JPH10321959A - Manufacture of compound semiconductor - Google Patents

Manufacture of compound semiconductor

Info

Publication number
JPH10321959A
JPH10321959A JP12845497A JP12845497A JPH10321959A JP H10321959 A JPH10321959 A JP H10321959A JP 12845497 A JP12845497 A JP 12845497A JP 12845497 A JP12845497 A JP 12845497A JP H10321959 A JPH10321959 A JP H10321959A
Authority
JP
Japan
Prior art keywords
compound semiconductor
crystal
group
substrate
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12845497A
Other languages
Japanese (ja)
Other versions
JP4002323B2 (en
Inventor
Takeshi Obayashi
健 大林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP12845497A priority Critical patent/JP4002323B2/en
Publication of JPH10321959A publication Critical patent/JPH10321959A/en
Application granted granted Critical
Publication of JP4002323B2 publication Critical patent/JP4002323B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a uniform, high-quality GaInNAs crystal having a large N(nitrogen) composition. SOLUTION: This is a manufacturing method for a compound semiconductor for producing a laminated construction on a semiconductor substrate, containing at least one layer of a compound semiconductor crystal at least containing both Ga(gallium) and In(indium) as Group III elements and also containing at least N(nitrogen) and As(arsenic) as Group V elements, and the semiconductor substrate comprises a zincblende-type semiconductor crystal and the substrate has a surface which is sloped from (001) plane to a direction of (111) A plane.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、III族元素とし
て少なくともGaとInとを共に含み、V族元素として
少なくともNとAsとを共に含む化合物半導体の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a compound semiconductor containing at least Ga and In as Group III elements and at least N and As as Group V elements.

【0002】[0002]

【従来の技術】近年、オプトエレクトロニクス用材料と
してのIII−V族化合物半導体の利用分野を大きく広
げる新しい材料系として、V族元素としてN(窒素)と
As(砒素)とを共に含むIII−V族化合物混晶半導
体材料が提案され、注目されている。N組成の大きなA
lGaNxAs1-x(x=0.2)系混晶はSi基板に格
子整合する直接遷移型半導体材料となる可能性があるこ
とから光−電子集積回路用の光源材料として、また、N
組成の小さなGaInNyAs1-y(y=0.015〜
0.035)系混晶は光ファイバー通信に重要な波長
1.3μm,1.55μmに相当するバンドギャップを
もつ直接遷移型半導体材料をGaAs基板に格子整合し
て得られる可能性があり、これらは応用物理誌第65巻
1996年第2号148頁(参考文献1)に詳しい。
2. Description of the Related Art In recent years, as a new material system which greatly expands the field of use of III-V compound semiconductors as optoelectronic materials, III-V containing both N (nitrogen) and As (arsenic) as group V elements. Group compound mixed crystal semiconductor materials have been proposed and attracted attention. A with large N composition
Since an lGaN x As 1-x (x = 0.2) -based mixed crystal may be a direct transition type semiconductor material lattice-matched to a Si substrate, it may be used as a light source material for an opto-electronic integrated circuit.
GaInN y As 1-y having a small composition (y = 0.015 to
The 0.035) type mixed crystal may be obtained by lattice-matching a direct transition type semiconductor material having a band gap corresponding to wavelengths 1.3 μm and 1.55 μm, which are important for optical fiber communication, to a GaAs substrate. Applied Physics Journal, Vol. 65, 1996, No. 2, p. 148 (Reference 1).

【0003】特に後者においては、活性層に上記のGa
InNAs混晶を用い、かつクラッド層にAlGaAs
系あるいはGaInP系化合物半導体を用いることによ
り活性層とクラッド層との間に大きなバンドオフセット
がとれ、従来の同波長域の半導体レーザに比べて格段に
温度特性が向上した通信用半導体レーザが実現される材
料系であることが実証され、特に実用上注目に値する。
[0003] In the latter case, in particular, the above Ga is added to the active layer.
AlGaAs is used for the cladding layer using InNAs mixed crystal.
A large band offset can be taken between the active layer and the cladding layer by using a Ga-based or GaInP-based compound semiconductor, and a communication semiconductor laser with significantly improved temperature characteristics compared to a conventional semiconductor laser in the same wavelength region can be realized. It has been proved that it is a material system that can be used especially in practical use.

