JPH10323570A - Catalyst for denitration of flue gas and its production - Google Patents

Catalyst for denitration of flue gas and its production

Info

Publication number
JPH10323570A
JPH10323570A JP9134975A JP13497597A JPH10323570A JP H10323570 A JPH10323570 A JP H10323570A JP 9134975 A JP9134975 A JP 9134975A JP 13497597 A JP13497597 A JP 13497597A JP H10323570 A JPH10323570 A JP H10323570A
Authority
JP
Japan
Prior art keywords
catalyst
pore volume
compound
pore
flue gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9134975A
Other languages
Japanese (ja)
Inventor
Takeshi Hirota
健 広田
Toshifumi Mukai
利文 向井
Shigeru Tominaga
成 冨永
Tadaaki Mizoguchi
忠昭 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP9134975A priority Critical patent/JPH10323570A/en
Publication of JPH10323570A publication Critical patent/JPH10323570A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a catalyst for denitration of a flue gas large in a fine pore volume, excellent in denitration performance, high in strength and excellent in cost effectiveness, and to provide its production method. SOLUTION: The catalyst is a catalyst for reducing NOx in a flue gas with NH3 and contains a metallic component consisting of Ti, V and W or the metallic component consisting of Ti, V, Mo and W and is prepared by using a starting material obtained by mixing titania and a tungsten compd. and heat-treating the mixture. In this case, a fine pore volume which is occupied by a fine pore group having 0.01-0.05 μm pore size is 30-45% of the total fine pore volume, the fine pore volume which is occupied by the fine pore group having 0.05-0.3 μm pore size is 50-70% of the total fine pore volume, the fine pore volume which is occupied by the fine pore group having >=0.5 μm pore size is 0-5% of the total fine pore volume and vertical collapse strength is >=15 kg/cm<2> at the time of forming a honeycomb having >=70% an opening ratio.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排ガス中の窒素酸
化物をアンモニアを用いて還元除去する排煙脱硝技術に
係わり、特に該化学反応を選択的に進行させる目的で使
用する高活性な触媒およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flue gas denitration technology for reducing and removing nitrogen oxides in exhaust gas using ammonia, and more particularly to a highly active catalyst used for the purpose of selectively proceeding the chemical reaction. And its manufacturing method.

【0002】[0002]

【従来の技術】発電プラントや化学プラントの排ガス中
の窒素酸化物を触媒の存在下でアンモニアによって還元
除去する方法が広く用いられている。この反応に用いら
れる触媒(脱硝触媒)は、通常、チタンおよびバナジウ
ムとともにタングステンまたはモリブデンなどの活性成
分を含み、これらの原料を混練した後、ハニカム状ある
いは板状構造体に成形し、さらに乾燥、焼成を行って製
造される。
2. Description of the Related Art A method for reducing and removing nitrogen oxides in exhaust gas from power plants and chemical plants with ammonia in the presence of a catalyst is widely used. The catalyst (denitration catalyst) used for this reaction usually contains an active component such as tungsten or molybdenum together with titanium and vanadium, and after kneading these raw materials, the mixture is formed into a honeycomb or plate-like structure, and further dried, It is manufactured by firing.

【0003】同じ形状(セル寸法、断面開口率)、同じ
成分からなる触媒であれば、一般的に細孔容積の多い触
媒ほど脱硝活性は高くなる。しかも細孔容積が多く、特
定な細孔分布を有する触媒が脱硝性能に優れている。例
えば特開平3−68456号公報に、特定範囲の二つの
細孔群からなる触媒が高活性であることが開示されてい
る。
[0003] As long as the catalyst has the same shape (cell size, cross-sectional aperture ratio) and the same components, a catalyst having a larger pore volume generally has a higher denitration activity. Moreover, a catalyst having a large pore volume and a specific pore distribution is excellent in denitration performance. For example, Japanese Patent Application Laid-Open No. 3-68456 discloses that a catalyst composed of two pore groups in a specific range has high activity.

【0004】一方、ハニカム触媒はそれ自体が構造体で
あるために、一定の強度を有する必要がある。このため
強度を向上させるために、ガラス繊維等の補強材を混合
して触媒を製造している。
On the other hand, since the honeycomb catalyst itself is a structural body, it needs to have a certain strength. Therefore, in order to improve the strength, a catalyst is produced by mixing a reinforcing material such as glass fiber.

【0005】[0005]

【発明が解決しようとする課題】脱硝触媒が今後とも広
く利用されて行くためには、性能はもちろん、脱硝装置
がより安価なものでなければならない。性能が優れ、か
つ安価である触媒の具体的製造手段としては、脱硝触媒
の製造プロセスの簡略化とともに、触媒原料の低廉化、
触媒必要量の低減、触媒の高性能化が極めて重要であ
る。触媒が高性能化されれば、触媒廃棄物量が軽減さ
れ、この点からも脱硝装置全体の経済性が向上する。
In order for the denitration catalyst to be widely used in the future, not only the performance but also the denitration device must be cheaper. As a specific means of producing a catalyst that has excellent performance and is inexpensive, the production process of the denitration catalyst is simplified, the cost of the catalyst material is reduced,
It is extremely important to reduce the required amount of the catalyst and improve the performance of the catalyst. If the performance of the catalyst is improved, the amount of catalyst waste is reduced, and from this point of view, the economy of the entire denitration apparatus is improved.

【0006】脱硝活性を向上させるためには細孔容積が
増加した触媒が必要となる。しかしながら、細孔容積が
大きい触媒(0.35〜0.5ml/g)は強度が低
い。しかも径が大きい細孔が多くなるにつれて触媒の強
度は低下する。細孔が多く、強度が低下した触媒は移動
時やブロック状に積み上げ時などのハンドリングに支障
をきたすことが多くなる。
[0006] In order to improve the denitration activity, a catalyst having an increased pore volume is required. However, catalysts with large pore volumes (0.35-0.5 ml / g) have low strength. Moreover, as the number of pores having a large diameter increases, the strength of the catalyst decreases. A catalyst having many pores and reduced strength often hinders handling such as movement and stacking in a block shape.

【0007】本発明は、上記のような背景のもとに、細
孔容積が多く、脱硝性能が優れ、高強度で、かつ経済性
に優れた排煙脱硝触媒とその製造方法を提供することを
課題とするものである。
The present invention provides a flue gas denitration catalyst having a large pore volume, excellent denitration performance, high strength, and economical efficiency, and a method for producing the same, based on the above background. Is the subject.

【0008】[0008]

【課題を解決するための手段】本発明の上記課題は次の
構成によって解決される。 (1)排ガス中の窒素酸化物をアンモニアにより還元処
理する触媒であって、(a)チタン、バナジウム及びタ
ングステンから成る金属成分または(b)チタン、バナ
ジウム、タングステン及びモリブデンから成る金属成分
を含有し、チタニアとタングステン化合物を混合して熱
処理した原料を用いて調製した排ガス脱硝用触媒であっ
て、0.01〜0.05μmの範囲の孔径を有する細孔
群が占める細孔容積が全細孔容積の30〜45%であ
り、0.05〜0.3μmの範囲の孔径を有する細孔群
が占める細孔容積が全細孔容積の50〜70%であり、
0.3μm以上の範囲の孔径を有する細孔が占める細孔
容積が全細孔容積の0〜5%であり、開口率70%以上
のハニカム成形時の縦圧壊強度が15kg/cm2以上
である排煙脱硝触媒である。従って上記本発明の排煙脱
硝触媒はそれぞれの孔径が略均一であり、実質的に二つ
の独立した細孔群からなる細孔を有するものからなる。
The above object of the present invention is attained by the following constitution. (1) A catalyst for reducing nitrogen oxides in exhaust gas with ammonia, comprising (a) a metal component composed of titanium, vanadium and tungsten or (b) a metal component composed of titanium, vanadium, tungsten and molybdenum. A catalyst for exhaust gas denitration prepared using a raw material that has been heat-treated by mixing titania and a tungsten compound, wherein the pore volume occupied by a group of pores having a pore diameter in the range of 0.01 to 0.05 μm is a total pore volume. 30 to 45% of the volume, and the pore volume occupied by the pore group having a pore diameter in the range of 0.05 to 0.3 μm is 50 to 70% of the total pore volume;
The pore volume occupied by pores having a pore diameter in a range of 0.3 μm or more is 0 to 5% of the total pore volume, and the longitudinal crushing strength at the time of forming a honeycomb having an opening ratio of 70% or more is 15 kg / cm 2 or more. A flue gas denitration catalyst. Accordingly, the flue gas denitration catalyst of the present invention has a substantially uniform pore size and has pores substantially consisting of two independent pore groups.

