JPH10324969A - Formation of extra-thin insulating coating - Google Patents

Formation of extra-thin insulating coating

Info

Publication number
JPH10324969A
JPH10324969A JP13704497A JP13704497A JPH10324969A JP H10324969 A JPH10324969 A JP H10324969A JP 13704497 A JP13704497 A JP 13704497A JP 13704497 A JP13704497 A JP 13704497A JP H10324969 A JPH10324969 A JP H10324969A
Authority
JP
Japan
Prior art keywords
target
film
metal
coil
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13704497A
Other languages
Japanese (ja)
Other versions
JP4531145B2 (en
Inventor
Tadashi Morita
正 森田
Masamichi Matsuura
正道 松浦
Naoshi Yamamoto
直志 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP13704497A priority Critical patent/JP4531145B2/en
Publication of JPH10324969A publication Critical patent/JPH10324969A/en
Application granted granted Critical
Publication of JP4531145B2 publication Critical patent/JP4531145B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for forming compound insulating coating extra- thin of several tens to several hundreds Å and favorable for the gap layer of a magnetic head and tunnel junction type GMP which has been difficult by the conventional method. SOLUTION: The inside of a vacuum chamber 1 is provided with a magnetron cathode 9 provided with a metal target 6 connected to a d.c. power source 5, magnets 7 at the back and an RF coil increasing the ionizing rate on the front of the target, the electric power to be charged to the target and RF coil 8 for generating plasma and the flow rates of an inert gas for sputtering and a reactive gas to be introduced into the vacuum chamber are regulated, and the formation of metal coating on the substrate 13 provided opposite to the target and the conversion of the metal coating into an insulating compound are alternately executed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ハードディスク磁
気ヘッド等に適用される極薄の絶縁膜の形成方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an extremely thin insulating film applied to a hard disk magnetic head or the like.

【0002】[0002]

【従来の技術】従来、ハードディスク読み取り用磁気ヘ
ッドとして、薄膜ヘッドや磁気抵抗(MR:Magneto-Re
sistance)ヘッドが用いられており、これらのヘッドに
は1000〜2000Å程度の厚さのAl23膜がギャ
ップ用絶縁膜として設けられている。このAl23膜を
形成するには、ターゲットとしてAl23を使用したR
Fマグネトロンスパッタ法が一般に採用されているが、
その生産性を重視する場合には、ターゲットにAlを用
い、スパッタ中の雰囲気にO2ガスを導入し、Alをス
パッタしながらプラズマ酸化を利用してAl23膜を形
成する反応性スパッタ法を採用することも行われてい
る。
2. Description of the Related Art Conventionally, as a magnetic head for reading a hard disk, a thin film head or a magneto-resistive (MR: Magnet-Re
The heads are provided with an Al 2 O 3 film having a thickness of about 1000 to 2000 ° as a gap insulating film. In order to form this Al 2 O 3 film, R 2 using Al 2 O 3 as a target is used.
The F magnetron sputtering method is generally adopted,
When the productivity is emphasized, reactive sputtering is performed using Al as a target, introducing O 2 gas into the atmosphere during sputtering, and forming an Al 2 O 3 film using plasma oxidation while sputtering Al. Adoption of the law is also being carried out.

【0003】また、スパッタカソードとして、ターゲッ
トの背後に磁石を設けると共に該ターゲットの前方にR
Fコイルを設けた誘導結合RFプラズマ支援マグネトロ
ンカソードが出願人により提案されている(特開平6−
41739号公報)。このカソードは高真空中でプラズ
マの発生を持続でき、不純物や2次生成物の発生が少な
い利点を持っている。
In addition, a magnet is provided behind the target as a sputtering cathode, and a magnet is provided in front of the target.
An inductively coupled RF plasma assisted magnetron cathode provided with an F coil has been proposed by the applicant (Japanese Patent Laid-Open Publication No. Hei 6-1994).
No. 41739). This cathode has the advantage that the generation of plasma can be sustained in a high vacuum and the generation of impurities and secondary products is small.

【0004】[0004]

【発明が解決しようとする課題】ハードディスクに関し
て記録密度を向上させることの要求があり、これに伴い
読み取り用磁気ヘッドもスピンバルブ膜、多層膜やトン
ネル効果を用いた巨大磁気抵抗(GMR)ヘッドに置き
換わると考えられており、そこに用いられる絶縁膜も数
十〜数百Åの極めて薄いAl23やAlNなどの化合物
絶縁膜が必要になると予想されている。しかし、この程
度の極めて薄い例えばAl23膜を、従来のAl23
ーゲットを用いたRFマグネトロンスパッタ法や反応性
スパッタ法で作製すると、リーク電流が10-6A/mm
2以下で絶縁耐圧が5MV/cm以上の電気特性を有す
る良質な絶縁膜は形成出来ない。これは以下の理由に基
づくと考えられている。即ち、下地のメタル膜とAl2
3は“濡れ”が悪いため、メタル膜に接する領域のA
23層は欠陥が入り易いが、Al23膜が堆積してい
くにつれこの欠陥が少なくなり、健全なAl23層とな
っていき、1000Å程度の厚い膜ではその電気特性も
満足なものになると考えられ、そのため、数十〜数百Å
の極めて薄いAl23膜を形成した場合、界面層近傍の
欠陥が多い部分の影響が顕著に現れ、上記電気特性の良
好な絶縁膜を形成出来ない、と考えられている。
There is a demand for improving the recording density of a hard disk, and accordingly, a read magnetic head is also replaced with a spin valve film, a multilayer film, or a giant magnetoresistive (GMR) head using a tunnel effect. It replaced believed to compound insulating film such as an extremely thin as Al 2 O 3 and AlN insulating film as several tens to several hundred Å to be used therein is expected to be needed. However, when such an extremely thin Al 2 O 3 film, for example, is produced by an RF magnetron sputtering method or a reactive sputtering method using a conventional Al 2 O 3 target, the leakage current becomes 10 −6 A / mm.
Withstand voltage 2 less high-quality insulating film having the above electrical characteristics 5 MV / cm can not be formed. This is believed to be due to the following reasons. That is, the base metal film and Al 2
O 3 has poor “wetting”, so A 3 in the region in contact with the metal film
The l 2 O 3 layer is susceptible to defects, but as the Al 2 O 3 film is deposited, these defects are reduced and a sound Al 2 O 3 layer is formed. Is also considered satisfactory, and therefore, tens to hundreds of square meters.
It is considered that when an extremely thin Al 2 O 3 film is formed, the effect of a portion having many defects near the interface layer appears remarkably, and an insulating film having good electric characteristics cannot be formed.