【0004】より具体的には、Electronics
Letters,1996年,第32巻,1585頁
(参考文献2)において、Ga0.75In0.250.005
0.995を単一量子井戸活性層の井戸層に用いた半導体
レーザが示され、77Kにおいて波長1.113μmで
のレーザ発振が報告されている。この従来例におけるG
aInNAsから成る層を含む活性層は、分子線エピタ
キシャル成長(Moleculer Beam Epi
taxy:MBE)法によって作製されており、N原料
としてラジカル励起されたN分子線が用いられている。
基板には、GaAs(001)面が用いられており、5
00℃の基板温度で結晶成長されている。
[0004] More specifically, Electronics
Letters, 1996, Vol. 32, p. 1585 (reference 2), Ga 0.75 In 0.25 N 0.005 A
A semiconductor laser using s 0.995 for the well layer of a single quantum well active layer is shown, and laser oscillation at 77K at a wavelength of 1.113 μm is reported. G in this conventional example
The active layer including the layer made of aInNAs is formed by molecular beam epitaxy (Molecular Beam Epi).
taxy: MBE), and a radical-excited N molecular beam is used as the N source.
A GaAs (001) plane is used for the substrate.
The crystal is grown at a substrate temperature of 00 ° C.

【0005】[0005]

【発明が解決しようとする課題】参考文献2に示された
上記の従来例は波長1.113μmでのレーザ発振であ
り、光ファイバー通信に重要な波長1.3μm,1.5
5μmでのレーザ発振には至っていない。波長1.3μ
m,1.55μmに相当するバンドギャップを有するG
aInNAs混晶をGaAsに格子整合して得るために
は、その組成を、波長1.3μmに対してはGa0.928
In0.0720.025As0.975、1.55μmに対しては
Ga0.904In0.0960.034As0.966とすればよい。す
なわち、参考文献2に示された従来例よりも、Nの組成
比を大きく(0.025以上)することになる。
The above conventional example shown in Reference 2 is a laser oscillation at a wavelength of 1.113 μm, which is important for optical fiber communication.
Laser oscillation at 5 μm has not been achieved. 1.3μ wavelength
m, G having a band gap corresponding to 1.55 μm
In order to obtain an aInNAs mixed crystal lattice-matched to GaAs, the composition must be Ga 0.928 for a wavelength of 1.3 μm.
For In 0.072 N 0.025 As 0.975 and 1.55 μm , Ga 0.904 In 0.096 N 0.034 As 0.966 may be used. That is, the composition ratio of N is set to be larger (0.025 or more) than the conventional example shown in Reference 2.

【0006】ところが、本願発明者らが鋭意実験を行っ
た結果、従来の方法で作製されるGaInNAs混晶に
おいては、NおよびInの組成を増すに連れてその結晶
性が大きく悪化し、波長1.3μmや1.55μmに相
当するバンドギャップをもつGaInNAs結晶は半導
体レーザの活性層として用いるのに十分な結晶性をもた
ないことがわかってきた。これはこの組成の結晶が、G
a−In−As−N四元混晶系における非混和領域(m
iscibility gap)内に相当する組成であ
ると見られ、非混和領域外のより安定な二元もしくは三
元混晶の種々の化合物の微小領域が結晶内に発生しやす
い傾向があり、多くの結晶欠陥が誘発されることによる
と考えられる。
However, as a result of intensive experiments conducted by the present inventors, in GaInNAs mixed crystals produced by the conventional method, the crystallinity greatly deteriorates as the composition of N and In increases, and the wavelength 1 It has been found that a GaInNAs crystal having a band gap corresponding to 0.3 μm or 1.55 μm does not have sufficient crystallinity to be used as an active layer of a semiconductor laser. This is because crystals of this composition
immiscible region (m in a-In-As-N quaternary mixed crystal system
The composition is considered to be equivalent to the composition within an iscibility gap, and small regions of various stable binary or ternary mixed compounds outside the immiscible region tend to be easily generated in the crystal. It is considered that the defect is induced.