【0009】(2)また、前記(1)の構成に係る排煙
脱硝触媒の化学組成がチタン76〜94.5atm%、
タングステン1〜7atm%、バナジウム4.5〜10
atm%、モリブデンが0〜7atm%である排煙脱硝
触媒が望ましい。
(2) The flue gas denitration catalyst according to the constitution (1) has a chemical composition of 76 to 94.5 atm% titanium,
Tungsten 1 to 7 atm%, vanadium 4.5 to 10
A flue gas denitration catalyst having atm% and molybdenum of 0 to 7 atm% is desirable.

【0010】本発明の上記課題は次の構成によっても解
決される。 (3)前記(2)の構成に係る排煙脱硝触媒のチタニア
とタングステン化合物の一部または全部を混合した後、
温度200〜400℃で熱処理して粉砕した粉末と
(a)バナジウム化合物または(b)バナジウム化合物
およびタングステン化合物または(c)バナジウム化合
物およびタングステン化合物およびモリブデン化合物よ
りなる調合物を調製し、この調合物を可塑化してハニカ
ム形状または板状に成形して乾燥させ、乾燥体を焼成
し、最終製品の細孔容積が0.33ml/g以上である
排煙脱硝触媒の製造方法。
The above object of the present invention is also solved by the following constitution. (3) After mixing some or all of the titania and the tungsten compound of the flue gas denitration catalyst according to the configuration of (2),
A preparation comprising a powder heat-treated at a temperature of 200 to 400 ° C. and ground and (a) a vanadium compound or (b) a vanadium compound and a tungsten compound or (c) a vanadium compound and a tungsten compound and a molybdenum compound is prepared. A method for producing a flue gas denitration catalyst in which the final product has a pore volume of 0.33 ml / g or more by plasticizing, forming into a honeycomb shape or a plate shape, drying and drying the dried product.

【0011】(4)前記(2)の構成に係る排煙脱硝触
媒のチタニアとタングステン化合物の一部または全部を
混合した後、温度400〜700℃で熱処理して粉砕し
た粉末と(a)バナジウム化合物または(b)バナジウ
ム化合物およびタングステン化合物または(c)バナジ
ウム化合物およびタングステン化合物およびモリブデン
化合物よりなる調合物と、平均粒径1〜100μmのセ
ルロース粉末などの添加物とよりなる混合物を調製し、
この調合物を可塑化してハニカム形状または板状に成形
して乾燥させ、該乾燥体を焼成し、最終製品の細孔容積
が0.33ml/g以上である排煙脱硝触媒の製造方
法。
(4) After mixing part or all of the titania and the tungsten compound of the flue gas denitration catalyst according to the constitution (2), heat-treated at a temperature of 400 to 700 ° C. and pulverized, and (a) vanadium Preparing a mixture comprising a compound or a composition comprising (b) a vanadium compound and a tungsten compound or (c) a vanadium compound and a tungsten compound and a molybdenum compound, and an additive such as cellulose powder having an average particle diameter of 1 to 100 μm;
A method for producing a flue gas denitration catalyst in which this preparation is plasticized, formed into a honeycomb shape or a plate shape, dried and fired, and the final product has a pore volume of 0.33 ml / g or more.

【0012】[0012]

【作用】本発明の触媒製造方法によって高活性な脱硝触
媒が得られる理由に関しては必ずしも完全に解明されて
いないが、図2(a)、図2(b)に示すうように特定
の範囲(0.05〜0.3μm)の孔径を有する細孔数
を増加させると、0.3μm以上の範囲の孔径を有する
ものが全く無くても、高活性な触媒が得られることか
ら、0.05〜0.3μmの孔径の細孔の数の増加が触
媒の高活性化の原因の一つであると考えられる。
The reason why a highly active denitration catalyst can be obtained by the method for producing a catalyst of the present invention has not been completely elucidated. However, as shown in FIGS. 2 (a) and 2 (b), a specific range ( When the number of pores having a pore diameter of 0.05 to 0.3 μm is increased, a highly active catalyst can be obtained even if there is no pore having a pore diameter of 0.3 μm or more. It is considered that the increase in the number of pores having a pore diameter of about 0.3 μm is one of the causes of the high activation of the catalyst.

【0013】また、図2(c)に示すように大きい孔径
の細孔の数を減少すればするほど触媒の強度は高くな
る。0.3μm以上の範囲の孔径をまったく無くすと、
触媒の強度はハニカム触媒の断面の開口率が80%以上
であっても実用に供することができる。以下、これに関
して更に詳しく説明する。
Further, as shown in FIG. 2 (c), the smaller the number of pores having a large pore diameter, the higher the strength of the catalyst. If the pore diameter in the range of 0.3 μm or more is completely eliminated,
The strength of the catalyst can be practically used even if the opening ratio of the cross section of the honeycomb catalyst is 80% or more. Hereinafter, this will be described in more detail.

【0014】全細孔容積が0.33(ml/g)以上で
あり、0.3μm以上の範囲の孔径を有する細孔の容積
が5%以上である触媒は、活性は高いが触媒装置として
積層するためには強度に大きな問題がある。特開平3−
68456号公報に示されているような0.5μm以上
の細孔径の分布を有する触媒は、さらに低強度であり、
ハンドリングで容易に破損してしまう場合がある。この
ような触媒は補強材をいくら添加しても、触媒を積層配
置する場合に満足する強度は得られず破損することが多
い。この原因は0.3μm以上の孔径を有する細孔が存
在することにより、応力が加わった場合、0.3μm以
上の孔径を有する細孔があたかもクラックのような作用
を引き起こすためである。
A catalyst having a total pore volume of at least 0.33 (ml / g) and a pore volume of at least 5% having a pore diameter in the range of 0.3 μm or more has a high activity, but is a catalyst device. There is a big problem in strength for laminating. JP-A-3-
A catalyst having a pore size distribution of 0.5 μm or more as disclosed in Japanese Patent No. 68456 has a lower strength,
It may be easily damaged by handling. No matter how much reinforcing material is added to such a catalyst, satisfactory strength cannot be obtained when the catalyst is stacked and arranged, and the catalyst often breaks. The reason for this is that the presence of pores having a pore diameter of 0.3 μm or more causes the pores having a pore diameter of 0.3 μm or more to act as a crack when stress is applied.