【0005】本発明は、従来のスパッタ法では困難であ
った数十〜数百Åの極薄で磁気ヘッドのギャップ層やト
ンネル接合型GMRに好都合な化合物絶縁膜を形成する
方法を提案することを目的とするものである。
An object of the present invention is to provide a method for forming a compound insulating film which is very thin and has a thickness of several tens to several hundreds of mm, which is difficult for a conventional sputtering method, and which is suitable for a gap layer of a magnetic head and a tunnel junction type GMR. It is intended for.

【0006】[0006]

【課題を解決するための手段】本発明では、真空室内
に、直流電源に接続されたメタルターゲットとその背後
の磁石及び該ターゲットの前方のイオン化率を高めるR
Fコイルを備えたマグネトロンカソードを設け、プラズ
マ発生のための該ターゲット及びRFコイルへの投入電
力と、該真空室内へ導入するスパッタ用不活性ガス及び
反応性ガスの流量とを制御し、該ターゲットに対向して
設けた基板にメタル膜の成膜と該メタル膜の絶縁化合物
化を交互に行うことにより、上記の目的を達成するよう
にした。該RFコイルをメタルターゲットと同じ材質の
金属で製作し、該メタルターゲットには異常放電防止回
路を介して直流電源に接続することが好ましい。また、
メタルターゲット及びRFコイルをアルミニウムとし、
上記真空室内にアルゴンガスを制御して導入すると共に
圧力を調整し、該メタルターゲット及びRFコイルに上
記直流電源とRF電源から夫々電力を投入してプラズマ
を発生させ、基板に極めて薄いアルミニウム膜を成膜し
たのち、該ターゲットへの電力供給を停止し該真空室内
にアルゴンガスの他にO2ガス又はN2ガスを導入してR
Fコイルによるプラズマで該アルミニウム膜を酸化又は
窒化させ、その後この成膜と酸化又は窒化を繰り返して
該基板上に極薄絶縁膜を形成することにより、磁気ヘッ
ドのギャップ層やトンネル接合型GMRの絶縁膜に適し
た極薄絶縁膜を形成できる。該絶縁化合物化された膜上
にメタルのスパッタと反応性ガスによる絶縁化合物化を
同時に行う反応性スパッタにより成膜を行うことも可能
である。
According to the present invention, in a vacuum chamber, a metal target connected to a DC power supply, a magnet behind the metal target, and an R for increasing the ionization rate in front of the target are set.
A magnetron cathode provided with an F coil is provided, and the power supplied to the target and the RF coil for generating plasma and the flow rates of an inert gas for sputtering and a reactive gas introduced into the vacuum chamber are controlled. The above object is achieved by alternately forming a metal film and converting the metal film into an insulating compound on a substrate provided opposite to the above. Preferably, the RF coil is made of the same metal as the metal target, and the metal target is connected to a DC power supply via an abnormal discharge prevention circuit. Also,
The metal target and the RF coil are made of aluminum,
An argon gas is controlled and introduced into the vacuum chamber and the pressure is adjusted, and power is applied to the metal target and the RF coil from the DC power supply and the RF power supply, respectively, to generate plasma, and an extremely thin aluminum film is formed on the substrate. After the film formation, the power supply to the target was stopped, and O 2 gas or N 2 gas was introduced into the vacuum chamber in addition to the argon gas to reduce the R
The aluminum film is oxidized or nitrided by plasma generated by an F coil, and then this film formation and oxidation or nitridation are repeated to form an ultra-thin insulating film on the substrate, thereby forming a gap layer of a magnetic head or a tunnel junction GMR. An extremely thin insulating film suitable for an insulating film can be formed. It is also possible to form a film on the film made into an insulating compound by reactive sputtering in which sputtering of metal and formation of an insulating compound by a reactive gas are performed at the same time.

【0007】[0007]

【発明の実施の形態】本発明の実施の形態を図面に基づ
き説明すると、図1は本発明の実施に使用したスパッタ
リング装置で、同図の符号1は真空ポンプに連なる排気
口2と、アルゴンガス等のスパッタ用ガスの導入口3及
びO2やN2等の反応性ガスを導入する反応性ガス導入口
4を設けた真空室を示す。該真空室1内には、直流電源
5に異常放電防止回路10を介して接続されたAl製等
のメタルターゲット6とその背後の磁石7及び該ターゲ
ット6の前方のイオン化率を高めるRFコイル8を備え
たマグネトロンカソード9が設けられる。このカソード
9は、上記した誘導結合RFプラズマ支援マグネトロン
カソードとして公知のもので、RFコイル8はメタルタ
ーゲット6の前方周囲を囲繞して設けられ、これにマッ
チングボックス11を介してRF電源12から電力が供
給される。13は、表面に極薄の化合物の絶縁膜を形成
すべく該ターゲット6と対向して設けられた例えば直径
2インチの基板で、薄膜ヘッドやMRヘッド用の場合は
その表面にメタル膜が下地膜として予め形成される。該
RFコイル8は該メタルターゲット6と同材質の例えば
Alにて形成され、必要な場合は、その内部に冷却水を
循環させる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 shows a sputtering apparatus used for carrying out the present invention, wherein reference numeral 1 denotes an exhaust port 2 connected to a vacuum pump, and argon gas. 1 shows a vacuum chamber provided with an inlet 3 for a sputtering gas such as a gas and a reactive gas inlet 4 for introducing a reactive gas such as O 2 or N 2 . In the vacuum chamber 1, a metal target 6 made of Al or the like connected to a DC power supply 5 via an abnormal discharge prevention circuit 10, a magnet 7 behind the target 6, and an RF coil 8 for increasing the ionization rate in front of the target 6. Is provided. The cathode 9 is known as the inductively coupled RF plasma-assisted magnetron cathode described above, and the RF coil 8 is provided to surround the front periphery of the metal target 6, and the RF coil 8 is supplied with power from the RF power supply 12 Is supplied. Reference numeral 13 denotes a substrate having a diameter of, for example, 2 inches, which is provided to face the target 6 to form an extremely thin compound insulating film on the surface. In the case of a thin film head or an MR head, a metal film is formed on the surface. It is formed in advance as a ground film. The RF coil 8 is formed of the same material as the metal target 6, for example, Al, and circulates cooling water therein when necessary.

