JPH10325301A - Cooling blade of gas turbine - Google Patents

Cooling blade of gas turbine

Info

Publication number
JPH10325301A
JPH10325301A JP13845597A JP13845597A JPH10325301A JP H10325301 A JPH10325301 A JP H10325301A JP 13845597 A JP13845597 A JP 13845597A JP 13845597 A JP13845597 A JP 13845597A JP H10325301 A JPH10325301 A JP H10325301A
Authority
JP
Japan
Prior art keywords
partition wall
flow path
cooling medium
blade
serpentine flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13845597A
Other languages
Japanese (ja)
Other versions
JP3790328B2 (en
Inventor
Yasuoki Tomita
康意 富田
Hiroki Fukuno
宏紀 福野
Kiyoshi Suenaga
潔 末永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP13845597A priority Critical patent/JP3790328B2/en
Publication of JPH10325301A publication Critical patent/JPH10325301A/en
Application granted granted Critical
Publication of JP3790328B2 publication Critical patent/JP3790328B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To make separation of the flow of a cooling medium at the inner circumference of a partition wall difficult to occur without increasing a resistance against the cooling medium flowing along a serpentine channel by installing turbulators in the serpentine channel. SOLUTION: As this cooling blade of a gas turbine equipped with a serpentine channel 1 which a cooling medium flows along and is divided to a shape of a letter U by a partition wall 2 inside a blade 5, turbulators 3, which are slanted to the side of the partition wall 2 against a flow of the cooling medium, are installed all over the serpentine channel 1 on an inner wall of the downstream of the U-turn part which is at lest partitioned by the partition wall 2 of the serpentine channel 1. And turbulators 4, which are shorter than the tuebulators 3 and are slanted in the same way as the turbulators 3, are installed attached to the partition wall 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、火力発電などに適
用されるガスタービンの冷却翼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas turbine cooling blade applied to thermal power generation and the like.

【0002】[0002]

【従来の技術】図2および図3は火力発電などに使用さ
れている従来のガスタービンの冷却動翼の説明図であ
る。図2において、本ガスタービンの冷却動翼はサーペ
ンタイン方式が採用されており、冷却媒体の空気、或い
は蒸気が翼根51の冷却媒体の入口52から翼根51内
に入り、翼53のサーペンタイン流路54aを矢印で示
す方向に流れて翼53の前縁を冷却した後、翼頂部で仕
切壁58に沿って反転(リターン)して翼53の中央部
を冷却する。そして、翼台55で再び仕切壁58に沿っ
て反転し、最終のサーペンタイン流路54bを通って翼
53の後縁を冷却した後、翼根51の冷却媒体の出口5
6から流出するようになっている。
2. Description of the Related Art FIGS. 2 and 3 are explanatory views of a cooling blade of a conventional gas turbine used for thermal power generation or the like. In FIG. 2, the cooling blade of the present gas turbine employs a serpentine method, in which air or steam of the cooling medium enters the blade root 51 from the cooling medium inlet 52 of the blade root 51, and the serpentine flow of the blade 53. After flowing along the path 54a in the direction indicated by the arrow to cool the leading edge of the wing 53, the wing top is reversed (returned) along the partition wall 58 to cool the central part of the wing 53. Then, the blades 55 are again inverted along the partition wall 58 by the platform 55 to cool the trailing edge of the blade 53 through the final serpentine flow path 54b, and then the cooling medium outlet 5 of the blade root 51
6 to flow out.

【0003】図3において、サーペンタイン流路54
a,54bにはサーペンタイン流路54a,54bに対
して水平に、或いは図に示すように外周側に傾斜した複
数列のタービュレータ57が設けられており、タービュ
レータ57の下流および上流には渦が発生し、この渦に
誘導されて冷却媒体の空気、或いは蒸気の流れが層流か
ら乱流に転じ、擾乱が発生する。これらの渦の端は流体
中で互いに繋がるか、或いは境界面で終わっており、流
れは個所Aで流路壁に再付着するが、熱伝達率はタービ
ュレータ57後流の渦域で急激に低下し、再付着以降で
上昇する。
In FIG. 3, a serpentine channel 54
The turbulators 57 a and 54 b are provided with a plurality of rows of turbulators 57 that are inclined with respect to the serpentine flow paths 54 a and 54 b or on the outer peripheral side as shown in the figure, and vortices are generated downstream and upstream of the turbulator 57. Then, the flow of the cooling medium air or steam is changed from laminar to turbulent by being guided by the vortex, and disturbance is generated. The ends of these vortices are connected to each other in the fluid or terminate at the interface, and the flow reattaches to the channel wall at point A, but the heat transfer coefficient drops sharply in the vortex region downstream of the turbulator 57. And rises after reattachment.

