wall. In the path wall structure of the exhaust gas flow path that incorporates a high-temperature air heater that absorbs and recovers the heat of the high-temperature exhaust gas in the air flowing through the heat transfer pipe in the flow path, the outer wall is provided with the high-temperature exhaust gas. A refractory wall provided on the facing side, and a metal-made external heat transfer tube disposed substantially over the entire outer peripheral surface of the fire-resistant wall, and flowing water as a heat medium into the external heat transfer tube. The heat of the high-temperature exhaust gas is absorbed by the water and collected. The outer wall, as described above, has a water-cooled fire-resistant wall structure in which the heat transfer pipe outside the flow channel through which water flows is lined with a refractory material, and the surface temperature of the heat transfer pipe outside the metal flow path is corroded by corrosive components such as chlorine gas. Since the temperature can be prevented, even if the high-temperature exhaust gas penetrates the pores of the refractory wall and touches the surface of the metal heat transfer tube on the outer wall, there is no risk of thermal corrosion. Further, in the above-mentioned road wall structure of the exhaust gas flow passage, the surface temperature of the heat transfer tube outside the flow passage is maintained so as not to reach a corrosion progress temperature based on chlorine contained in the high-temperature exhaust gas. That is, about 200 ° C-3
It was kept at 00 ° C. The one maintained in this temperature range can more reliably prevent corrosion even if chlorine in the high-temperature exhaust gas leaks through the refractory wall and directly touches the heat transfer tube surface. A pyrolysis reactor that pyrolyzes waste with a heat medium to generate a pyrolysis gas and a pyrolysis residue mainly composed of a non-volatile component; and a pyrolysis gas generated by the pyrolysis reactor. A discharge device for separating and discharging the decomposition residue, a separation device for separating the pyrolysis residue discharged from the discharge device into a combustible component and a non-combustible component, the pyrolysis gas and the combustion A waste heat treatment apparatus comprising: a combustion melting furnace for transferring and burning a volatile component; and an exhaust gas flow path equipped with a high-temperature air heater for recovering heat of a high-temperature exhaust gas generated in the combustion melting furnace. Is characterized by any one of the above. The waste treatment apparatus having the exhaust gas flow path road wall structure described in any of the above, has the function of the exhaust gas flow path road wall structure described in any of the above, and improves waste treatment efficiency. I do.

【0012】[0012]

【発明の実施の形態】以下、本発明に係る排ガス流路の
路壁構造及びこれを備えた廃棄物処理装置の実施の形態
を図面に基づいて詳細に説明する。尚、以下の図1〜3
において、同じ構造、作用部分には同じ参照番号を付け
て示す。図3は、本発明に係る排ガス流路の路壁構造を
備えた廃棄物処理装置の一実施の形態を示す系統図であ
る。本実施の形態の廃棄物処理装置1において、都市ご
み等の廃棄物aは、例えば二軸剪断式等の破砕機で、1
50mm角以下に破砕され、コンベア等により投入部1
9に投入される。投入部19に投入された廃棄物aは、
スクリューフィーダ20を経て熱分解反応器17に供給
される。廃棄物aは熱分解反応器17内で燃焼溶融炉3
0、例えば熱分解残留物等を燃焼、溶融させる燃焼溶融
炉30の後流側に配置された熱交換器である排ガス流路
の路壁構造2により加熱され加熱空気供給ラインL1
介して供給される加熱空気g1(熱媒体)により300
〜600℃に、通常は450℃程度に加熱される。熱分
解反応器17で廃棄物aを加熱した加熱空気g1は、加
熱空気g2となって加熱空気戻りラインL2を介して排ガ
ス流路内の高温空気加熱器の流路内伝熱管(図1、2の
符号3)に戻される。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an exploded perspective view of an exhaust gas passage according to the present invention. In addition, the following FIGS.
In the drawings, the same structures and working parts are denoted by the same reference numerals. FIG. 3 is a system diagram showing one embodiment of a waste treatment apparatus provided with a road wall structure of an exhaust gas flow channel according to the present invention. In the waste treatment apparatus 1 according to the present embodiment, waste a such as municipal waste is crushed by, for example, a twin-screw type crusher.
Crushed to less than 50mm square
9 The waste a input to the input unit 19 is
It is supplied to the thermal decomposition reactor 17 via the screw feeder 20. The waste a is discharged from the combustion melting furnace 3 in the pyrolysis reactor 17.
0, for example, the pyrolysis residue such as a combustion, through the heated air supply line L 1 is heated by the passage wall structure 2 of the exhaust gas passage is a heat exchanger disposed downstream of the combustion melting furnace 30 for melting 300 g depending on the supplied heated air g 1 (heat medium)
It is heated to about 600 ° C, usually about 450 ° C. Heated air g 1 heated waste a pyrolysis reactor 17, hot air heater in the flow path heat exchanger tube of the heated air return exhaust gas flow path via the line L 2 becomes heated air g 2 ( It returns to 3) of FIG.