【0015】一般に、0.33(ml/g)以上の細孔
容積を持つ触媒の細孔分布は、0.001〜10μmの
範囲で広がっている。このような触媒の強度を高めるた
めに、調製条件によって大きい孔径の細孔数を減少させ
た触媒は、全細孔容積は低下し、0.3μm以上の孔径
を有する細孔数は減少するが、0.3μm以上の孔径を
有する細孔数が全細孔容積の5%以下にはなりにくい。
強力に混練する等により、0.3μm以上の孔径を有す
る細孔を全細孔容積の5%以下にすると全細孔容積は
0.33(ml/g)以下になってしまい活性は低下す
る。
In general, the pore distribution of a catalyst having a pore volume of 0.33 (ml / g) or more is widened in the range of 0.001 to 10 μm. In order to increase the strength of such a catalyst, the catalyst in which the number of pores having a large pore diameter is reduced by the preparation conditions decreases the total pore volume and the number of pores having a pore diameter of 0.3 μm or more decreases. , The number of pores having a pore diameter of 0.3 μm or more is less than 5% of the total pore volume.
If the pores having a pore diameter of 0.3 μm or more are reduced to 5% or less of the total pore volume by vigorous kneading or the like, the total pore volume becomes 0.33 (ml / g) or less and the activity is reduced. .

【0016】しかし、本発明者らは、触媒を調製する時
に特定範囲の活性成分の触媒を、特定の方法で調製する
ことにより、0.33(ml/g)以上の細孔容積を持
ち、しかも高活性と強度の両者を満足する触媒を調製で
きることを見出した。
However, the present inventors have prepared a catalyst having a specific range of active components in a specific method when preparing the catalyst, thereby having a pore volume of 0.33 (ml / g) or more, Moreover, they have found that a catalyst satisfying both high activity and strength can be prepared.

【0017】また、図3に示すように開口率70%以上
のハニカム成形体にしたとき、従来触媒は細孔容積が
0.33ml/gであると、縦圧壊強度は15kg/c
2以下であるため破損率が高いが、本発明触媒は細孔
容積が0.33ml/gであっても、縦圧壊強度は15
kg/cm2以上であるため、破損率が低い。
Further, as shown in FIG. 3, when a honeycomb formed body having an opening ratio of 70% or more is used, if the conventional catalyst has a pore volume of 0.33 ml / g, the vertical crushing strength is 15 kg / c.
m 2 or less, the breakage rate is high, but the catalyst of the present invention has a longitudinal crushing strength of 15 even if the pore volume is 0.33 ml / g.
Since it is at least kg / cm 2 , the breakage rate is low.

【0018】さらに、図4に示すように、触媒は細孔容
積が大きくなるにつれて活性が高くなる。従来触媒は、
細孔容積が0.33ml/g以上となると、縦圧壊強度
は15kg/cm2以下となるため、破損率が高かった
が、本発明の触媒は細孔容積が0.33ml/g以上で
あっても、縦圧壊強度は15kg/cm2以上であるた
め破損率は低く、従って高活性で使用できる。
Further, as shown in FIG. 4, the activity of the catalyst increases as the pore volume increases. Conventional catalysts
When the pore volume was 0.33 ml / g or more, the longitudinal crushing strength was 15 kg / cm 2 or less, and the breakage rate was high. However, the catalyst of the present invention had a pore volume of 0.33 ml / g or more. However, since the longitudinal crushing strength is 15 kg / cm 2 or more, the breakage rate is low, so that it can be used with high activity.

【0019】本発明の触媒を調製するためには、チタニ
アにタングステン化合物を添加した後、200〜400
℃の温度範囲において熱処理した原料を用いて触媒を調
製することによって達成できる。タングステン化合物を
チタニアに添加した後、200℃以下の温度で乾燥した
だけの原料は、触媒調製する時に水と混合させると、チ
タニアからタングステン化合物が溶出するため、調製し
た触媒の強度は高くならない。しかし、200〜400
℃の温度範囲において熱処理した原料は、タングステン
化合物がチタニアに強く結合するため、調製の時、水と
混合してもタングステン化合物は溶出しにくい。これは
タングステン化合物がチタニアに強く結合し、粒子径の
大きい凝集粒子となるため、触媒調製の時、混練によっ
て粒子が砕け難く、最終的な触媒の細孔容積は大きく、
活性も高いものと考えられる。
In order to prepare the catalyst of the present invention, after adding a tungsten compound to titania, 200 to 400
This can be achieved by preparing a catalyst using a raw material that has been heat-treated in a temperature range of ° C. If the raw material that has only been dried at a temperature of 200 ° C. or less after adding the tungsten compound to the titania is mixed with water when preparing the catalyst, the tungsten compound elutes from the titania, so that the strength of the prepared catalyst does not increase. However, 200-400
In the raw material heat-treated in the temperature range of ° C., since the tungsten compound strongly binds to titania, the tungsten compound is hardly eluted even when mixed with water during preparation. This is because the tungsten compound is strongly bonded to titania and becomes agglomerated particles having a large particle size.At the time of preparing the catalyst, the particles are hardly broken by kneading, and the final catalyst has a large pore volume.
It is considered that the activity is high.

【0020】熱処理温度を400〜700℃とした場
合、タングステン化合物はチタニアに強く結合するが、
熱によるチタニアの収縮が進行して粒子径は小さくな
る。この結果、最終的な触媒の強度はさらに高くなる
が、全細孔容積は低下するため活性は低下する。
When the heat treatment temperature is 400 to 700 ° C., the tungsten compound strongly binds to titania,
As the titania shrinks due to heat, the particle size decreases. As a result, the strength of the final catalyst is further increased, but the activity is reduced because the total pore volume is reduced.

【0021】また、チタニアにタングステン化合物を添
加した後、400〜700℃で熱処理した原料や他の原
料を用い、有機物、無機物などの添加剤(平均孔径1〜
100μmのセルロース粉末など)等を添加することに
よって、細孔容積を増大させることができるが、本発明
の触媒と同等の細孔分布を持つ触媒を調製すると、高活
性な触媒を得ることができる。このような触媒は上記の
200〜400℃の温度範囲において熱処理した原料を
用いた触媒に比べて活性および強度が少し低下する。
Further, after adding a tungsten compound to titania, a raw material heat-treated at 400 to 700 ° C. or another raw material is used, and additives such as organic substances and inorganic substances (average pore diameter 1 to 4) are used.
The pore volume can be increased by adding 100 μm cellulose powder or the like), but when a catalyst having a pore distribution equivalent to that of the catalyst of the present invention is prepared, a highly active catalyst can be obtained. . Such a catalyst has a slightly lower activity and strength than a catalyst using a raw material heat-treated in the above-mentioned temperature range of 200 to 400 ° C.

【0022】本発明の触媒は0.33(ml/g)以上
の細孔容積を持ち、特に0.1〜0.3μmの範囲の孔
径を有する細孔群が占める細孔容積が全細孔容積の50
〜80%である。0.1〜0.3μmの範囲の孔径を有
する細孔群が多いことが、0.3μm以上の範囲の孔径
を有する細孔の代わりの役目を果たすために高活性な触
媒となる。
The catalyst of the present invention has a pore volume of 0.33 (ml / g) or more, and in particular, a pore group having a pore diameter in the range of 0.1 to 0.3 μm has a pore volume of all pores. 50 of volume
~ 80%. A large number of pore groups having a pore diameter in the range of 0.1 to 0.3 μm is a highly active catalyst because it serves as a substitute for pores having a pore diameter in the range of 0.3 μm or more.

【0023】本発明の触媒は、反応温度350〜400
℃において高活性であるだけでなく、反応温度180℃
〜250℃の低温域においても高活性である。また、本
発明の脱硝触媒の化学組成がチタン76〜94.5at
m%、タングステン1〜7atm%、バナジウム4.5
〜10atm%、モリブデンが0〜7atm%である場
合が活性が高いことは図5と図6に示す。
The catalyst of the present invention has a reaction temperature of 350 to 400.
Not only highly active at 80 ° C, but also at 180 ° C
It is highly active even in the low temperature range of ~ 250 ° C. Further, the chemical composition of the denitration catalyst of the present invention is titanium 76 to 94.5 at.
m%, tungsten 1 to 7 atm%, vanadium 4.5
It is shown in FIGS. 5 and 6 that the activity is high when the content of molybdenum is 0 to 7 atm% and the content of molybdenum is 0 to 7 atm%.