【0004】このようにサーペンタイン流路54a,5
4bにタービュレータ57を設けることにより、サーペ
ンタイン流路54a,54bを流れる冷却媒体の空気、
或いは蒸気に対する抵抗は増すが、冷却媒体の流れを強
制的に乱流に遷移させるとともに、冷却通路と交叉する
方向の二次流れを発生させ、サーペンタイン流路54
a,54bにおける熱伝達率を向上させて冷却効果を増
大させる。
Thus, the serpentine flow paths 54a, 54
By providing the turbulator 57 in the 4b, the air of the cooling medium flowing through the serpentine channels 54a and 54b,
Alternatively, although the resistance to steam increases, the flow of the cooling medium is forcibly changed to a turbulent flow, and a secondary flow is generated in a direction intersecting with the cooling passage, so that the serpentine flow path 54
a, 54b to improve the heat transfer coefficient to increase the cooling effect.

【0005】[0005]

【発明が解決しようとする課題】上記のように、従来の
ガスタービンの冷却動翼においては複数列のタービュレ
ータ57がサーペンタイン流路54a,54bに対して
水平に、或いは外周側に傾斜して設けられており、この
ようにサーペンタイン流路54a,54bにタービュレ
ータ57を設けることにより、サーペンタイン流路54
a,54bを流れる冷却媒体に対する抵抗が増す。
As described above, in a conventional cooling blade of a gas turbine, a plurality of rows of turbulators 57 are provided horizontally with respect to the serpentine flow paths 54a and 54b, or inclined at the outer peripheral side. By providing the turbulator 57 in the serpentine flow passages 54a and 54b in this way, the serpentine flow passage 54a
a, the resistance to the cooling medium flowing through 54b is increased.

【0006】また、冷却媒体の流れが翼頂部、或いは翼
台55で反転した後に冷却媒体の流れに剥離が生じるた
め、サーペンタイン流路54a,54bにおけるC域に
比べてB域における熱伝達量が小さく、局所的に冷却性
能が衰えることにより冷却効果に大きな差を生じてい
る。
Further, since the flow of the cooling medium is separated after the flow of the cooling medium is reversed at the blade top or the wing base 55, the heat transfer amount in the B region is smaller than that in the C region in the serpentine flow paths 54a and 54b. A small difference in the cooling effect is caused by the small and local deterioration of the cooling performance.

【0007】[0007]

【課題を解決するための手段】本発明に係るガスタービ
ンの冷却翼は上記課題の解決を目的にしており、翼内部
に仕切壁によりU字状に仕切られて冷却媒体が流れるサ
ーペンタイン流路を備えたガスタービンの冷却翼におけ
る上記サーペンタイン流路の少なくとも上記仕切壁によ
り仕切られたUターン部下流の内壁に冷却媒体の流れに
対して上記仕切壁側に傾斜した第一のタービュレータが
上記サーペンタイン流路の全幅にわたって設けられると
ともに、上記第一のタービュレータよりも短い第二のタ
ービュレータが上記第一のタービュレータと同様に傾斜
し上記仕切壁に当接して設けられている。
SUMMARY OF THE INVENTION An object of the present invention is to provide a cooling blade for a gas turbine according to the present invention, in which a serpentine flow path in which a cooling medium flows is formed by being partitioned into a U-shape by a partition wall inside the blade. A first turbulator inclined to the partition wall side with respect to the flow of the cooling medium at least on the inner wall downstream of the U-turn section of the serpentine flow path in the cooling blade of the gas turbine provided with the partition wall by the partition wall is provided with the serpentine flow. A second turbulator, which is provided over the entire width of the road and is shorter than the first turbulator, is provided in contact with the partition wall inclining in the same manner as the first turbulator.