【0008】図1の装置を使用して反応性スパッタによ
り基板13に極薄の化合物絶縁膜を形成するには、まず
真空室1内を排気し、スパッタ用アルゴンガスをカソー
ド9の近傍の導入口3から適量導入して圧力を調整した
のち、メタルターゲット6に直流電力と、RFコイル8
に高周波電力を夫々投入する。これによりターゲット6
の前方にプラズマが発生し、イオンによりターゲット6
がスパッタされ、スパッタされたメタル粒子が基板13
に堆積する。メタルが例えば数十Å程度の極薄く堆積し
たところで、ターゲット6への投入電力を零にし、RF
コイル8への高周波電力のみを投入した状態で反応ガス
導入口4から反応ガスを導入する。これによりターゲッ
ト6は殆どスパッタされず、導入された反応性ガスはR
Fコイル8のプラズマで励起・イオン化されるので堆積
したメタル膜と速やかに反応し、化合物絶縁膜となる。
堆積した該メタル膜は極めて薄いので、薄膜内部までほ
ぼ完全に化合した化合物膜になる。
In order to form an extremely thin compound insulating film on the substrate 13 by reactive sputtering using the apparatus shown in FIG. 1, first, the inside of the vacuum chamber 1 is evacuated, and argon gas for sputtering is introduced near the cathode 9. After adjusting the pressure by introducing an appropriate amount from the port 3, the DC power and the RF coil 8 are applied to the metal target 6.
High-frequency power is supplied to each. This makes target 6
Plasma is generated in front of the target, and ions
Is sputtered, and the sputtered metal particles
Deposited on When the metal is deposited extremely thin, for example, on the order of several tens of millimeters, the input power to the target 6 is reduced to zero, and the RF
The reaction gas is introduced from the reaction gas introduction port 4 with only the high frequency power supplied to the coil 8. Thereby, the target 6 is hardly sputtered, and the introduced reactive gas is R
Since it is excited and ionized by the plasma of the F coil 8, it quickly reacts with the deposited metal film to become a compound insulating film.
Since the deposited metal film is extremely thin, it becomes a compound film almost completely combined with the inside of the thin film.

【0009】このあと、前記したターゲット6のスパッ
タ工程と反応ガスの導入による化合物化工程を繰り返
し、基板13上に例えば100Å程度の極薄の化合物絶
縁膜を形成する。これにより得られた化合物絶縁膜は、
極薄でありながらリーク電流が小さく絶縁破壊電圧が高
い良好な耐絶縁性をもち、絶縁性にバラつきのない化合
物絶縁膜を形成でき、高密度記録を読み取る磁気ヘッド
に好都合に適用できる。ターゲット6には化合して絶縁
膜を形成する各種のメタルの使用が可能であり、例えば
Siを使用すれば、SiO2の極薄絶縁膜を形成でき、
ターゲットをAl、反応性ガスにN2を使用してAlN
の極薄絶縁膜でき、ターゲットの材料と反応性ガスを適
当に選択することで種々の極薄絶縁膜を形成できる。
After that, the above-described sputtering process of the target 6 and the compounding process by introducing a reaction gas are repeated to form an ultra-thin compound insulating film of, for example, about 100 ° on the substrate 13. The compound insulating film obtained by this,
Although it is extremely thin, it has good insulation resistance with low leakage current and high dielectric breakdown voltage, it can form a compound insulating film with no variation in insulation, and can be conveniently applied to a magnetic head for reading high-density recording. Various metals that combine to form an insulating film can be used for the target 6. For example, if Si is used, an extremely thin insulating film of SiO 2 can be formed.
AlN target Al, using N 2 in the reaction gas
Various types of ultra-thin insulating films can be formed by appropriately selecting a target material and a reactive gas.

【0010】該基板13へのメタルの堆積速度は主にタ
ーゲット6へ投入する直流電力に依存し、スパッタされ
たメタル粒子や反応ガスのイオン化や励起の程度は主に
RFコイル8に投入する高周波電力に依存する。これは
スパッタされた中性メタル粒子がRFコイル8のつくる
プラズマゾーンを通過するときにイオン化されるという
イオンプレーティングと同様なポストイオン化機構によ
るためと考えられる。この傾向は2×10-3Torr以下の
低い圧力下でより顕著になる。該メタルターゲット6を
堆積させる際には、該ターゲット6への直流電力のみな
らずRFコイル8に高周波電力を同時に投入することに
より、イオン化効率が高まり、基板13の下地の上に被
覆性良く緻密で結晶性の良い数十Å程度の極薄いメタル
膜を堆積させ得る。そして、ターゲット6への直流電力
を零とし、RFコイル8への高周波電力のみとした状態
で反応性ガスを導入すると、スパッタされるメタルはほ
とんどなく、RFコイル8によるプラズマで励起・イオ
ン化され、堆積した極薄いメタル膜を迅速に反応させほ
ぼ完全に化合物絶縁膜にする。
The deposition rate of metal on the substrate 13 mainly depends on the DC power applied to the target 6, and the degree of ionization and excitation of sputtered metal particles and reaction gas is mainly determined by the high frequency applied to the RF coil 8. Depends on power. This is considered to be due to a post-ionization mechanism similar to ion plating, in which the sputtered neutral metal particles are ionized when passing through the plasma zone created by the RF coil 8. This tendency becomes more remarkable under a low pressure of 2 × 10 −3 Torr or less. When depositing the metal target 6, not only direct current power to the target 6 but also high frequency power is simultaneously applied to the RF coil 8, so that ionization efficiency is increased, and the metal target 6 is densely coated on the base of the substrate 13 with good coverage. Thus, an extremely thin metal film having a good crystallinity of about several tens of mm can be deposited. When the reactive gas is introduced in a state where the DC power to the target 6 is set to zero and the high frequency power to the RF coil 8 alone, almost no metal is sputtered, and the RF coil 8 excites and ionizes the plasma, The deposited ultra-thin metal film reacts quickly to make it almost completely a compound insulating film.

【0011】尚、RFコイル8による化合物化工程にお
いては、ターゲット6からのスパッタ粒子によりRFコ
イル8の表面へメタル膜のコーティングが行われないた
め、むき出しになったRFコイル8の表面が誘導結合プ
ラズマ放電によりスパッタされ、そのコイル材のスパッ
タ粒子が基板13の表面に付着するという汚染が考えら
れるが、このような汚染はRFコイル8をターゲット6
と同材質で作製しておくことで防げる。
In the compounding step using the RF coil 8, since the surface of the RF coil 8 is not coated with a metal film by sputtered particles from the target 6, the exposed surface of the RF coil 8 is inductively coupled. It is conceivable that the sputtered particles are sputtered by the plasma discharge and the sputtered particles of the coil material adhere to the surface of the substrate 13.
It can be prevented by using the same material as above.