【0013】更に、加熱空気g1により加熱された廃棄
物aは、熱分解して熱分解ガスG1と、主として不揮発
性成分からなる熱分解残留物bとになり、排出装置23
に送られて分離される。排出装置23で分離された熱分
解ガスG1は、熱分解ガスラインL3を経て燃焼溶融炉3
0のバーナ31に供給される。排出装置23から排出さ
れた熱分解残留物bは、450℃程度の比較的高温であ
るため、冷却装置25により80℃程度に冷却される。
冷却装置25により冷却された熱分解残留物bは、例え
ば磁選式、うず電流式、遠心式又は風力選別式等の公知
の単独又は組み合わされた分離装置26に供給され、こ
こで細粒の燃焼性成分c(灰分を含む)と粗粒の不燃焼
性成分dとに分離され、不燃焼性成分dはコンテナ27
に回収され再利用される。
Further, the waste a heated by the heated air g 1 is thermally decomposed into a pyrolysis gas G 1 and a pyrolysis residue b mainly composed of non-volatile components.
To be separated. The pyrolysis gas G 1 separated by the discharge device 23 is passed through the pyrolysis gas line L 3 to the combustion melting furnace 3.
0 is supplied to the burner 31. Since the pyrolysis residue b discharged from the discharge device 23 has a relatively high temperature of approximately 450 ° C., it is cooled to approximately 80 ° C. by the cooling device 25.
The pyrolysis residue b cooled by the cooling device 25 is supplied to a known single or combined separation device 26 of, for example, a magnetic separation type, an eddy current type, a centrifugal type or a wind separation type, where the fine particles are burned. Component c (including ash) and coarse-grained non-combustible component d, and the non-combustible component d
Collected and reused.

【0014】燃焼性成分cは、粉砕機28により、例え
ば1mm以下に微粉砕され、燃焼性成分ラインL4を経
て燃焼溶融炉30のバーナ31に供給され、熱分解ガス
ラインL3から供給された熱分解ガスG1と、送風機29
により燃焼用空気ラインL5から供給された燃焼用空気
eと共に1,300℃程度の高温域で燃焼され、このと
き発生した灰分は溶融スラグfとなって、この燃焼溶融
炉30の内壁に付着し、更に、内壁を流下して底部排出
口32から水槽33に落下しスラグ化される。
[0014] Combustion component c is the crusher 28, for example, 1mm milled below, is supplied to the burner 31 of the burning melting furnace 30 through the combustible component line L 4, it is supplied from the pyrolysis gas line L 3 and the pyrolysis gases G 1, blower 29
Is burned in a high temperature range of about 1,300 ° C. with the supplied combustion air e from the combustion air line L 5, the ash generated at this time is a molten slag f, attached to the inner wall of the combustion melting furnace 30 Then, it flows down the inner wall and falls from the bottom discharge port 32 into the water tank 33 to be turned into slag.

【0015】燃焼溶融炉30で生じた高温排ガスG
2は、排ガス流路の路壁構造2を経て煙道ガスラインL6
を介して廃熱ボイラ34で熱回収され、集塵器35で除
塵され、更に排ガス浄化器36で有害成分が除去された
後、低温のクリーンな排ガスG3となって誘引送風機3
7を介して煙突38から大気へ放出される。廃熱ボイラ
34で生成した蒸気は、蒸気タービンを有する発電機4
0で発電に利用される。クリーンな排ガスG3の一部は
ファン39を介して冷却ガスラインL7により冷却装置
25に戻される。
High temperature exhaust gas G generated in the combustion melting furnace 30
2 is a flue gas line L 6 through the exhaust gas passage wall structure 2.
Is heat recovered by the waste heat boiler 34 via a are dust in dust collector 35, after being further removed harmful components in the exhaust gas purifier 36, induced draft machine becomes cold clean gas G 3 of 3
The air is discharged from the chimney 38 to the atmosphere through the air 7. The steam generated by the waste heat boiler 34 is supplied to a generator 4 having a steam turbine.
0 is used for power generation. Some of the clean exhaust gas G 3 are returned to the cooling unit 25 by the cooling gas line L 7 via a fan 39.