【0008】このように、本発明に係るガスタービンの
冷却翼においては、サーペンタイン流路におけるUター
ン部下流に内周の仕切壁側に傾斜を有しサーペンタイン
流路幅の全幅にわたるように配設された第一のタービュ
レータと、この第一のタービュレータと同様に傾斜し仕
切壁に当接して配設され第一のタービュレータよりも短
い第二のタービュレータとが設けられており、特に剥離
を生じ易いサーペンタイン流路のUターン部下流に内周
側に傾斜した第一のタービュレータをサーペンタイン流
路の全幅にわたって配設したことによって冷却媒体の流
れがUターンした後にサーペンタイン流路の仕切壁側
(内周側)に案内され、仕切壁の内周側における冷却媒
体の流れの剥離が生じ難くなる。
As described above, in the cooling blade of the gas turbine according to the present invention, the serpentine flow path is disposed downstream of the U-turn portion on the inner peripheral partition wall side so as to extend over the entire width of the serpentine flow path. The first turbulator, and a second turbulator which is disposed in such a manner as to be inclined and abutted on the partition wall and is shorter than the first turbulator, similarly to the first turbulator, is provided, and in particular, the peeling easily occurs. By disposing a first turbulator inclined to the inner peripheral side downstream of the U-turn part of the serpentine flow path over the entire width of the serpentine flow path, the flow of the cooling medium makes a U-turn, so that the partition wall side of the serpentine flow path (inner circumference) Side), and the separation of the flow of the cooling medium on the inner peripheral side of the partition wall hardly occurs.

【0009】また、特に剥離を生じ易いサーペンタイン
流路のUターン部下流に短い第二のタービュレータを内
周側に傾斜させ仕切壁に当接して配設したことによって
冷却媒体の流れがUターンした後にサーペンタイン流路
の仕切壁側(内周側)に案内され、サーペンタイン流路
における冷却媒体の流れに対する抵抗を増すことなく、
仕切壁の内周側における冷却媒体の流れの剥離がより一
層生じ難くなる。
In addition, the flow of the cooling medium is U-turned by arranging a short second turbulator at the downstream side of the U-turn portion of the serpentine flow passage, which is liable to cause separation, inclining inward and abutting against the partition wall. Later, it is guided to the partition wall side (inner peripheral side) of the serpentine flow path, without increasing the resistance to the flow of the cooling medium in the serpentine flow path,
Separation of the flow of the cooling medium on the inner peripheral side of the partition wall is more unlikely to occur.

【0010】[0010]

【発明の実施の形態】図1は本発明の実施の一形態に係
るガスタービンの冷却動翼の説明図である。図におい
て、本実施の形態に係るガスタービンの冷却動翼は火力
発電などに使用されるガスタービンの冷却動翼で、サー
ペンタイン流路にタービュレータを配列する場合の配列
方向やタービュレータの構造などを改良している。図に
おける符号1はサーペンタイン流路、2は仕切壁、3は
サーペンタイン流路の全幅にわたるタービュレータ、4
はサーペンタイン流路幅の半分程度の短いタービュレー
タ(案内用突起)、5はガスタービンの翼である。
FIG. 1 is an explanatory view of a cooling blade of a gas turbine according to an embodiment of the present invention. In the figure, the cooling blade of the gas turbine according to the present embodiment is a cooling blade of a gas turbine used for thermal power generation and the like, and the arrangement direction and the structure of the turbulator are improved when turbulators are arranged in a serpentine flow path. doing. In the figure, reference numeral 1 denotes a serpentine flow path, 2 denotes a partition wall, 3 denotes a turbulator extending over the entire width of the serpentine flow path, 4
Is a turbulator (guide protrusion) that is about half the serpentine flow path width, and 5 is a gas turbine blade.

【0011】本ガスタービンの冷却動翼は図に示すよう
にサーペンタイン方式が採用されており、従来例のガス
タービンの冷却動翼と同様に冷却媒体の空気、或いは蒸
気が翼根の冷却媒体の入口から翼根内に入り、翼5のサ
ーペンタイン流路1を矢印で示す方向に流れて翼5の前
縁を冷却した後、翼頂部で仕切壁2に沿って反転(リタ
ーン)して翼5の中央部を冷却する。そして、翼台で再
び仕切壁2に沿って反転し、最終のサーペンタイン流路
1を通って翼5の後縁を冷却した後、翼根の冷却媒体の
出口から流出するようになっている。
As shown in the figure, the cooling blade of the gas turbine employs a serpentine system, and the air or steam of the cooling medium is used as the cooling blade of the blade root similarly to the cooling blade of the conventional gas turbine. After entering the blade root from the inlet and flowing through the serpentine flow path 1 of the blade 5 in the direction shown by the arrow to cool the leading edge of the blade 5, the blade 5 is reversed (returned) along the partition wall 2 at the blade top to return to the blade 5. Cool the center of the. Then, the blade is again inverted along the partition wall 2 by the platform, and after cooling the trailing edge of the blade 5 through the final serpentine flow path 1, flows out from the outlet of the cooling medium of the blade root.