【0012】また、この反応性ガスのプラズマ励起・イ
オン化の際、ターゲット6の表面も反応してそこに化合
物層が形成され、次のスパッタ工程に於ける直流放電が
不安定になる場合がある。これは電気伝導度の小さい化
合物や絶縁物がターゲット表面に形成されると、直流放
電ではその表面に正電荷が帯電し、カソード(ターゲッ
ト)とアノード(基板)との間の電位差を消失する方向
に働くことが原因で、放電が不安定になったり、放電が
停止する結果になる。この状態を解消するには、ターゲ
ット表面にたまった正電荷をプラズマからの電子で中和
すればよく、そのため該ターゲット6の直流電源5に異
常放電防止回路10を介在させ、図2に示したように、
一定の割合で正電位を発生させるようにし、この正電位
となったときにターゲット表面にプラズマからの電子を
引き込んでターゲット表面にたまった正電荷を中和する
ようにした。
In addition, during the plasma excitation and ionization of the reactive gas, the surface of the target 6 also reacts to form a compound layer thereon, and the DC discharge in the next sputtering step may become unstable. . This is because when a compound or insulator with low electrical conductivity is formed on the target surface, a positive charge is charged on the surface by direct current discharge, and the potential difference between the cathode (target) and anode (substrate) disappears. As a result, the discharge becomes unstable or the discharge stops. In order to eliminate this state, the positive charges accumulated on the target surface may be neutralized with electrons from the plasma. Therefore, an abnormal discharge prevention circuit 10 is interposed in the DC power supply 5 of the target 6 and shown in FIG. like,
A positive potential was generated at a constant rate, and when the potential became the positive potential, electrons from the plasma were drawn into the target surface to neutralize the positive charges accumulated on the target surface.

【0013】[0013]

【実施例】図1に示した誘導結合RFプラズマ支援マグ
ネトロンカソードを備えた装置を使用して、低抵抗シリ
コンの基板13上の約100Åの極めて薄いAl23
化合物絶縁膜を形成した。RFコイル8は水冷したAl
製で、Al製のターゲット6に異常放電防止回路10を
介して直流電源5を接続した。また、スパッタガスとし
てアルゴンガスを導入口3から導入できるようにし、反
応性ガスとしてO2ガスを反応性ガス導入口4から導入
できるようにした。カソード6の直径は2インチであ
る。
EXAMPLE An apparatus with an inductively coupled RF plasma assisted magnetron cathode shown in FIG. 1 was used to form a very thin Al 2 O 3 compound insulating film of about 100 ° on a low resistance silicon substrate 13. RF coil 8 is water-cooled Al
A DC power supply 5 was connected to an Al target 6 via an abnormal discharge prevention circuit 10. In addition, an argon gas can be introduced from the inlet 3 as a sputtering gas, and an O 2 gas can be introduced from the reactive gas inlet 4 as a reactive gas. The diameter of the cathode 6 is 2 inches.

【0014】該化合物絶縁膜の形成に先立ち、真空室1
内のアルゴンスパッタガス圧力を8×10-4Torr、ター
ゲット投入電力をDC40W一定にし、RFコイル8へ
の投入電力を変化させて、Si基板13上へのAl膜堆
積速度と基板へ流入するイオン電流の変化を測定した。
なお、基板13には基板へ流入するイオン電流を測定で
きるようにするため、−50Vを印加した。その結果は
図3の如くであり、Al膜堆積速度は、RFコイル8へ
の投入電力にあまり依存していないことが分かる。Al
膜堆積速度は、通常のマグネトロンスパッタと同様にタ
ーゲット6へ投入する電力に比例している。一方、基板
13に流入するイオン電流は、RFコイル8への投入電
力とともに急激に増加しており、この誘導結合RFプラ
ズマ支援マグネトロンスパッタ法がスパッタ粒子のイオ
ン化促進に極めて有効であること示している。この基板
へ流入するイオンは、AlイオンとArイオンである。
Prior to the formation of the compound insulating film, a vacuum chamber 1
The argon sputtering gas pressure in the chamber was set at 8 × 10 −4 Torr, the target input power was fixed at 40 W DC, the input power to the RF coil 8 was changed, and the Al film deposition rate on the Si substrate 13 and the ions flowing into the substrate were changed. The change in current was measured.
Note that -50 V was applied to the substrate 13 so that the ion current flowing into the substrate could be measured. The result is as shown in FIG. 3, and it can be seen that the deposition rate of the Al film does not depend much on the power supplied to the RF coil 8. Al
The film deposition rate is proportional to the electric power supplied to the target 6 as in the case of ordinary magnetron sputtering. On the other hand, the ion current flowing into the substrate 13 increases sharply with the power supplied to the RF coil 8, indicating that this inductively coupled RF plasma assisted magnetron sputtering method is extremely effective in promoting ionization of sputtered particles. . The ions flowing into this substrate are Al ions and Ar ions.

【0015】この結果を基に、図1の装置により、Al
メタル膜を堆積するスパッタ工程と、その膜をプラズマ
酸化により化合物化する化合物化工程とを図4に示した
手順に従って繰り返し、約100Åの極めて薄い電気特
性の優れたAl23の化合物絶縁膜を形成した。スパッ
タアルゴンガス圧力は8×10-4Torr、Si基板の温度
は室温とした。
Based on the results, the apparatus shown in FIG.
A sputtering process for depositing a metal film and a compounding process for compounding the film by plasma oxidation are repeated according to the procedure shown in FIG. 4 to obtain a very thin Al 2 O 3 compound insulating film of about 100 ° having excellent electric characteristics. Was formed. The sputtering argon gas pressure was 8 × 10 −4 Torr, and the temperature of the Si substrate was room temperature.