【0016】図1は、上記廃棄物処理装置1に備えられ
た排ガス流路の路壁構造2の一実施の形態を示す横断面
図、図2は、図1と同様の排ガス流路の路壁構造2の縦
断面図である。本実施の形態の排ガス流路の路壁構造2
は、廃棄物を燃焼して生じた高温排ガスG2の流路を形
成する外壁10と、この外壁10で囲われた前記排ガス
流路に配設された金属製の流路内伝熱管3とを備えてい
る。この流路内伝熱管3の外面は高温排ガスに直接触れ
ないよう耐火材4で覆われている。そして、流路内伝熱
管3内を流れる空気が高温排ガスG2の熱を吸収して回
収する。このように熱を回収した空気は、前記熱分解反
応器17に熱源として供給される加熱空気g1等として
利用される。
FIG. 1 is a cross-sectional view showing an embodiment of an exhaust gas passage wall structure 2 provided in the waste treatment apparatus 1, and FIG. 2 is a sectional view of an exhaust gas passage similar to FIG. It is a longitudinal cross-sectional view of the wall structure 2. Road wall structure 2 of exhaust gas channel of the present embodiment
Includes an outer wall 10 forming the flow path of the high-temperature exhaust gas G 2 generated by burning waste, a metal flow path heat exchanger tube 3 wherein disposed in the exhaust gas flow path surrounded by the outside wall 10 It has. The outer surface of the heat transfer tube 3 in the flow path is covered with a refractory material 4 so as not to directly contact the high-temperature exhaust gas. The air flowing through the heat transfer tube 3 flow passage is recovered by absorbing heat hot exhaust gas G 2. The air recovering heat as is utilized as a heated air g 1 and the like supplied as a heat source in the pyrolysis reactor 17.

【0017】また、外壁部分にも耐火材で保護された金
属製の流路外伝熱管11が配設されている。すなわち、
外壁10は高温排ガスG2に面する側に設けられた耐火
壁13と、この耐火壁13の外周面に略全面にわたって
配設された金属製の流路外伝熱管11とを備えている。
そして該流路外伝熱管11内に熱媒体として水を流し前
記高温排ガスG2の熱を該水に吸収させて回収するよう
になっている。流路外伝熱管11の外側は、保温材14
で保温されている。
A metal external heat transfer tube 11 protected by a refractory material is also provided on the outer wall portion. That is,
The outer wall 10 includes a refractory wall 13 provided on the side facing the high-temperature exhaust gas G 2 , and a metal-made external heat transfer tube 11 disposed substantially over the entire outer peripheral surface of the refractory wall 13.
And are the high temperature exhaust gas G 2 of the heat flow of water as a heat medium in the flow channel Gaiden heat pipe 11 is taken up in water so as to recover. Outside the heat transfer tube 11 outside the flow path,
It is kept warm.

【0018】更に、図2に示すように、流路外伝熱管1
1は、高温、高圧の水hが通り、ボイラの蒸発管として
使用される。流路外伝熱管11の上下端は、それぞれ下
部ヘッダー11a及び上部ヘッダー11bに接続され
る。そして、例えば先に述べた廃熱ボイラ34等の気水
分離ドラム15から該水hが下部ヘッダー11aに温度
約200℃〜250℃で流入し、外壁を形成する流路外
伝熱管11で加熱されて飽和水となり、下から上に自然
循環によって上昇し、上部ヘッダー11bに至り、気水
分離ドラム15に戻る。気水分離ドラム15で分離され
た高圧蒸気iは、先に述べた発電機40(図3)等の蒸
気タービンに利用される。このような自然循環により、
外壁10の流路外伝熱管11の表面温度が、略200℃
〜300℃に維持されるようになっている。
Further, as shown in FIG.
1 is used as a boiler evaporator tube through which high-temperature, high-pressure water h passes. The upper and lower ends of the heat transfer tubes 11 outside the flow passage are connected to a lower header 11a and an upper header 11b, respectively. Then, for example, the water h flows into the lower header 11a at a temperature of about 200 ° C. to 250 ° C. from the steam / water separation drum 15 such as the waste heat boiler 34 described above, and is heated by the external heat transfer tube 11 forming the outer wall. Then, the water becomes saturated water, rises from bottom to top by natural circulation, reaches the upper header 11 b, and returns to the steam separator 15. The high-pressure steam i separated by the steam separator 15 is used for a steam turbine such as the above-described generator 40 (FIG. 3). Due to such natural circulation,
The surface temperature of the heat transfer tube 11 outside the flow path on the outer wall 10 is approximately 200 ° C.
300300 ° C.