【0024】[0024]

【発明の実施の形態】次に、本発明についての実施の形
態を詳しく説明する。図1は、本発明の実施の形態の脱
硝触媒の調製フローであり、図1(a)はTi/W/V
系、図1(b)はTi/W/V/Mo系の脱硝触媒の調
製フローである。
Next, embodiments of the present invention will be described in detail. FIG. 1 is a preparation flow of a denitration catalyst according to an embodiment of the present invention, and FIG. 1 (a) shows a Ti / W / V
FIG. 1 (b) is a flow chart for preparing a Ti / W / V / Mo-based denitration catalyst.

【0025】触媒担体となる酸化チタン(TiO2
は、その所定量が混練機に移し入れられ、所定量のタン
グステン化合物、水とともに加熱混練された後、造粒さ
れる。体を造粒更に乾燥した後、200〜400℃また
は400〜700℃の所定の温度で熱処理(予備焼成)
し、ハンマーミルを用いて粉砕されて原料となる。次に
図示したように、この粉砕物に所定量のバナジウム化
合物(図1(a))またはバナジウム化合物とモリブ
デン化合物(図1(b))を添加し、必要に応じて各種
添加物とともに混練し、触媒ペーストを調製する。な
お、添加剤としては、強化剤、溶解促進剤、増粘剤など
を使用することができる。
Titanium oxide (TiO 2 ) serving as a catalyst carrier
A predetermined amount is transferred to a kneader, and heated and kneaded with a predetermined amount of a tungsten compound and water, and then granulated. After granulating and drying the body, heat treatment (preliminary firing) at a predetermined temperature of 200 to 400 ° C or 400 to 700 ° C
Then, the raw material is pulverized using a hammer mill. Next, as shown, a predetermined amount of a vanadium compound (FIG. 1 (a)) or a vanadium compound and a molybdenum compound (FIG. 1 (b)) are added to the pulverized material, and kneaded with various additives as necessary. , To prepare a catalyst paste. In addition, as an additive, a strengthening agent, a dissolution promoter, a thickener, and the like can be used.

【0026】触媒ペーストは所定の金型を取り付けた押
し出し成形機に供給され、ハニカム状に成形される。ハ
ニカム成形体は、乾燥後、450〜700℃の度で焼
成され、これにより脱硝触媒が得られる。次に所定のユ
ニットに組み込まれて使用される。
The catalyst paste is supplied to an extruder equipped with a predetermined mold, and is formed into a honeycomb shape. The honeycomb molded body is dried, calcined at temperature of 450-700 ° C., thereby denitration catalyst is obtained. Next, it is used by being incorporated into a predetermined unit.

【0027】なお、本発明の方法は、高活性な触媒およ
び触媒を製造する方法を提供するものであって、活性成
分原料の形態、触媒の形状によって特に制限を受けるも
のではない。
The method of the present invention provides a highly active catalyst and a method for producing the catalyst, and is not particularly limited by the form of the active ingredient raw material and the shape of the catalyst.

【0028】本発明の方法の効果が発現する限りにおい
て、活性成分としてはW、V、Moに限定されるもので
はなく、Mn、Fe、Cr、Ni、Nb、Si、Alな
どを触媒ペースト調製時に添加することができる。ま
た、バナジウム(V)の添加量は4.5〜10%(原子
比)とした場合に高活性な触媒が得られる。V量がこの
範囲以下の値になると触媒活性成分量として不足し、一
方、過剰に添加された場合には焼成時に焼結が促進され
ることによって活性が低下する。タングステン(W)の
添加量は1〜7%、望ましくは2〜5%(原子比)とし
た場合に高活性な触媒が得られる。W量がこの範囲以下
の値になると触媒活性成分量として不足するだけでな
く、強度低下および細孔容積の低下が起こり、一方、過
剰に添加された場合には触媒自身の重量が重くなり、経
済性に欠ける。
As long as the effects of the method of the present invention are exhibited, the active ingredients are not limited to W, V, and Mo, and Mn, Fe, Cr, Ni, Nb, Si, Al, etc. may be used to prepare a catalyst paste. Sometimes can be added. When the amount of vanadium (V) is 4.5 to 10% (atomic ratio), a highly active catalyst can be obtained. When the amount of V falls below this range, the amount of the catalytically active component becomes insufficient. On the other hand, when the amount of V is excessively increased, sintering is promoted at the time of firing, whereby the activity decreases. When the added amount of tungsten (W) is 1 to 7%, preferably 2 to 5% (atomic ratio), a highly active catalyst can be obtained. When the amount of W falls below this range, not only does the amount of the catalytically active component become insufficient, but also the strength and the pore volume decrease.On the other hand, when added in excess, the weight of the catalyst itself increases, Lack of economy.

【0029】[0029]

【実施例】【Example】

実施例1 硫酸法によって製造した酸化チタン粉末(SO4含有量
1.4wt%、平均粒径1.2μm、BET比表面積3
40m2/g)5000gと、メタタングステン酸アン
モニウム(液状)557kgと水6500gを混合し、
60分間加熱混練して水分量44%のペーストを得た。
このペーストを押出造粒した後、温度150℃で20時
間乾燥した。更に乾燥した顆粒を温度200、300、
400℃でそれぞれ1時間熱処理した後、ハンマーミル
で粉砕した。この原料3280gにV化合物(メタバナ
ジン酸アンモニウム)321g、ガラスチョップ(軟化
温度1100℃)525g、メチルセルロース105g
および水1642gを加えて30分間混練し、Ti/W
/V原子比が90/3/7の触媒ペーストを調製した。
この触媒ペーストを用い、セルピッチ5mm、リブ厚さ
0.5mmのハニカム(開口率81%)を押出し成形し
た。このハニカム成形体を温度85℃、湿度70%の恒
温恒湿器を用いて乾燥し、次いで温度500℃で2時間
焼成してハニカム触媒を得た。
Example 1 A titanium oxide powder produced by a sulfuric acid method (SO 4 content: 1.4 wt%, average particle size: 1.2 μm, BET specific surface area: 3)
40 m 2 / g) 5000 g, 557 kg of ammonium metatungstate (liquid) and 6500 g of water are mixed,
The mixture was heated and kneaded for 60 minutes to obtain a paste having a water content of 44%.
This paste was extruded and granulated, and then dried at a temperature of 150 ° C. for 20 hours. The dried granules are further dried at a temperature of 200, 300,
After each heat treatment at 400 ° C. for 1 hour, it was pulverized by a hammer mill. To 3280 g of this raw material, 321 g of a V compound (ammonium metavanadate), 525 g of glass chop (softening temperature: 1100 ° C.), and 105 g of methylcellulose
And 1642 g of water were added and kneaded for 30 minutes.
A catalyst paste having a / V atomic ratio of 90/3/7 was prepared.
Using this catalyst paste, a honeycomb (opening ratio: 81%) having a cell pitch of 5 mm and a rib thickness of 0.5 mm was extruded. This honeycomb formed body was dried using a thermo-hygrostat at a temperature of 85 ° C. and a humidity of 70%, and then fired at a temperature of 500 ° C. for 2 hours to obtain a honeycomb catalyst.