【0016】詳細には、ターゲット6への直流電力を1
30W、RFコイル8への高周波電力を50W、Arガ
スを15sccm、O2ガスを0sccmとし、この条
件で18秒スパッタし、まず厚さ約30Å程度のAlメ
タル膜を基板に堆積させた。続いてターゲットへの直流
電力を0V、RFコイル8への高周波電力をそのまま5
0Wを維持し、スパッタアルゴンガスの流量もそのまま
15sccmに維持し、O2ガスを30sccm真空室
内へ導入して、RFコイル8による誘導結合プラズマの
みを60秒間発生させて堆積した該Alメタル膜をプラ
ズマ酸化させAl23膜とした。更にこのAl23膜の
上に次のメタル膜を約30Åの厚さで前記Alメタル膜
のスパッタ条件で堆積させ、この次のメタル膜を前記化
合物化条件と同条件で堆積させた。このようにしてスパ
ッタ工程と化合物化工程を3回繰り返し約100ÅのA
23膜を基板に形成した。
Specifically, the DC power to the target 6 is 1
At 30 W, the high frequency power to the RF coil 8 was 50 W, the Ar gas was 15 sccm, and the O 2 gas was 0 sccm. Sputtering was performed for 18 seconds under these conditions. First, an Al metal film having a thickness of about 30 ° was deposited on the substrate. Subsequently, the direct current power to the target is 0 V, and the high frequency power to the RF coil 8 is 5
0 W, the sputter argon gas flow rate was also maintained at 15 sccm, O 2 gas was introduced into a 30 sccm vacuum chamber, and only the inductively coupled plasma by the RF coil 8 was generated for 60 seconds to deposit the Al metal film. Plasma oxidation was performed to form an Al 2 O 3 film. Further, on the Al 2 O 3 film, a next metal film was deposited with a thickness of about 30 ° under the sputtering conditions for the Al metal film, and the next metal film was deposited under the same conditions as the compounding conditions. In this manner, the sputtering process and the compounding process are repeated three times and the A
An l 2 O 3 film was formed on the substrate.

【0017】ここで作製した膜の深さ方向組成分析をオ
ージェ電子分光法を用いて評価したところ、膜組成は膜
の深さ方向に対して安定しており、検出されたAlの分
光ピークはすべて酸素と結合した状態において得られる
エネルギー値であった。その分析結果を図5に示す。比
較のためメタル膜を約45Åの厚さで同様に前記Alメ
タル膜のスパッタ条件で堆積させ、同様にプラズマ酸化
させて作製した試料を評価すると、膜は、深さ方向に対
して酸素の含有量にばらつきがあり、検出されたAlの
ピークは酸素と結合した状態において得られるエネルギ
ー値に加え、金属状態のAlからのエネルギー値におい
てもピークが検出されていた(図6)。これは、メタル
膜として堆積させたAlの膜厚が厚過ぎたため、プラズ
マ酸化時にメタルAl膜のすべてが酸化されずに、次の
メタルAl層が堆積されたためと考えられる。
When the composition analysis in the depth direction of the prepared film was evaluated by Auger electron spectroscopy, the film composition was stable in the depth direction of the film, and the detected spectral peak of Al was All the energy values were obtained in the state of being bonded to oxygen. FIG. 5 shows the result of the analysis. For comparison, a metal film having a thickness of about 45 ° was similarly deposited under the sputtering conditions of the Al metal film, and a sample prepared by plasma oxidation was evaluated. The amount varied, and the detected peak of Al was detected in addition to the energy value obtained in the state of bonding with oxygen, and also in the energy value of Al in the metallic state (FIG. 6). This is considered to be because the thickness of Al deposited as the metal film was too thick, so that the entire metal Al film was not oxidized during plasma oxidation, and the next metal Al layer was deposited.

【0018】そして、得られたAl23膜の電気特性を
測定するため、特別にこの膜の上に500μm□のCu
電極をスパッタ法により堆積させた。このようにして得
た膜のV−I特性を図7に示した。このAl23膜は、
膜厚が約100Åと極めて薄いにもかかわらず、絶縁物
特有のV−I特性になっていることがわかる。また、図
8には、測定された絶縁膜のリーク電流と絶縁破壊電圧
をプロットした、ここでの絶縁破壊電圧とリーク電流と
は、先のV−I測定で膜の絶縁が破れたときの電圧と電
流と定義した。また、比較のため、反応性スパッタ法で
作成した同じ膜厚のAl23膜の測定結果も併記した。
この反応性スパッタの条件は、本発明の方法の化合物化
条件にAlをスパッタするための条件の1つであるター
ゲットに直流電力を130W加えたものである。
Then, in order to measure the electrical characteristics of the obtained Al 2 O 3 film, a 500 μm square Cu
Electrodes were deposited by sputtering. FIG. 7 shows the VI characteristics of the film thus obtained. This Al 2 O 3 film is
It can be seen that, despite the extremely thin film thickness of about 100 °, the VI characteristic peculiar to the insulator is obtained. FIG. 8 plots the measured leak current and the breakdown voltage of the insulating film. The breakdown voltage and the leak current are the values obtained when the insulation of the film was broken in the previous VI measurement. Defined as voltage and current. For comparison, the measurement results of Al 2 O 3 films having the same film thickness formed by the reactive sputtering method are also shown.
The condition of the reactive sputtering is a condition in which a DC power of 130 W is applied to a target which is one of the conditions for sputtering Al in the compounding conditions of the method of the present invention.

【0019】本発明の方法(メタル堆積/プラズマ酸化
積層法)と従来の反応性スパッタ法で得られた膜の特性
を比較すると、反応性スパッタ膜の方がバラツキが大き
く、小さな電圧で膜の絶縁破壊を起こしている。これは
反応性スパッタではじめからAl23膜を堆積すると、
下地のSiとAl23膜は“濡れ”が悪く、Siに接す
るAl23膜には欠陥が入り易いためと考えられる。他
方、本発明のメタル堆積/プラズマ酸化積層法では、最
初にSiと“濡れ”が良いAl膜がSi下地全面に緻密
に形成され、その後プラズマ酸化によりAl23化され
るので、形成されたAl23膜は界面近傍でも欠陥の少
ない良質な膜が形成されたものと推定される。尚、本発
明の方法で約1000Å程度の厚い膜を堆積させ、その
屈折率を測定したところ、バルクのAl23と同じ1.
71〜1.72の値が得られており、屈折率の値からも
本発明の方法により得られた膜がバルクのAl23並の
優れた膜であることが裏付けられている。
Comparing the characteristics of the film obtained by the method of the present invention (metal deposition / plasma oxidation lamination method) and the conventional reactive sputtering method, the reactive sputtered film has a larger variation, Dielectric breakdown has occurred. This is because when an Al 2 O 3 film is deposited from the beginning by reactive sputtering,
Si and the Al 2 O 3 film of undercoat is poor "wetting", in the Al 2 O 3 film in contact with the Si considered liable contains the defect. On the other hand, the metal deposition / plasma oxidation lamination of the present invention, since the first Si and "wetting" good Al film is densely formed on the Si base entire surface, and thereafter Al 2 O 3 by plasma oxidation, is formed It is presumed that the Al 2 O 3 film formed a good quality film with few defects even near the interface. Incidentally, is deposited about 1000Å approximately thick film in the process of the present invention, it was measured for its refractive index, the same 1 and Al 2 O 3 bulk.
The values of 71 to 1.72 were obtained, and the value of the refractive index confirms that the film obtained by the method of the present invention was an excellent film equivalent to bulk Al 2 O 3 .