【0012】また、本ガスタービンの冷却動翼において
は図に示すように、サーペンタイン流路1には仕切壁2
によってリターン部が形成されており、仕切壁2側(内
周側)に下がるように傾斜したタービュレータ3がサー
ペンタイン流路1の全幅にわたって配設されている。そ
して、このサーペンタイン流路1の全幅にわたるタービ
ュレータ3とタービュレータ3との間に、サーペンタイ
ン流路1流路幅の半分程度の短いタービュレータ4が同
様に仕切壁2側(内周側)に下がるように傾斜し仕切壁
2に当接して配設されている。
As shown in the drawing, the cooling blade of the gas turbine has a partition wall 2 in the serpentine flow path 1.
A turbulator 3 inclined so as to descend toward the partition wall 2 (inner peripheral side) is provided over the entire width of the serpentine flow path 1. Then, between the turbulator 3 and the turbulator 3 over the entire width of the serpentine flow path 1, the turbulator 4 as short as about half the width of the serpentine flow path 1 is similarly lowered to the partition wall 2 side (inner peripheral side). It is inclined and disposed in contact with the partition wall 2.

【0013】このようにサーペンタイサーペンタイン流
路1に複数列のタービュレータ3を設けることにより、
タービュレータ3の下流および上流に渦が発生し、この
渦に誘導されて冷却媒体の空気、或いは蒸気の流れを層
流から強制的に乱流に遷移させて擾乱を発生させるとと
もに、冷却通路と交叉する方向の二次流れを発生させ、
サーペンタイン流路1における熱伝達率を向上させて冷
却効果を増大させる。また、本ガスタービンの冷却翼に
おいてはサーペンタイン流路1のリターン部にタービュ
レータ3がサーペンタイン流路1の内周側に下がるよう
に傾斜を有しサーペンタイン流路1流路幅の全幅にわた
るように配列され、このタービュレータ3とタービュレ
ータ3との間に内周側に下がるように傾斜を有しサーペ
ンタイン流路1流路幅の半分程度の短いタービュレータ
4が仕切壁2に当接して配列されており、従来のサーペ
ンタイン流路においては冷却媒体の流れがサーペンタイ
ン流路1のリターン部で外周側に案内されてしまうため
に仕切壁2近傍の内周側で剥離が生じて著しく伝熱性能
が損われるが、本ガスタービンの冷却翼においては内周
側に下がるように傾斜したタービュレータ3がサーペン
タイン流路1の全幅にわたって配列されていることによ
り、このタービュレータ3によって冷却媒体の流れが仕
切壁2側に案内され、仕切壁2の内周側における冷却媒
体の流れの剥離が生じ難くなって伝熱性能が向上すると
ともに剥離が生じ易いリターン後の仕切壁2部分の伝熱
性能が向上する。また、サーペンタイン流路1の全幅に
わたるタービュレータ3とタービュレータ3との間に同
様に内周側に下がるように傾斜しサーペンタイン流路1
の全幅にはわたらない短いタービュレータ4が配列され
ていることにより、この短いタービュレータ4によって
冷却媒体の流れが仕切壁2側に案内され、サーペンタイ
ン流路1における冷却媒体の流れに対する抵抗を増すこ
となく、仕切壁2の内周側における冷却媒体の流れの剥
離がより一層生じ難くなり、伝熱性能が向上するととも
に剥離が生じ易いリターン後の仕切壁2部分の伝熱性能
が向上する。
By providing a plurality of rows of turbulators 3 in the serpentine serpentine flow path 1 as described above,
Vortices are generated downstream and upstream of the turbulator 3, and are induced by the vortices to forcibly transition the flow of the air or steam of the cooling medium from laminar flow to turbulent flow to generate turbulence and cross the cooling passage. A secondary flow in the direction of
The heat transfer coefficient in the serpentine flow path 1 is improved to increase the cooling effect. Further, in the cooling blade of the present gas turbine, the turbulators 3 are inclined at the return portion of the serpentine flow path 1 so as to descend to the inner peripheral side of the serpentine flow path 1 and are arranged so as to cover the entire width of the serpentine flow path 1. A turbulator 4 having a slope and being about half the width of the serpentine flow path 1 and having a slope descending to the inner peripheral side between the turbulators 3 and 3 is arranged in contact with the partition wall 2, In the conventional serpentine flow path, since the flow of the cooling medium is guided to the outer peripheral side at the return portion of the serpentine flow path 1, separation occurs on the inner peripheral side near the partition wall 2 and heat transfer performance is significantly impaired. In the cooling blades of the present gas turbine, turbulators 3 inclined so as to descend to the inner peripheral side are arranged over the entire width of the serpentine flow path 1. As a result, the flow of the cooling medium is guided toward the partition wall 2 by the turbulator 3, and the separation of the flow of the cooling medium on the inner peripheral side of the partition wall 2 hardly occurs, so that the heat transfer performance is improved and the separation occurs. The heat transfer performance of the partition wall 2 after return is improved. Similarly, the serpentine flow path 1 is inclined between the turbulators 3 over the entire width of the serpentine flow path 1 so as to descend to the inner peripheral side.
Are arranged so that the flow of the cooling medium is guided toward the partition wall 2 without increasing the resistance to the flow of the cooling medium in the serpentine flow path 1. In addition, the separation of the flow of the cooling medium on the inner peripheral side of the partition wall 2 is more unlikely to occur, and the heat transfer performance is improved, and the heat transfer performance of the part of the partition wall 2 after the return where the separation easily occurs is improved.