【0019】尚、流路外伝熱管11と耐火壁13との隙
間には、不活性気体、例えば窒素ガス等を充填し、流路
16を流れる高温排ガスG2が耐火壁13の細孔を浸透
して流路外伝熱管11の表面に漏洩しにくくしてもよ
い。
The gap between the heat transfer pipe 11 outside the flow path and the fire-resistant wall 13 is filled with an inert gas, for example, nitrogen gas, and the high-temperature exhaust gas G 2 flowing through the flow path 16 penetrates the pores of the fire-resistant wall 13. As a result, it may be hard to leak to the surface of the heat transfer tube 11 outside the flow path.

【0020】以上の構造を有する本実施の形態の排ガス
流路の路壁構造2及びこれを備えた廃棄物処理装置1
は、次のように作用する。即ち、前記外壁10を、前記
の如く、水を流す流路外伝熱管11を耐火材で内張りし
た水冷耐火壁構造にしたことにより、金属製の流路外伝
熱管11の表面温度を塩素ガス等の腐食成分による腐食
が防げる温度に保つことができるので、仮に高温排ガス
が耐火壁13の細孔を浸透して外壁10の金属製伝熱管
11の表面に触れても、腐食の恐れがない。また、該水
冷耐火壁構造によれば、流路外伝熱管11の熱媒体であ
る水と該流路外伝熱管11の周囲との間の熱伝達が空気
を熱媒体とする場合に比して良いため、該水とその周囲
の外壁10部分の温度が略一致し、外壁10の表面温度
を所定の温度範囲に維持し易い。
[0020] The road wall structure 2 of the exhaust gas flow channel having the above-described structure according to the present embodiment and the waste disposal apparatus 1 having the same are provided.
Works as follows. That is, as described above, the outer wall 10 has a water-cooled refractory wall structure in which the outside flow passage heat transfer tube 11 for flowing water is lined with a refractory material, so that the surface temperature of the metal outside passage heat transfer tube 11 can be controlled by chlorine gas or the like. Since it is possible to maintain the temperature at which corrosion by the corrosive component can be prevented, even if the high-temperature exhaust gas penetrates the pores of the refractory wall 13 and touches the surface of the metal heat transfer tube 11 on the outer wall 10, there is no danger of corrosion. Further, according to the water-cooled refractory wall structure, the heat transfer between the water as the heat medium of the heat transfer tube 11 outside the flow passage and the periphery of the heat transfer tube 11 outside the flow passage may be better than the case where air is used as the heat medium. Therefore, the temperature of the water and that of the surrounding outer wall 10 substantially match, and the surface temperature of the outer wall 10 is easily maintained in a predetermined temperature range.

【0021】更に、流路外伝熱管11の表面温度が高温
排ガス中に含まれる塩素分に基づく腐食進行温度に至ら
ないように維持されたものは、高温排ガスG2中の塩素
が耐火壁13を漏洩して該伝熱管11表面に達しても腐
食を一層確実に防げる。
Further, in the case where the surface temperature of the heat transfer tube 11 outside the flow path is maintained so as not to reach the corrosion progress temperature based on the chlorine content contained in the high-temperature exhaust gas, the chlorine in the high-temperature exhaust gas G 2 Even if it leaks and reaches the surface of the heat transfer tube 11, corrosion can be more reliably prevented.

【0022】又、廃棄物処理装置1が上記いずれかに記
載の排ガス流路の路壁構造2を備えたものは、上記いず
れかに記載の排ガス流路の路壁構造2の作用を有すると
共に、廃棄物aの処理効率が向上する。
Further, the waste treatment apparatus 1 provided with any one of the above-described exhaust gas passage wall structures 2 has the function of any one of the above-described exhaust gas passage wall structures 2. In addition, the processing efficiency of the waste a is improved.