【0030】得られた触媒の細孔は、0.01〜0.0
6μmの範囲の孔径を有する細孔群が占める細孔容積が
全細孔容積の25〜30%であり、0.1〜0.3μm
の範囲の孔径を有する細孔群が占める細孔容積が全細孔
容積の60〜80%であり、全細孔容積はそれぞれ0.
39、0.39および0.34(ml/g)であった。
300℃で1時間熱処理した後ハンマーミルで粉砕した
原料を用いた触媒の細孔分布を図7(300℃熱処理温
度)を示した。
The pore size of the obtained catalyst is 0.01 to 0.0
The pore volume occupied by pore groups having a pore diameter in the range of 6 μm is 25 to 30% of the total pore volume, and 0.1 to 0.3 μm
The pore volume occupied by a group of pores having a pore size in the range of 60 to 80% of the total pore volume is 0.6 to 80%, and the total pore volume is 0.1% each.
39, 0.39 and 0.34 (ml / g).
FIG. 7 (heat treatment temperature at 300 ° C.) shows the pore distribution of the catalyst using the raw material that was heat-treated at 300 ° C. for 1 hour and then pulverized by a hammer mill.

【0031】なお、本発明の触媒の細孔分布は水銀圧入
式ポロシメータにより測定した。得られた触媒の脱硝活
性を、次の条件 供給ガス:NO 200ppm、 NH3 240ppm、 O2 10%、 CO2 6%、 H2O 6% N2 残り 温度:200℃および350℃ 面積基準ガス流量AV:51m/h(=m3/h/m2) で測定したところ、触媒の脱硝活性(反応速度定数比)
は、それぞれ0.98、1.00(基準)および0.9
5であった。この触媒の成形方向(断面方向)の圧壊強
度を測定したところ、それぞれ22、30および39
(kg/cm2)であった。
The pore distribution of the catalyst of the present invention was measured by a mercury intrusion porosimeter. The denitration activity of the obtained catalyst was measured under the following conditions: supply gas: 200 ppm of NO, 240 ppm of NH 3 , 10% of O 2 , 6% of CO 2, 6% of H 2 O N 2 remaining temperature: 200 ° C. and 350 ° C. Area reference gas When measured at a flow rate AV of 51 m / h (= m 3 / h / m 2 ), the denitration activity of the catalyst (reaction rate constant ratio)
Are 0.98, 1.00 (reference) and 0.9, respectively.
It was 5. When the crushing strength of this catalyst in the forming direction (cross-sectional direction) was measured, the crushing strength was 22, 30, and 39, respectively.
(Kg / cm 2 ).

【0032】実施例2 実施例1におけるTi/W/V原子比を換えて、実施例
1と同一原料と同一手順による実験を行った。Ti/W
/V原子比が91/2/7、88/5/7、92.5/
3/4.5、87/3/10の触媒ペーストを調製し
た。なお、Wは全量加熱混練時に添加した。以後、実施
例1と同一の方法によってハニカム触媒を調製し、また
細孔容積、細孔分布、脱硝活性および強度を実施例1と
同様に測定した。その結果を表1に示す。
Example 2 An experiment was carried out by changing the Ti / W / V atomic ratio in Example 1 and using the same raw materials and the same procedure as in Example 1. Ti / W
/ V atomic ratio is 91/2/7, 88/5/7, 92.5 /
Catalyst pastes of 3 / 4.5 and 87/3/10 were prepared. In addition, W was added at the time of heat kneading. Thereafter, a honeycomb catalyst was prepared in the same manner as in Example 1, and the pore volume, pore distribution, denitration activity and strength were measured in the same manner as in Example 1. Table 1 shows the results.

【0033】実施例3 実施例1におけるTi/W/V原子比を換え、さらにM
o成分を混合して、実施例1と同一原料と同一手順によ
る実験を行った。Ti/W/V/Mo原子比が89/3
/7/1または83/3/7/7の触媒ペーストを調製
した。なお、Wは全量加熱混練時に添加した。なお、こ
こでMo成分の原料にはモリブデン酸アンモニウムを用
いた。以後、実施例1と同一の方法によってハニカム触
媒を調製し、また細孔容積、細孔分布、脱硝活性および
強度を実施例1と同様に測定した。その結果を表1に示
す。
Example 3 The atomic ratio of Ti / W / V in Example 1 was changed.
An experiment was conducted by mixing the o component and using the same raw materials and the same procedure as in Example 1. The atomic ratio of Ti / W / V / Mo is 89/3
/ 7/1 or 83/3/7/7 catalyst pastes were prepared. In addition, W was added at the time of heat kneading. Here, ammonium molybdate was used as a raw material of the Mo component. Thereafter, a honeycomb catalyst was prepared in the same manner as in Example 1, and the pore volume, pore distribution, denitration activity and strength were measured in the same manner as in Example 1. Table 1 shows the results.

【0034】実施例4 実施例1における熱処理温度を500℃に換えて、実施
例1と類似の実験を行った。ハンマーミルで粉砕した原
料3280gにV化合物(メタバナジン酸アンモニウ
ム)321g、ガラスチョップ(軟化温度1100℃)
525g、メチルセルロース105g、水1642gお
よび細孔増加添加剤として平均粒径1〜10μmの結晶
セルロース粉末をハンマーミルで粉砕した原料に対し7
wt%加えて30分間混練した。Ti/W/V原子比が
90/3/7の触媒ペーストを調製した。以後、実施例
1と同一の方法によってハニカム触媒を調製し、また細
孔容積、細孔分布、脱硝活性および強度を実施例1と同
様に測定した。
Example 4 An experiment similar to that of Example 1 was performed by changing the heat treatment temperature in Example 1 to 500 ° C. 321 g of a V compound (ammonium metavanadate) was added to 3280 g of a raw material pulverized by a hammer mill, and a glass chop (softening temperature: 1100 ° C.)
525 g, 105 g of methylcellulose, 1642 g of water and 7% of a raw material obtained by pulverizing a crystalline cellulose powder having an average particle diameter of 1 to 10 μm as a pore increasing additive with a hammer mill.
wt% was added and kneaded for 30 minutes. A catalyst paste having a Ti / W / V atomic ratio of 90/3/7 was prepared. Thereafter, a honeycomb catalyst was prepared in the same manner as in Example 1, and the pore volume, pore distribution, denitration activity and strength were measured in the same manner as in Example 1.

【0035】その結果を表1に示す。この触媒の細孔分
布は実施例1の300℃熱処理原料を用いた触媒の細孔
分布と同様であった。
Table 1 shows the results. The pore distribution of this catalyst was similar to the pore distribution of the catalyst using the heat-treated material at 300 ° C. in Example 1.

【表1】 [Table 1]

【0036】比較例1 実施例1と同じ乾燥顆粒(加熱混練、増粒、150℃で
1時間乾燥した顆粒)をそのままハンマーミルで粉砕し
た。また同様に温度500℃で1時間熱処理した後ハン
マーミルで粉砕した。この原料3280gにV化合物
(メタバナジン酸アンモニウム)321g、ガラスチョ
ップ(軟化温度1100℃)525g、メチルセルロー
ス105gおよび水1642gを加えて30分間混練
し、Ti/W/V原子比が90/3/7の触媒ペースト
を調製した。以下実施例1と同様にハニカム触媒を調製
し、また細孔容積、細孔分布、脱硝活性および強度を実
施例1と同様に測定した。その結果を表2に示す。比較
例1の150℃熱処理原料を用いた触媒の細孔分布は図
8に示し、500℃熱処理原料を用いた触媒の細孔分布
は図10に示す。
Comparative Example 1 The same dry granules as in Example 1 (granules heated and kneaded, increased in particle size, and dried at 150 ° C. for 1 hour) were pulverized as they were with a hammer mill. Similarly, after a heat treatment at a temperature of 500 ° C. for 1 hour, the mixture was ground with a hammer mill. To 3280 g of this raw material, 321 g of a V compound (ammonium metavanadate), 525 g of glass chop (softening temperature: 1100 ° C.), 105 g of methylcellulose and 1642 g of water were added and kneaded for 30 minutes, and the Ti / W / V atomic ratio was 90/3/7. A catalyst paste was prepared. Thereafter, a honeycomb catalyst was prepared in the same manner as in Example 1, and the pore volume, the pore distribution, the denitration activity and the strength were measured in the same manner as in Example 1. Table 2 shows the results. FIG. 8 shows the pore distribution of the catalyst using the 150 ° C. heat treatment raw material of Comparative Example 1, and FIG. 10 shows the pore distribution of the catalyst using the 500 ° C. heat treatment raw material.