【0020】尚、本発明の方法と同様に、最初スパッタ
法で所要の膜厚、例えば100ÅのAl膜を形成し、そ
の後別のプラズマ酸化装置で該Al膜を酸化させてみた
が、Al膜の表層30Å程度のみが酸化されるだけで、
膜内部まで酸化されないため、絶縁物特有のV−I特性
を得ることは出来なかった。
Incidentally, similarly to the method of the present invention, an Al film having a required thickness, for example, 100 ° was first formed by a sputtering method, and then the Al film was oxidized by another plasma oxidizing apparatus. Only the surface layer of about 30 ° is oxidized,
Since the inside of the film was not oxidized, the VI characteristic peculiar to the insulator could not be obtained.

【0021】実施例では、Al23膜の例を示したが、
SiO2、AlNなどの種々の絶縁膜や化合物材料への
適用が可能である。本発明の方法は、同一チャンバー内
に、メタルをスパッタする機構と雰囲気ガスをプラズマ
で励起できる機構の両方を備えており、且つそれらがほ
ぼ独立に制御出来るようになっていれば、原理的に実施
可能である。従って図1に例示した装置以外でも、例え
ば図9(a)のようにRFコイルがターゲットと基板の
中間に設置してあるスパッタ装置、図9(b)のように
熱フィラメントにより熱電子を発生させてプラズマを形
成できる3極ないし4極型スパッタ装置、図9(c)の
ようにECR(電子サイクロトロン共鳴)ないしはマイ
クロ波でプラズマを発生できるECRないしはマイクロ
波スパッタ装置などで実施できる。また、実施例ではハ
ードディスク磁気ヘッドの絶縁膜スパッタプロセスにつ
いて述べたが、その他、フラットパネルディスプレーは
じめ種々の電子機器デバイス薄膜作製プロセスへの適用
が可能である。更に、ここでは化合物の厚膜を得るの
に、スパッタ工程と化合物化工程を交互に繰り返した
が、下地との“濡れ”の悪い第1層の化合物層のみをこ
の方法により作成し、第2層以降はいわゆる反応性スパ
ッタにより一挙に化合物層を形成してもよい。
In the embodiment, the example of the Al 2 O 3 film is shown.
It can be applied to various insulating films and compound materials such as SiO 2 and AlN. The method of the present invention has both a mechanism for sputtering metal and a mechanism for exciting atmospheric gas with plasma in the same chamber, and if they can be controlled almost independently, in principle, It is feasible. Therefore, other than the apparatus illustrated in FIG. 1, for example, as shown in FIG. 9A, an RF coil is installed in the middle of a target and a substrate, and as shown in FIG. 9B, thermal electrons are generated by a hot filament. The plasma can be formed by a three- or four-electrode type sputtering apparatus capable of forming a plasma, an ECR (electron cyclotron resonance) as shown in FIG. 9C, an ECR or a microwave sputtering apparatus capable of generating plasma by microwaves, or the like. In the embodiment, the insulating film sputtering process for the hard disk magnetic head has been described. However, the present invention can be applied to a thin panel manufacturing process for various electronic device devices such as a flat panel display. Further, in this case, the sputtering process and the compounding process were alternately repeated to obtain a thick film of the compound, but only the first compound layer having poor "wetting" with the base was formed by this method, and the second compound layer was formed. After the layer, a compound layer may be formed at once by so-called reactive sputtering.

【0022】[0022]

【発明の効果】以上のように本発明によるときは、イオ
ン化率を高めるRFコイルを備えたマグネトロンカソー
ドを設け、ターゲット及びRFコイルへの投入電力と、
真空室内へ導入するスパッタ用不活性ガス及び反応性ガ
スの流量とを制御し、基板にメタル膜の成膜と該メタル
膜の絶縁化合物化を交互に行うようにしたので、基板に
数十〜数百Å程度の従来のスパッタ法では困難であった
電気特性の良好な極薄絶縁膜を形成することができ、高
密度化されたハードディスク磁気ヘッドの製造に好都合
に適用できる等の効果がある。
As described above, according to the present invention, a magnetron cathode provided with an RF coil for increasing the ionization rate is provided, and the power supplied to the target and the RF coil is reduced.
The flow rate of the inert gas for sputtering and the reactive gas introduced into the vacuum chamber is controlled, and the formation of the metal film on the substrate and the conversion of the metal film into an insulating compound are alternately performed. It is possible to form an ultra-thin insulating film with good electrical characteristics, which was difficult with the conventional sputtering method of about several hundred square meters, and has an effect that it can be conveniently applied to the manufacture of a high-density hard disk magnetic head. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法の実施に使用した装置の切断側面
FIG. 1 is a cut-away side view of the apparatus used to carry out the method of the present invention.

【図2】図1のカソードに印加される電圧の特性図FIG. 2 is a characteristic diagram of a voltage applied to a cathode of FIG. 1;

【図3】RFコイル電力と膜堆積速度の関係図FIG. 3 is a relationship diagram between RF coil power and film deposition rate.

【図4】本発明方法の実施の手順の線図FIG. 4 is a diagram of a procedure for carrying out the method of the present invention.

【図5】本発明方法で得られた膜のオージェ電子分光法
による化学組成分析図(30Å)
FIG. 5 is a diagram showing a chemical composition of a film obtained by the method of the present invention by Auger electron spectroscopy (30 °).

【図6】本発明方法で得られた膜のオージェ電子分光法
による化学組成分析図(45Å)
FIG. 6 is a chemical composition diagram (45 °) of a film obtained by the method of the present invention by Auger electron spectroscopy.

【図7】本発明方法で得られた膜のリーク電流と電圧の
関係図
FIG. 7 is a diagram showing the relationship between leakage current and voltage of a film obtained by the method of the present invention.

【図8】本発明方法で得られた膜のリーク電流と絶縁破
壊電圧の関係図
FIG. 8 is a graph showing the relationship between leakage current and dielectric breakdown voltage of a film obtained by the method of the present invention.