【0023】[0023]

【発明の効果】本発明の排ガス流路の路壁構造によれ
ば、外壁にある金属製流路外伝熱管の腐食性高温排ガス
による腐食の恐れを解消し、耐久性を著しく向上させる
ことができる。又、本発明の廃棄物処理装置によれば、
上記いずれかに記載の排ガス流路の路壁構造の効果を有
し、廃棄物の処理効率が向上する。
According to the road wall structure of the exhaust gas passage of the present invention, the risk of corrosion of the metal external heat transfer tube on the outer wall due to corrosive high-temperature exhaust gas can be eliminated, and the durability can be significantly improved. . Further, according to the waste disposal apparatus of the present invention,
It has the effect of the road wall structure of the exhaust gas channel described in any one of the above, and the waste treatment efficiency is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る排ガス流路の路壁構造の一実施の
形態を示す横断面図である。
FIG. 1 is a cross-sectional view showing one embodiment of a road wall structure of an exhaust gas passage according to the present invention.

【図2】図1と同様の排ガス流路の路壁構造の縦断面図
である。
FIG. 2 is a longitudinal sectional view of a road wall structure of an exhaust gas passage similar to FIG.

【図3】本発明に係る排ガス流路の路壁構造を備えた廃
棄物処理装置の系統図である。
FIG. 3 is a system diagram of a waste treatment apparatus provided with a road wall structure of an exhaust gas passage according to the present invention.

【符号の説明】[Explanation of symbols]

1 廃棄物処理装置 2 排ガス流路の路壁構造 3 流路内伝熱管 10 外壁 11 流路外伝熱管 13 耐火壁 17 熱分解反応器 30 燃焼溶融炉 G1 熱分解ガス G2 高温排ガス a 廃棄物 b 熱分解残留物 c 燃焼性成分 d 不燃焼性成分 g1、g2 加熱空気 h 水DESCRIPTION OF SYMBOLS 1 Waste treatment apparatus 2 Road wall structure of exhaust gas flow path 3 Heat transfer pipe in flow path 10 Outer wall 11 Heat transfer pipe outside flow path 13 Fireproof wall 17 Thermal decomposition reactor 30 Combustion melting furnace G 1 Pyrolysis gas G 2 High temperature exhaust gas a Waste b pyrolysis residue c combustible component d unburned components g 1, g 2 hot air h water

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 廃棄物を燃焼して生じた高温排ガスの流
路を形成する外壁と、該外壁で囲われた前記高温排ガス
の流路に配設された流路内伝熱管とを備え、該流路内伝
熱管内を流れる空気に前記高温排ガスの熱を吸収させて
回収する高温空気加熱器を内装する排ガス流路の路壁構
造において、 前記外壁は、前記高温排ガスに面する側に設けられた耐
火壁と、該耐火壁の外周面に略全面にわたって配設され
た金属製の流路外伝熱管とを備え、該流路外伝熱管内に
熱媒体として水を流し前記高温排ガスの熱を該水に吸収
させて回収するようにしたことを特徴とする排ガス流路
の路壁構造。
An outer wall forming a flow path of high-temperature exhaust gas generated by burning waste, and a heat transfer pipe in a flow path disposed in the flow path of the high-temperature exhaust gas surrounded by the outer wall, In a road wall structure of an exhaust gas flow path that incorporates a high-temperature air heater that absorbs and recovers heat of the high-temperature exhaust gas into air flowing through the heat transfer pipe in the flow path, the outer wall is provided on a side facing the high-temperature exhaust gas. A refractory wall provided, and a metal external heat transfer tube disposed substantially over the entire outer peripheral surface of the refractory wall, wherein water is flowed as a heat medium into the external heat transfer tube to generate heat of the high-temperature exhaust gas. The road wall structure of the exhaust gas passage, wherein the water is absorbed and recovered.
【請求項2】 請求項1において、前記流路外伝熱管の
表面温度が前記高温排ガス中に含まれる塩素分に基づく
腐食進行温度に至らないように維持されたものであるこ
とを特徴とする排ガス流路の路壁構造。
2. The exhaust gas according to claim 1, wherein the surface temperature of the heat transfer pipe outside the flow path is maintained so as not to reach a corrosion progress temperature based on chlorine contained in the high-temperature exhaust gas. Road wall structure of the channel.
【請求項3】 廃棄物を熱媒体によって熱分解し、熱分
解ガスと主として不揮発性成分からなる熱分解残留物と
を生成する熱分解反応器と、該熱分解反応器で生成され
た熱分解ガスと熱分解残留物とを分離して排出する排出
装置と、該排出装置から排出された前記熱分解残留物を
燃焼性成分と不燃焼性成分とに分離する分離装置と、前
記熱分解ガス及び前記燃焼性成分を移送し燃焼させる燃
焼溶融炉と、該燃焼溶融炉で生じた高温排ガスの熱を回
収する高温空気加熱器を内装する排ガス流路とを備えた
廃棄物処理装置において、前記排ガス流路の路壁構造は
請求項1又は2に記載のものであることを特徴とする廃
棄物処理装置。
3. A pyrolysis reactor that pyrolyzes waste with a heat medium to generate a pyrolysis gas and a pyrolysis residue mainly composed of nonvolatile components, and a pyrolysis reactor generated by the pyrolysis reactor. A discharge device for separating and discharging a gas and a pyrolysis residue, a separation device for separating the pyrolysis residue discharged from the discharge device into a combustible component and a non-combustible component, and the pyrolysis gas And a combustion and melting furnace for transferring and combusting the combustible component, and a waste treatment apparatus including an exhaust gas flow path equipped with a high-temperature air heater for recovering heat of a high-temperature exhaust gas generated in the combustion and melting furnace, 3. A waste treatment apparatus according to claim 1, wherein the exhaust gas passage has a road wall structure according to claim 1 or 2.
JP13544797A 1997-05-26 1997-05-26 Exhaust gas passage wall structure Withdrawn JPH10325527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13544797A JPH10325527A (en) 1997-05-26 1997-05-26 Exhaust gas passage wall structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13544797A JPH10325527A (en) 1997-05-26 1997-05-26 Exhaust gas passage wall structure