【0037】比較例2 実施例1と同じ硫酸法によって製造した酸化チタン粉末
およびこの原料を500℃で熱処理したものを用いて、
V化合物(メタバナジン酸アンモニウム)321g、W
化合物(メタタングステン酸アンモニウム)313g、
ガラスチョップ(軟化温度1100℃)525g、メチ
ルセルロース105gおよび水1642gを加えて30
分間混練し、Ti/W/V原子比が90/3/7の触媒
ペーストを調製した。以下、実施例1と同じ方法で得ら
れた触媒の細孔容積、細孔分布、脱硝活性および強度を
実施例1と同様に測定した。その結果を表2に示す。
Comparative Example 2 Using titanium oxide powder produced by the same sulfuric acid method as in Example 1 and a material obtained by heat-treating this raw material at 500 ° C.,
V compound (ammonium metavanadate) 321 g, W
313 g of a compound (ammonium metatungstate),
Add 525 g of glass chop (softening temperature: 1100 ° C.), 105 g of methylcellulose and 1642 g of water and add 30
After kneading for a minute, a catalyst paste having a Ti / W / V atomic ratio of 90/3/7 was prepared. Hereinafter, the pore volume, pore distribution, denitration activity and strength of the catalyst obtained by the same method as in Example 1 were measured in the same manner as in Example 1. Table 2 shows the results.

【0038】細孔分布は硫酸法によって製造した酸化チ
タン粉末を用いた触媒は、比較例1の150℃熱処理原
料を用いた触媒の細孔分布(図8参照)と同様であっ
た。また、硫酸法によって製造した酸化チタン粉末を5
00℃で熱処理したものを用いた触媒は、比較例1の5
00℃熱処理原料を用いた触媒の細孔分布(図9参照)
と同様であった。
The pore distribution of the catalyst using the titanium oxide powder produced by the sulfuric acid method was similar to the pore distribution of the catalyst using the 150 ° C. heat treatment raw material of Comparative Example 1 (see FIG. 8). In addition, titanium oxide powder produced by the sulfuric acid method
The catalyst using the one heat-treated at 00 ° C.
Pore distribution of catalyst using raw material at 00 ° C heat treatment (see Fig. 9)
Was similar to

【0039】比較例3 実施例1と異なる種類の硫酸法によって製造した酸化チ
タン粉末(150℃乾燥品)を用いて実施例1と同様の
実験を行った。この原料2835gのV化合物(メタバ
ナジン酸アンモニウム)321g、W化合物(メタタン
グステン酸アンモニウム)313g、ガラスチョップ
(軟化温度1100℃)525g、メチルセルロース1
05gおよび水1642gを加えてそれぞれ30、6
0、90分間混練し、Ti/W/V原子比が90/3/
7の触媒ペーストを調製した。得られた触媒の細孔容
積、細孔分布(図10)、脱硝活性および強度を実施例
1と同様に測定した。その結果を表2に示す。
Comparative Example 3 An experiment similar to that of Example 1 was performed using a titanium oxide powder (150 ° C. dried product) manufactured by a different type of sulfuric acid method from that of Example 1. 321 g of V compound (ammonium metavanadate), 313 g of W compound (ammonium metatungstate), 525 g of glass chop (softening temperature 1100 ° C.), methyl cellulose 1
05 g and 1642 g of water were added to add
Kneading for 0, 90 minutes, the Ti / W / V atomic ratio is 90/3 /
Catalyst paste No. 7 was prepared. The pore volume, pore distribution (FIG. 10), denitration activity and strength of the obtained catalyst were measured in the same manner as in Example 1. Table 2 shows the results.

【0040】比較例4 実施例1におけるTi/W/V原子比を換えて実施例1
と類似の実験を行った。Ti/W/V原子比が92.2
/0.8/7、85/8/7、93/3/4、86/3
/11を調製した。なお、Wは全量加熱混練時に添加し
た。以後実施例1と同一の方法によってハニカム触媒を
調製し、得られた触媒の細孔容積、細孔分布、脱硝活性
および強度を実施例1と同様に測定した。その結果を表
2に示す。
Comparative Example 4 Example 1 was changed by changing the atomic ratio of Ti / W / V in Example 1.
A similar experiment was performed. Ti / W / V atomic ratio of 92.2
/0.8/7, 85/8/7, 93/3/4, 86/3
/ 11 was prepared. In addition, W was added at the time of heat kneading. Thereafter, a honeycomb catalyst was prepared by the same method as in Example 1, and the pore volume, pore distribution, denitration activity and strength of the obtained catalyst were measured in the same manner as in Example 1. Table 2 shows the results.

【0041】比較例5 実施例1におけるTi/W/Vの他にMo成分を加え、
その原子比が82/3/7/8である触媒ペーストを調
製した。なお、Wは全量加熱混練時に添加した。ここで
Mo成分の原料にはモリブデン酸アンモニウムを用い
た。以後実施例1と同一の方法によってハニカム触媒を
調製し、得られた触媒の細孔容積、細孔分布、脱硝活性
および強度を実施例1と同様に測定した。その結果を表
2に示す。
Comparative Example 5 In addition to Ti / W / V in Example 1, a Mo component was added.
A catalyst paste having an atomic ratio of 82/3/7/8 was prepared. In addition, W was added at the time of heat kneading. Here, ammonium molybdate was used as a raw material of the Mo component. Thereafter, a honeycomb catalyst was prepared by the same method as in Example 1, and the pore volume, pore distribution, denitration activity and strength of the obtained catalyst were measured in the same manner as in Example 1. Table 2 shows the results.

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【発明の効果】本発明によれば、高活性な排煙脱硝触媒
を製造することができ、したがって従来品よりも少ない
量の触媒を使用することによって同一の脱硝性能を達成
することができる。
According to the present invention, a highly active flue gas denitration catalyst can be manufactured, and therefore, the same denitration performance can be achieved by using a smaller amount of catalyst than conventional products.

【0044】本発明の方法では基本的にはチタニアにタ
ングステン化合物が結合して強い凝集粒となった原料を
用いて触媒を調製するため、多量のバナジウムを添加し
た触媒を焼成する場合のように焼結による活性低下とい
う問題は起こらない。また、前述のように強度が高いた
め、ハンドリングおよびユニット組み工程における触媒
へのクラックの発生、処理工程の複雑化などといった問
題を回避することができる。
In the method of the present invention, since a catalyst is basically prepared using a raw material in which a tungsten compound is bonded to titania to form strong agglomerated particles, a catalyst containing a large amount of vanadium is calcined. The problem of activity reduction due to sintering does not occur. Further, since the strength is high as described above, it is possible to avoid problems such as generation of cracks in the catalyst in the handling and unit assembling steps, and complicated processing steps.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の方法となる脱硝触媒の製造方法のフ
ローを示したものである。
FIG. 1 shows a flow of a method for producing a denitration catalyst according to the present invention.

【図2】 本発明の方法で得られる脱硝触媒の細孔径の
大きさと触媒活性、強度との関係図である。
FIG. 2 is a graph showing the relationship between the size of the pore diameter of the denitration catalyst obtained by the method of the present invention and the catalytic activity and strength.