【図9】本発明の方法を実施できる他のスパッタ装置の
説明図
FIG. 9 is an explanatory view of another sputtering apparatus that can carry out the method of the present invention.

【符号の説明】[Explanation of symbols]

1 真空室、3 スパッタガス導入口、4 反応性ガス
導入口、5 直流電源、6 メタルターゲット、7 磁
石、8 RFコイル、9 マグネトロンカソード、10
異常放電防止回路、13 基板、
1 vacuum chamber, 3 sputter gas inlet, 4 reactive gas inlet, 5 DC power supply, 6 metal target, 7 magnet, 8 RF coil, 9 magnetron cathode, 10
Abnormal discharge prevention circuit, 13 substrates,

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】真空室内に、直流電源に接続されたメタル
ターゲットとその背後の磁石及び該ターゲットの前方の
イオン化率を高めるRFコイルを備えたマグネトロンカ
ソードを設け、プラズマ発生のための該ターゲット及び
RFコイルへの投入電力と、該真空室内へ導入するスパ
ッタ用不活性ガス及び反応性ガスの流量とを制御し、該
ターゲットに対向して設けた基板にメタル膜の成膜と該
メタル膜の絶縁化合物化を交互に行うことを特徴とする
極薄絶縁膜形成方法。
A magnetron cathode provided with a metal target connected to a DC power supply, a magnet behind the metal target, and an RF coil for increasing the ionization rate in front of the target is provided in a vacuum chamber. The power supplied to the RF coil and the flow rates of the inert gas for sputtering and the reactive gas introduced into the vacuum chamber are controlled to form a metal film on a substrate provided opposite to the target and to form a metal film on the substrate. 1. A method for forming an ultra-thin insulating film, comprising alternately forming an insulating compound.
【請求項2】上記RFコイルを上記メタルターゲットと
同じ材質の金属で製作したことを特徴とする請求項1に
記載の極薄絶縁膜形成方法。
2. The method according to claim 1, wherein the RF coil is made of the same metal as the metal target.
【請求項3】上記メタルターゲットに異常放電防止回路
を介して直流電源に接続したことを特徴とする請求項1
に記載の極薄絶縁膜形成方法。
3. The metal target is connected to a DC power supply via an abnormal discharge prevention circuit.
3. The method for forming an ultra-thin insulating film according to item 1.
【請求項4】上記メタルターゲット及びRFコイルをア
ルミニウムとし、上記真空室内にアルゴンガスを制御し
て導入すると共に圧力を調整し、該メタルターゲット及
びRFコイルに上記直流電源とRF電源から夫々電力を
投入してプラズマを発生させ、基板に極めて薄いアルミ
ニウム膜を成膜したのち、該ターゲットへの電力供給を
停止し該真空室内にアルゴンガスの他にO2ガス又はN2
ガスを導入してRFコイルによるプラズマで該アルミニ
ウム膜を酸化又は窒化させ、その後この成膜と酸化又は
窒化を繰り返して該基板上に極薄絶縁膜を形成すること
を特徴とする請求項1に記載の極薄絶縁膜形成方法。
4. The metal target and the RF coil are made of aluminum, and an argon gas is controlled and introduced into the vacuum chamber, and the pressure is adjusted. Electric power is supplied to the metal target and the RF coil from the DC power supply and the RF power supply, respectively. Plasma is generated by inputting the plasma, an extremely thin aluminum film is formed on the substrate, power supply to the target is stopped, and O 2 gas or N 2 gas is supplied to the vacuum chamber in addition to the argon gas.
2. An ultra-thin insulating film is formed on the substrate by introducing a gas to oxidize or nitride the aluminum film by plasma generated by an RF coil, and thereafter repeating the film formation and the oxidation or nitridation. The method for forming an ultrathin insulating film according to the above.
【請求項5】真空室内に、直流電源に接続されたメタル
ターゲットとその背後の磁石及び該ターゲットの前方の
イオン化率を高めるRFコイルを備えたマグネトロンカ
ソードを設け、プラズマ発生のための該ターゲット及び
RFコイルへの投入電力と、該真空室内へ導入するスパ
ッタ用不活性ガス及び反応性ガスの流量とを制御し、該
ターゲットに対向して設けた基板にメタル膜の成膜と該
メタル膜の絶縁化合物化を行い、該絶縁化合物化された
膜上に該絶縁化合物をメタルのスパッタと反応性ガスに
よる絶縁化合物化を同時に行う反応性スパッタにより成
膜を行うことを特徴とする極薄絶縁膜形成方法。
5. A magnetron cathode provided with a metal target connected to a DC power supply, a magnet behind the metal target, and an RF coil for increasing an ionization rate in front of the target in a vacuum chamber. The power supplied to the RF coil and the flow rates of the inert gas for sputtering and the reactive gas introduced into the vacuum chamber are controlled to form a metal film on a substrate provided opposite to the target and to form a metal film on the substrate. An ultra-thin insulating film, characterized in that an insulating compound is formed, and the insulating compound is formed on the film formed by the insulating compound by reactive sputtering in which the metal is sputtered and the insulating compound is formed by a reactive gas at the same time. Forming method.
JP13704497A 1997-05-27 1997-05-27 Ultra-thin insulating film formation method Expired - Lifetime JP4531145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13704497A JP4531145B2 (en) 1997-05-27 1997-05-27 Ultra-thin insulating film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13704497A JP4531145B2 (en) 1997-05-27 1997-05-27 Ultra-thin insulating film formation method

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2007184880A Division JP2007277730A (en) 2007-07-13 2007-07-13 Sputtering apparatus
JP2007184879A Division JP2007314887A (en) 2007-07-13 2007-07-13 Method for forming extra-thin insulation film

Publications (2)

Publication Number Publication Date
JPH10324969A true JPH10324969A (en) 1998-12-08
JP4531145B2 JP4531145B2 (en) 2010-08-25

Family

ID=15189564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13704497A Expired - Lifetime JP4531145B2 (en) 1997-05-27 1997-05-27 Ultra-thin insulating film formation method

Country Status (1)