【0014】従来のガスタービンの冷却動翼において
は、複数列のタービュレータがサーペンタイン流路に対
して水平に、或いは外周側に傾斜して設けられており、
このようにサーペンタイン流路にタービュレータを設け
ることにより、サーペンタイン流路を流れる冷却媒体に
対する抵抗が増す。また、冷却媒体の流れが翼頂部、或
いは翼台で反転した後に冷却媒体の流れに剥離が生じる
ため、局所的に冷却性能が衰えることにより冷却効果に
大きな差を生じている。なお、このような現象は既に様
々な文献などで報告されている。
In a conventional cooling blade of a gas turbine, a plurality of rows of turbulators are provided horizontally with respect to a serpentine flow path or inclined at an outer peripheral side.
By providing the turbulator in the serpentine flow path as described above, resistance to the cooling medium flowing through the serpentine flow path is increased. In addition, since the flow of the cooling medium is separated after the flow of the cooling medium is reversed at the blade top or the platform, the cooling performance is locally deteriorated, so that the cooling effect has a large difference. Such a phenomenon has already been reported in various documents.

【0015】これに対し、本ガスタービンの冷却動翼に
おいては、このような問題点を解消するためにサーペン
タイン流路1のリターン部に内周側に下がる傾斜を有し
サーペンタイン流路1の全幅にわたるようにタービュレ
ータ3を配列するとともに、このタービュレータ3とタ
ービュレータ3との間に内周側に下がる傾斜を有しサー
ペンタイン流路1流路幅の半分程度の短いタービュレー
タ4を仕切壁2に当接して配列している。
On the other hand, in the cooling blade of the present gas turbine, in order to solve such a problem, the return portion of the serpentine flow path 1 has a slope which is inclined toward the inner peripheral side and has a full width of the serpentine flow path 1. The turbulators 3 are arranged so as to extend over the turbulators 3, and the turbulators 4 having a slope which is inclined downward to the inner peripheral side between the turbulators 3 and the turbulators 3 and which are about half the width of the serpentine flow path 1 are brought into contact with the partition wall 2. They are arranged.

【0016】このように、特に剥離を生じ易いサーペン
タイン流路1のリターン部に、タービュレータ3を内周
側に下がる傾斜でサーペンタイン流路1の全幅にわたる
ように配列したことにより、仕切壁2に沿って反転した
冷却媒体の流れがサーペンタイン流路1の仕切壁2側
(内周側)に案内されてサーペンタイン流路のUターン
部下流に剥離が生じ難くなり、伝熱性能の不均一が解消
されて伝熱性能が向上する。
As described above, the turbulators 3 are arranged on the return portion of the serpentine flow path 1 where the peeling is particularly likely to occur, so as to extend over the entire width of the serpentine flow path 1 with an inclination descending toward the inner peripheral side. The reversed flow of the cooling medium is guided to the partition wall 2 side (inner peripheral side) of the serpentine flow path 1, so that separation is less likely to occur downstream of the U-turn portion of the serpentine flow path, and uneven heat transfer performance is eliminated. The heat transfer performance is improved.