Publications (1)

Publication Number Publication Date
JPH10325527A true JPH10325527A (en) 1998-12-08

Family

ID=15151937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13544797A Withdrawn JPH10325527A (en) 1997-05-26 1997-05-26 Exhaust gas passage wall structure

Country Status (1)

Country Link
JP (1) JPH10325527A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037124A (en) * 2010-08-06 2012-02-23 Hitachi Zosen Corp Heat exchanger for corrosive high-temperature gas
JP2013019635A (en) * 2011-07-13 2013-01-31 Hitachi Zosen Corp Heat exchanger
JP2023101231A (en) * 2022-01-07 2023-07-20 株式会社プランテック Exhaust gas treatment device and steam utilization method in exhaust gas treatment device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037124A (en) * 2010-08-06 2012-02-23 Hitachi Zosen Corp Heat exchanger for corrosive high-temperature gas
JP2013019635A (en) * 2011-07-13 2013-01-31 Hitachi Zosen Corp Heat exchanger
JP2023101231A (en) * 2022-01-07 2023-07-20 株式会社プランテック Exhaust gas treatment device and steam utilization method in exhaust gas treatment device

Similar Documents

Publication Publication Date Title
JP4323638B2 (en) High temperature air heater
JPH10325527A (en) Exhaust gas passage wall structure
JPH10185152A (en) High temperature air heater
JPH1177017A (en) Prevention of moisture absorption of fused or burnt fly ash
JPH10311526A (en) Horizontal high temperature air heater and waste treating apparatus
JP4157187B2 (en) Method for preventing moisture absorption from molten or burned fly ash
JPH10339416A (en) Waste disposing apparatus
JP3732640B2 (en) Waste pyrolysis melting combustion equipment
JPH102519A (en) Waste pyrolysis drum and method of pyrolysis
JP2000140796A (en) Method and device for pyrolytic melting of waste
JPH09189410A (en) Heat insulation device for thermal decomposition gas piping
JPH09196337A (en) Waste pylorysis drum and pyrocysis method
JP2001280615A (en) Melting furnace
KR20090131909A (en) Boiler device using desertedgas of a high temperature
JP2004347274A (en) Waste treatment device
JPH11294737A (en) Heat exchanger
JPH10141620A (en) Method for discharging pyrolysis residue, and waste treatment equipment
JP3461457B2 (en) Waste treatment equipment
JPH09217920A (en) Combustion melting furnace and waste disposing device
JP4005652B2 (en) High temperature air heater
JPH1054529A (en) High temperature air heater
JPH11248124A (en) Cooler and cooling method for exhaust gas
JPH10205731A (en) Thermal decomposition reactor and waste treatment device
JP2000015212A (en) Dry distillation thermal decomposition melting combustion apparatus for waste and heating method of dry distillation thermal decomposition reactor
JPH11325452A (en) Method and apparatus for processing waste gas

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040803