Country Link
JP (1) JP4531145B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036628A (en) * 1998-07-17 2000-02-02 Yamaha Corp Magnetic tunnel joint element and manufacture of it
US6348238B1 (en) 1999-03-12 2002-02-19 Anelva Corporation Thin film fabrication method and thin film fabrication apparatus
JP2002076473A (en) * 2000-09-05 2002-03-15 Toshiba Corp Magnetoresistive effect device, its manufacturing method, its manufacturing apparatus and magnetic playback apparatus
JP2002190632A (en) * 2000-12-20 2002-07-05 Yamaha Corp Method for forming oxide film and method for fabricating magnetic tunnel junction element
JP2003114313A (en) * 2001-10-03 2003-04-18 Kiyousera Opt Kk Reflection mirror and image projector device using the same
US6853520B2 (en) 2000-09-05 2005-02-08 Kabushiki Kaisha Toshiba Magnetoresistance effect element
US7407565B2 (en) * 2000-02-16 2008-08-05 Applied Materials, Inc. Method and apparatus for ionized plasma deposition
US7488609B1 (en) 2007-11-16 2009-02-10 Hitachi Global Storage Technologies Netherlands B.V. Method for forming an MgO barrier layer in a tunneling magnetoresistive (TMR) device
US7816254B2 (en) 2006-04-27 2010-10-19 Fujitsu Semiconductor Limited Film forming method, fabrication process of semiconductor device, computer-readable recording medium and sputtering apparatus
JP2014189827A (en) * 2013-03-27 2014-10-06 Dainippon Screen Mfg Co Ltd Method for depositing aluminum oxide
JP2018535329A (en) * 2015-11-16 2018-11-29 コブス エスアエス Method for producing aluminum oxide and / or aluminum nitride
CN115161609A (en) * 2022-07-25 2022-10-11 北京北方华创微电子装备有限公司 Semiconductor processing equipment and magnetron sputtering process

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4614212B2 (en) * 1998-07-17 2011-01-19 ヤマハ株式会社 Manufacturing method of magnetic tunnel junction element
JP2000036628A (en) * 1998-07-17 2000-02-02 Yamaha Corp Magnetic tunnel joint element and manufacture of it
US6872289B2 (en) 1999-03-12 2005-03-29 Anelva Corporation Thin film fabrication method and thin film fabrication apparatus
US6348238B1 (en) 1999-03-12 2002-02-19 Anelva Corporation Thin film fabrication method and thin film fabrication apparatus
US7407565B2 (en) * 2000-02-16 2008-08-05 Applied Materials, Inc. Method and apparatus for ionized plasma deposition
JP2002076473A (en) * 2000-09-05 2002-03-15 Toshiba Corp Magnetoresistive effect device, its manufacturing method, its manufacturing apparatus and magnetic playback apparatus
US8259419B2 (en) 2000-09-05 2012-09-04 Kabushiki Kaisha Toshiba Magnetoresistance effect element with a layer containing an oxide as a principal component and containing a magnetic transition metal element which does not bond to oxygen
US7130163B2 (en) 2000-09-05 2006-10-31 Kabushiki Kaisha Toshiba Magnetoresistance effect element
US6853520B2 (en) 2000-09-05 2005-02-08 Kabushiki Kaisha Toshiba Magnetoresistance effect element
US7476414B2 (en) 2000-09-05 2009-01-13 Kabushiki Kaisha Toshiba Magnetoresistance effect element
US8049999B2 (en) 2000-09-05 2011-11-01 Kabushiki Kaisha Toshiba Magnetoresistance effect element with a layer containing an oxide as a principal component and containing a magnetic transition metal element which does not bond to oxygen
JP2002190632A (en) * 2000-12-20 2002-07-05 Yamaha Corp Method for forming oxide film and method for fabricating magnetic tunnel junction element
JP2003114313A (en) * 2001-10-03 2003-04-18 Kiyousera Opt Kk Reflection mirror and image projector device using the same
US7816254B2 (en) 2006-04-27 2010-10-19 Fujitsu Semiconductor Limited Film forming method, fabrication process of semiconductor device, computer-readable recording medium and sputtering apparatus
US7488609B1 (en) 2007-11-16 2009-02-10 Hitachi Global Storage Technologies Netherlands B.V. Method for forming an MgO barrier layer in a tunneling magnetoresistive (TMR) device
JP2014189827A (en) * 2013-03-27 2014-10-06 Dainippon Screen Mfg Co Ltd Method for depositing aluminum oxide
JP2018535329A (en) * 2015-11-16 2018-11-29 コブス エスアエス Method for producing aluminum oxide and / or aluminum nitride
CN115161609A (en) * 2022-07-25 2022-10-11 北京北方华创微电子装备有限公司 Semiconductor processing equipment and magnetron sputtering process
CN115161609B (en) * 2022-07-25 2023-09-12 北京北方华创微电子装备有限公司 Semiconductor process equipment and magnetron sputtering process

Also Published As

Publication number Publication date
JP4531145B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
US5510011A (en) Method for forming a functional deposited film by bias sputtering process at a relatively low substrate temperature
US20040134613A1 (en) Device and method for plasma processing, and slow-wave plate
JP4531145B2 (en) Ultra-thin insulating film formation method
Takahashi et al. An electron cyclotron resonance plasma deposition technique employing magnetron mode sputtering
JP3774353B2 (en) Method and apparatus for forming metal compound thin film
US20060124455A1 (en) Thin film forming device and thin film forming method
US20020020497A1 (en) Plasma processing apparatus and plasma processing method
JP4481657B2 (en) Method of forming a titanium nitride film on the surface of a metal substrate in plasma of a chemical vapor deposition chamber
JP2007277730A (en) Sputtering apparatus
US6495000B1 (en) System and method for DC sputtering oxide films with a finned anode
JPH11200032A (en) Sputtering film forming method of insulated film
JP4557315B2 (en) Method of forming compound barrier film in silicon semiconductor
JPH08232064A (en) Reactive magnetron sputtering device
JP2001152330A (en) Film deposition method and film deposition apparatus
JP3478561B2 (en) Sputter deposition method
JP3143252B2 (en) Hard carbon thin film forming apparatus and its forming method
JP2007314887A (en) Method for forming extra-thin insulation film
US6223686B1 (en) Apparatus for forming a thin film by plasma chemical vapor deposition
JPH07110912A (en) Magnetic head and manufacture thereof
KR102430700B1 (en) Preparation method of ferromagnetic film and apparatus for ferromagnetic film
JP3026447B2 (en) Bias sputter deposition method and apparatus
Gaydou A high current vacuum discharge for triode-sputtering in the 10− 4 torr range
JPS61127862A (en) Method and device for forming thin film
JPH0237963A (en) Electrical heating member
JP3010333B2 (en) Film forming method and film forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070906

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070912

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20071005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100609

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term