【0017】また、特に剥離を生じ易いサーペンタイン
流路1のリターン部に、サーペンタイン流路1全幅の半
分程度の短いタービュレータ4を内周側に下がる傾斜で
仕切壁2に当接して配列したことにより、仕切壁2に沿
って反転した冷却媒体の流れがサーペンタイン流路1の
仕切壁2側(内周側)に案内され、サーペンタイン流路
1における冷却媒体の流れに対する抵抗を増すことな
く、サーペンタイン流路1のUターン部下流に剥離がよ
り一層生じ難くなり、サーペンタイン流路1の仕切壁2
によるUターン部下流における伝熱性能の不均一が解消
されて伝熱性能が向上する。
In addition, a turbulator 4 having a length of about half of the entire width of the serpentine flow path 1 is arranged at the return portion of the serpentine flow path 1 where the separation is liable to occur, in contact with the partition wall 2 at an inclination falling to the inner peripheral side. The flow of the cooling medium reversed along the partition wall 2 is guided to the partition wall 2 side (inner peripheral side) of the serpentine flow path 1, and the flow of the serpentine flow is increased without increasing the resistance to the flow of the cooling medium in the serpentine flow path 1. Separation is more unlikely to occur downstream of the U-turn portion of the path 1, and the partition wall 2 of the serpentine flow path 1
As a result, the unevenness of the heat transfer performance downstream of the U-turn portion is eliminated, and the heat transfer performance is improved.

【0018】これらにより、特に剥離が生じ易いリター
ン部における伝熱性能の不均一が解消されてサーペンタ
イン流路1の全領域でより一層均一な伝熱性能が得ら
れ、ガスタービンの翼5における冷却性能が向上する。
Thus, unevenness of the heat transfer performance in the return portion where the peeling is particularly likely to be eliminated, and more uniform heat transfer performance can be obtained in the entire area of the serpentine flow path 1, and cooling in the gas turbine blades 5 can be achieved. Performance is improved.

【0019】[0019]

【発明の効果】本発明に係るガスタービンの冷却翼は前
記のように構成されており、サーペンタイン流路におけ
る冷却媒体の流れに対する抵抗を増すことなく、仕切壁
の内周側における冷却媒体の流れの剥離がより一層生じ
難くなるので、サーペンタイン流路における伝熱性能の
不均一が解消されてサーペンタイン流路の全領域で均一
な伝熱性能が得られ、これによりガスタービンの冷却翼
における冷却性能が向上する。
The cooling blade of the gas turbine according to the present invention is constructed as described above, and the flow of the cooling medium on the inner peripheral side of the partition wall is increased without increasing the resistance to the flow of the cooling medium in the serpentine flow path. Since it is more difficult for peeling to occur, uneven heat transfer performance in the serpentine flow path is eliminated, and uniform heat transfer performance is obtained in the entire area of the serpentine flow path. Is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明の実施の一形態に係るガスタービ
ンの冷却動翼におけるタービュレータの模式図である。
FIG. 1 is a schematic diagram of a turbulator in a cooling blade of a gas turbine according to an embodiment of the present invention.

【図2】図2は従来のガスタービンの冷却動翼の斜視図
である。
FIG. 2 is a perspective view of a cooling blade of a conventional gas turbine.

【図3】図3(a)はそのタービュレータの断面図、同
図(b)はその作用説明図、同図(c)はその模式図で
ある。
3A is a cross-sectional view of the turbulator, FIG. 3B is an explanatory view of its operation, and FIG. 3C is a schematic view thereof.

【符号の説明】[Explanation of symbols]

1 サーペンタイン流路 2 仕切壁 3 サーペンタイン流路の全幅にわたるタービュレータ 4 短いタービュレータ(案内用突起) 5 翼 DESCRIPTION OF SYMBOLS 1 Serpentine flow path 2 Partition wall 3 Turbulator over the full width of serpentine flow path 4 Short turbulator (guide protrusion) 5 Wing