【図3】 本発明の方法で得られる細孔容積が0.33
(ml/g)である脱硝触媒のハニカム成形時の縦圧壊
強度とユニット組時の破損率との関係図である。
FIG. 3 shows a pore volume of 0.33 obtained by the method of the present invention.
FIG. 4 is a graph showing the relationship between the vertical crushing strength of a denitration catalyst, which is (ml / g), at the time of honeycomb forming and the breakage rate at the time of unit assembly.

【図4】 本発明の方法で得られる脱硝触媒の細孔容積
と触媒活性、圧壊強度の関係図である。
FIG. 4 is a diagram showing the relationship between the pore volume, catalytic activity, and crushing strength of the denitration catalyst obtained by the method of the present invention.

【図5】 本発明の方法で得られる脱硝触媒の成分比率
と触媒活性の関係図である。
FIG. 5 is a diagram showing the relationship between the component ratio of the denitration catalyst obtained by the method of the present invention and the catalytic activity.

【図6】 本発明の方法で得られる脱硝触媒の成分比率
と触媒活性の関係図である。
FIG. 6 is a diagram showing the relationship between the component ratio of the denitration catalyst obtained by the method of the present invention and the catalytic activity.

【図7】 本発明の実施例1の300℃熱処理した原料
を用いて調製した脱硝触媒の細孔分布を示したものであ
る。
FIG. 7 shows a pore distribution of a denitration catalyst prepared using the raw material heat-treated at 300 ° C. in Example 1 of the present invention.

【図8】 比較例1の150℃熱処理した原料を用いて
調製した脱硝触媒の細孔分布を示した。
FIG. 8 shows the pore distribution of the denitration catalyst prepared using the raw material heat-treated at 150 ° C. in Comparative Example 1.

【図9】 比較例1の500℃熱処理した原料を用いて
調製した脱硝触媒の細孔分布を示した。
FIG. 9 shows the pore distribution of a denitration catalyst prepared using the raw material heat-treated at 500 ° C. in Comparative Example 1.

【図10】 比較例3の脱硝触媒を細孔分布に示した。FIG. 10 shows a pore distribution of the denitration catalyst of Comparative Example 3.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B01D 53/36 102G (72)発明者 溝口 忠昭 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 6 Identification symbol FI B01D 53/36 102G (72) Inventor Tadaaki Mizoguchi 3-36 Takaracho, Kure-shi, Hiroshima Babcock-Hitachi, Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 排ガス中の窒素酸化物をアンモニアによ
り還元処理する触媒であって、(a)チタン、バナジウ
ム及びタングステンから成る金属成分または(b)チタ
ン、バナジウム、タングステン及びモリブデンから成る
金属成分を含有する化合物群を混合して熱処理した原料
を用いて調製した排ガス脱硝用触媒であって、0.01
〜0.05μmの範囲の孔径を有する細孔群が占める細
孔容積が全細孔容積の30〜45%であり、0.05〜
0.3μmの範囲の孔径を有する細孔群が占める細孔容
積が全細孔容積の50〜70%であり、0.3μm以上
の範囲の孔径を有する細孔が占める細孔容積が全細孔容
積の0〜5%であり、開口率70%以上のハニカム成形
時の縦圧壊強度が15kg/cm2以上であることを特
徴とする排煙脱硝触媒。
1. A catalyst for reducing nitrogen oxides in exhaust gas with ammonia, comprising: (a) a metal component comprising titanium, vanadium and tungsten or (b) a metal component comprising titanium, vanadium, tungsten and molybdenum. An exhaust gas denitration catalyst prepared using a raw material that has been mixed and heat-treated with a compound group containing
The pore volume occupied by pore groups having pore diameters in the range of from 0.05 to 0.05 μm is from 30 to 45% of the total pore volume;
The pore volume occupied by the pore group having a pore size in the range of 0.3 μm is 50 to 70% of the total pore volume, and the pore volume occupied by the pores having the pore size in the range of 0.3 μm or more is very fine. A flue gas denitration catalyst, which has a pore volume of 0 to 5% and a vertical crushing strength of 15 kg / cm 2 or more when forming a honeycomb having an opening ratio of 70% or more.
【請求項2】 化学組成がチタン76〜94.5atm
%、タングステン1〜7atm%、バナジウム4.5〜
10atm%、モリブデンが0〜7atm%であること
を特徴とする請求項1記載の排煙脱硝触媒。
2. The chemical composition of titanium is 76 to 94.5 atm.
%, Tungsten 1-7 atm%, vanadium 4.5-
The flue gas denitration catalyst according to claim 1, wherein 10 atm% and molybdenum are 0 to 7 atm%.
【請求項3】 請求項2の排煙脱硝触媒のチタニアと、
タングステン化合物の一部または全部を混合した後、温
度200〜400℃で熱処理して粉砕した粉末に(a)
バナジウム化合物、(b)バナジウム化合物及びタング
ステン化合物の混合物または(c)バナジウム化合物、
タングステン化合物及びモリブデン化合物の混合物を加
えて得られる調合物を調製し、この調合物を可塑化して
ハニカム形状または板状に成形し、この成形体を乾燥し
た後、この乾燥体を焼成し、最終製品の細孔容積が0.
33ml/g以上である排煙脱硝触媒を得ることを特徴
とする排煙脱硝触媒の製造方法。
3. The flue gas denitration catalyst according to claim 2, comprising titania;
After a part or all of the tungsten compound is mixed, the mixture is heat-treated at a temperature of 200 to 400 ° C. to pulverized powder (a)
A vanadium compound, (b) a mixture of a vanadium compound and a tungsten compound or (c) a vanadium compound,
A mixture obtained by adding a mixture of a tungsten compound and a molybdenum compound is prepared, and the mixture is plasticized and formed into a honeycomb shape or a plate shape, and the formed body is dried. The pore volume of the product is 0.
A method for producing a flue gas denitration catalyst, which comprises obtaining a flue gas denitration catalyst of 33 ml / g or more.
【請求項4】 請求項2の排煙脱硝触媒のチタニアと、
タングステン化合物の一部または全部を混合した後、温
度400〜700℃で熱処理して粉砕した粉末に(a)
バナジウム化合物、(b)バナジウム化合物及びタング
ステン化合物の混合物または(c)バナジウム化合物、
タングステン化合物及びモリブデン化合物の混合物を加
えて得られる調合物を調製し、この調合物と平均粒径1
〜100μmの添加物とよりなる混合物を調製し、さら
に得られた調合物を可塑化してハニカム形状または板状
に成形し、この成形体を乾燥した後、乾燥体を焼成し、
最終製品の細孔容積が0.33ml/g以上であること
を特徴とする排煙脱硝触媒の製造方法。
4. The flue gas denitration catalyst according to claim 2, wherein the titania comprises:
After mixing part or all of the tungsten compound, heat-treated at a temperature of 400 to 700 ° C. to pulverized powder (a)
A vanadium compound, (b) a mixture of a vanadium compound and a tungsten compound or (c) a vanadium compound,
A mixture obtained by adding a mixture of a tungsten compound and a molybdenum compound is prepared.
混合 100 μm of a mixture consisting of an additive, and further, the obtained mixture is plasticized and formed into a honeycomb shape or a plate shape. After drying the formed body, the dried body is fired,
A method for producing a flue gas denitration catalyst, wherein the pore volume of the final product is 0.33 ml / g or more.
JP9134975A 1997-05-26 1997-05-26 Catalyst for denitration of flue gas and its production Pending JPH10323570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9134975A JPH10323570A (en) 1997-05-26 1997-05-26 Catalyst for denitration of flue gas and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9134975A JPH10323570A (en) 1997-05-26 1997-05-26 Catalyst for denitration of flue gas and its production

Publications (1)

Publication Number Publication Date
JPH10323570A true JPH10323570A (en) 1998-12-08

Family

ID=15140992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9134975A Pending JPH10323570A (en) 1997-05-26 1997-05-26 Catalyst for denitration of flue gas and its production