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 翼内部に仕切壁によりU字状に仕切られ
て冷却媒体が流れるサーペンタイン流路を備えたガスタ
ービンの冷却翼において、上記サーペンタイン流路の少
なくとも上記仕切壁により仕切られたUターン部下流の
内壁に冷却媒体の流れに対して上記仕切壁側に傾斜し上
記サーペンタイン流路の全幅にわたって設けられた第一
のタービュレータと、該第一のタービュレータよりも短
く上記第一のタービュレータと同様に傾斜し上記仕切壁
に当接して設けられた第二のタービュレータとを備えた
ことを特徴とするガスタービンの冷却翼。
In a cooling blade of a gas turbine provided with a serpentine flow path through which a cooling medium flows by being partitioned in a U-shape by a partition wall inside a blade, a U-turn partitioned by at least the partition wall of the serpentine flow path. A first turbulator which is inclined toward the partition wall side with respect to the flow of the cooling medium on the inner wall downstream of the part and is provided over the entire width of the serpentine flow path, similar to the first turbulator which is shorter than the first turbulator and shorter than the first turbulator. And a second turbulator provided so as to be inclined and abutted on the partition wall.
JP13845597A 1997-05-28 1997-05-28 Gas turbine cooling blade Expired - Lifetime JP3790328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13845597A JP3790328B2 (en) 1997-05-28 1997-05-28 Gas turbine cooling blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13845597A JP3790328B2 (en) 1997-05-28 1997-05-28 Gas turbine cooling blade

Publications (2)

Publication Number Publication Date
JPH10325301A true JPH10325301A (en) 1998-12-08
JP3790328B2 JP3790328B2 (en) 2006-06-28

Family

ID=15222423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13845597A Expired - Lifetime JP3790328B2 (en) 1997-05-28 1997-05-28 Gas turbine cooling blade

Country Status (1)

Country Link
JP (1) JP3790328B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001234702A (en) * 1999-12-18 2001-08-31 General Electric Co <Ge> Coriolis turbulator moving blade
US8556583B2 (en) 2007-08-30 2013-10-15 Mitsubishi Heavy Industries, Ltd. Blade cooling structure of gas turbine
KR101405014B1 (en) * 2012-07-25 2014-06-10 연세대학교 산학협력단 Cooling pipe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001234702A (en) * 1999-12-18 2001-08-31 General Electric Co <Ge> Coriolis turbulator moving blade
US8556583B2 (en) 2007-08-30 2013-10-15 Mitsubishi Heavy Industries, Ltd. Blade cooling structure of gas turbine
KR101405014B1 (en) * 2012-07-25 2014-06-10 연세대학교 산학협력단 Cooling pipe

Also Published As

Publication number Publication date
JP3790328B2 (en) 2006-06-28

Similar Documents

Publication Publication Date Title
JP4063938B2 (en) Turbulent structure of the cooling passage of the blade of a gas turbine engine
JP4063937B2 (en) Turbulence promoting structure of cooling passage of blade in gas turbine engine
US8920111B2 (en) Airfoil incorporating tapered cooling structures defining cooling passageways
JP6283462B2 (en) Turbine airfoil
JP3053174B2 (en) Wing for use in turbomachine and method of manufacturing the same
KR100553295B1 (en) Turbine Blade with Multi-Pass Cooling and Cooling Air Addition
EP1577498B1 (en) Microcircuit cooling for a turbine airfoil
EP1561902B1 (en) Turbine blade comprising turbulation promotion devices
EP1505256B1 (en) Turbine rotor blade comprising cooling circuits and method for placing the inlets of said circuits
EP3436668B1 (en) Turbine airfoil with turbulating feature on a cold wall
JP6607566B2 (en) Air-cooled engine surface cooler
US5370499A (en) Film cooling of turbine airfoil wall using mesh cooling hole arrangement
JP4669202B2 (en) Gas turbine blade
KR100653816B1 (en) Hollow airfoil for a gas turbine engine
TWI257447B (en) Microcircuit cooling for a turbine blade tip
US20050031450A1 (en) Microcircuit airfoil mainbody
JPS6147286B2 (en)
EP2886797B1 (en) A hollow cooled gas turbine rotor blade or guide vane, wherein the cooling cavities comprise pins interconnected with ribs
JP2006090302A (en) Compact heat exchanger for cooling and heat transfer improving method
GB2143631A (en) A finned tube arrangement
US12025387B2 (en) Turning vanes and heat exchangers and methods of making the same
SE468358B (en) COOLED TURBIN SHOVEL
US7967568B2 (en) Gas turbine component with reduced cooling air requirement
JPH05312002A (en) Gas turbine blade
JPH10325301A (en) Cooling blade of gas turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060331

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term