Country Status (1)

Country Link
JP (1) JPH10323570A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003311151A (en) * 2002-04-19 2003-11-05 Ishikawajima Harima Heavy Ind Co Ltd Titania catalyst carrier
JP2004000943A (en) * 2002-04-18 2004-01-08 Catalysts & Chem Ind Co Ltd Titanium dioxide powder for honeycomb exhaust gas treatment catalyst and honeycomb exhaust gas treatment catalyst using the titanium dioxide powder
US6855304B2 (en) 1999-06-25 2005-02-15 Nippon Shokubai Co., Ltd. Catalyst and process for removing organohalogen compounds
JP2005125212A (en) * 2003-10-22 2005-05-19 Nippon Shokubai Co Ltd Exhaust gas treatment method
JP2014062012A (en) * 2012-09-21 2014-04-10 Nippon Shokubai Co Ltd Oxide of titanium/tungsten, denitration catalyst obtained by using the oxide, method for preparing the oxide, and denitration method
JP2014525833A (en) * 2011-08-03 2014-10-02 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Extruded honeycomb catalyst
WO2015119015A1 (en) 2014-02-05 2015-08-13 イビデン株式会社 Honeycomb catalyst and process for producing honeycomb catalyst
WO2015126025A1 (en) * 2014-02-18 2015-08-27 한국생산기술연구원 Scr catalyst comprising vanadium and tungsten supported on carbon material and method for preparing same
CN104888805A (en) * 2015-05-07 2015-09-09 浙江海亮环境材料有限公司 Mixing process for SCR honeycomb denitration catalyst
JP2015530921A (en) * 2012-08-17 2015-10-29 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Publiclimited Company V / TiW catalyst activated by zeolite
WO2017170425A1 (en) * 2016-03-31 2017-10-05 イビデン 株式会社 Honeycomb catalyst and manufacturing method for honeycomb catalyst
JP2018094520A (en) * 2016-12-15 2018-06-21 三菱日立パワーシステムズ株式会社 CATALYST AND METHOD FOR REMOVING NOx FROM COMBUSTION EXHAUST GAS

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6855304B2 (en) 1999-06-25 2005-02-15 Nippon Shokubai Co., Ltd. Catalyst and process for removing organohalogen compounds
JP2004000943A (en) * 2002-04-18 2004-01-08 Catalysts & Chem Ind Co Ltd Titanium dioxide powder for honeycomb exhaust gas treatment catalyst and honeycomb exhaust gas treatment catalyst using the titanium dioxide powder
JP2003311151A (en) * 2002-04-19 2003-11-05 Ishikawajima Harima Heavy Ind Co Ltd Titania catalyst carrier
JP2005125212A (en) * 2003-10-22 2005-05-19 Nippon Shokubai Co Ltd Exhaust gas treatment method
JP2014525833A (en) * 2011-08-03 2014-10-02 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Extruded honeycomb catalyst
JP2015530921A (en) * 2012-08-17 2015-10-29 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Publiclimited Company V / TiW catalyst activated by zeolite
JP2014062012A (en) * 2012-09-21 2014-04-10 Nippon Shokubai Co Ltd Oxide of titanium/tungsten, denitration catalyst obtained by using the oxide, method for preparing the oxide, and denitration method
WO2015119015A1 (en) 2014-02-05 2015-08-13 イビデン株式会社 Honeycomb catalyst and process for producing honeycomb catalyst
US9789468B2 (en) 2014-02-18 2017-10-17 Korea Institute Of Industrial Technology SCR catalyst containing carbon material loaded with vanadium and tungsten and method of preparing same
WO2015126025A1 (en) * 2014-02-18 2015-08-27 한국생산기술연구원 Scr catalyst comprising vanadium and tungsten supported on carbon material and method for preparing same
CN104888805A (en) * 2015-05-07 2015-09-09 浙江海亮环境材料有限公司 Mixing process for SCR honeycomb denitration catalyst
WO2017170425A1 (en) * 2016-03-31 2017-10-05 イビデン 株式会社 Honeycomb catalyst and manufacturing method for honeycomb catalyst
JP2017177075A (en) * 2016-03-31 2017-10-05 イビデン株式会社 Honeycomb catalyst, and method for producing honeycomb catalyst
JP2018094520A (en) * 2016-12-15 2018-06-21 三菱日立パワーシステムズ株式会社 CATALYST AND METHOD FOR REMOVING NOx FROM COMBUSTION EXHAUST GAS
WO2018110604A1 (en) * 2016-12-15 2018-06-21 三菱日立パワーシステムズ株式会社 CATALYST AND METHOD FOR REMOVING NOx FROM COMBUSTION EXHAUST GAS
CN110087770A (en) * 2016-12-15 2019-08-02 三菱日立电力***株式会社 For removing the Catalyst And Method of NOx from burning waste gas
EP3556465A4 (en) * 2016-12-15 2020-08-19 Mitsubishi Hitachi Power Systems, Ltd. CATALYST AND METHOD FOR REMOVING NOx FROM COMBUSTION EXHAUST GAS
US11376566B2 (en) 2016-12-15 2022-07-05 Mitsubishi Heavy Industries, Ltd. Catalyst and method for removing NOX from combustion exhaust gas

Similar Documents

Publication Publication Date Title
KR100370460B1 (en) DeNOx CATALYST FOR REDUCING THE NOx CONCENTRATION IN A STREAM OF FLUID, AND METHOD OF MANUFACTURING THE CATALYST
EP0376025A1 (en) Process for the reduction of nitrogen oxides in exhaust gases
JPH10323570A (en) Catalyst for denitration of flue gas and its production
EP0552715B1 (en) A NOx removal catalyst containing an inorganic fiber
KR101308496B1 (en) Methods of manufacturing a honeycomb catalyst
CN106268786A (en) A kind of low-temperature denitration catalyst and preparation method thereof
KR101464994B1 (en) Catalyst support for Preparing a Catalyst for Removal of Nitrogen Oxides and method for Preparing thereof
JP2005144299A (en) Nitrogen oxide removal catalyst and nitrogen oxide removal method
EP1112772A1 (en) Process for disposing of exhaust gases
JP2006223959A (en) Method of producing exhaust gas denitrification catalyst
EP1192991A2 (en) A method for preparing a catalyst for selective catalytic reduction of nitrogen oxides
JP3337634B2 (en) Denitration catalyst, its preparation method, and denitration method
CN108311134A (en) Diesel vehicle/steamer tail gas SCR denitration titanium tungsten silicon composite powder and preparation method
CN112191267A (en) Honeycomb catalyst for removing dioxin in flue gas through catalytic oxidation and preparation method thereof
CN107233905B (en) High-specific surface area denitrating catalyst carrier
WO2002034388A1 (en) Exhaust gas purifying catalyst compound, catalyst comprising said compound and method for preparing the compound
JPH05244A (en) Catalyst for removing nitrogen oxide
JPH07163876A (en) Ammonia reducing catalyst of nitrogen oxide exhaust gas and production thereof
JP3270084B2 (en) Catalyst for removing nitrogen oxides and method for producing the same
JP2002361092A (en) Catalyst slurry for denitrating exhaust gas, denitration catalyst and method of producing them
JPH09220468A (en) Catalyst for removal of nox in exhaust gas, its production and method for removing nox in exhaust gas using same
JP3775815B2 (en) Nitrogen oxide removal method
CN107149941A (en) Utilize the low-temperature denitration catalyst and its manufacture method of the Chemoselective reduction for being catalyzed discarded object
JP2004290754A (en) Method for denitrificating exhaust gas of diesel engine
JP3076421B2 (en) DeNOx catalyst suppressing sulfur dioxide oxidation and method for producing the same