【0007】ただし、Journal of Crys
tal Growth 164(1996)175−1
79(参考文献3)においては、Inを含まないGaN
Asの結晶についてはNの組成で0.10まで上げても
良好な結晶を作製できることが確認されている。それに
対し、Inが入ったGa−In−As−N四元混晶系に
なると、Nの組成がより少ない場合でも結晶性の低下が
起こり、波長1.3μm,1.55μmでのレーザ発振
に要求される様な組成では良好なGaInNAs混晶結
晶が得られない。一方、Nを含まないGaInAsもす
べてのInの組成において良好な結晶を作製できる。こ
のことは、GaInNAs混晶結晶においての結晶性の
低下はNの組成が大きくなることにのみ起因するのでは
なく、Nの存在下でInを添加していくことが深く関わ
っていることを示している。これは、Inの添加により
四元混晶系にすることで非混和領域(miscibil
ity gap)の組成範囲が拡大することによると推
測される。
However, the Journal of Crys
tal Growth 164 (1996) 175-1
79 (Ref. 3) states that GaN containing no In
As for As crystals, it has been confirmed that good crystals can be produced even when the composition of N is increased to 0.10. On the other hand, in the case of a Ga-In-As-N quaternary mixed crystal containing In, crystallinity is reduced even when the composition of N is smaller, and laser oscillation at wavelengths of 1.3 μm and 1.55 μm occurs. With the required composition, a good GaInNAs mixed crystal cannot be obtained. On the other hand, GaInAs containing no N can produce good crystals in all In compositions. This indicates that the decrease in crystallinity in the GaInNAs mixed crystal is not caused only by the increase in the composition of N, but is deeply related to the addition of In in the presence of N. ing. This is because a quaternary mixed crystal system is formed by the addition of In to a non-miscible region (miscibil region).
It is presumed that the composition range of (ity gap) is expanded.

【0008】本発明は上記の問題を解決することを目的
としたものである。つまり、III族元素として少なく
ともGaとInとを共に含み、V族元素として少なくと
もNとAsとを共に含む化合物半導体混晶において、非
混和領域内に相当する組成でも良好な結晶性を保ったま
ま均一な混晶結晶を作製することができる結晶成長の方
法を提供するものである。特に、波長1.3μm,1.
55μmに相当するバンドギャップを有するGaInN
As混晶結晶を得る製造方法を提供するものである。
The present invention has been made to solve the above problems. In other words, in a compound semiconductor mixed crystal containing at least Ga and In as Group III elements and at least N and As as Group V elements, good crystallinity is maintained even with a composition corresponding to an immiscible region. It is an object of the present invention to provide a crystal growth method capable of producing a uniform mixed crystal. In particular, the wavelength 1.3 μm, 1..
GaInN having a band gap corresponding to 55 μm
An object of the present invention is to provide a production method for obtaining an As mixed crystal.

【0009】[0009]

【課題を解決するための手段】この発明(請求項1)に
係る化合物半導体の製造方法は、III族元素として少
なくともGa(ガリウム)とIn(インジウム)とを共
に含み、V族元素として少なくともN(窒素)とAs
(砒素)とを共に含む化合物半導体結晶を少なくとも1
層含む積層構造を半導体基板上に作製する化合物半導体
の製造方法であって、基板が閃亜鉛鉱型の半導体結晶か
ら成り、その基板が{001}面から{111}A面方
向へ傾斜された表面を有していることによって上記の目
的を達成する。
The method of manufacturing a compound semiconductor according to the present invention (claim 1) includes at least Ga (gallium) and In (indium) as Group III elements and at least N as Group V elements. (Nitrogen) and As
(Arsenic) and at least one compound semiconductor crystal.
A method for producing a compound semiconductor in which a laminated structure including layers is formed on a semiconductor substrate, wherein the substrate is made of a zinc-blende-type semiconductor crystal, and the substrate is inclined from the {001} plane to the {111} A plane. The above object is achieved by having a surface.

【0010】本願発明者らは、上記に示した従来の結晶
成長の検討手法から観点を変えて、用いる基板の表面の
状態に注目して検討を行った。その結果、基板の表面を
終端している原子の種類が、GaInNAs混晶結晶を
結晶成長する際に大きな影響を与えていることを見い出
した。請求項1による本発明では、基板表面がIII族
元素終端面である為に、均一で良好な結晶性を保ったま
まGaInNAs混晶結晶を作製することができるよう
になる。
The inventors of the present application have studied from the viewpoint of the state of the surface of the substrate to be used by changing the viewpoint from the above-described conventional technique for examining crystal growth. As a result, it has been found that the type of atoms terminating the surface of the substrate has a great influence on the growth of GaInNAs mixed crystal. According to the first aspect of the present invention, since the substrate surface is a group III element termination surface, GaInNAs mixed crystal can be produced while maintaining uniform and good crystallinity.

【0011】この発明(請求項2)に係る化合物半導体
の製造方法は、その基板が{001}面から{111}
A面方向へ3度以上30度以下の角度で傾斜された表面
を有していることによって上記の目的を達成する。
[0011] In the method of manufacturing a compound semiconductor according to the present invention (claim 2), the substrate is preferably {111} from {001} plane.
The above object is achieved by having a surface inclined at an angle of 3 degrees or more and 30 degrees or less in the A-plane direction.

【0012】より好ましくは、その基板が{001}面
から{111}A面方向へ5度以上15度以下の角度で
傾斜された表面を有していることによって上記の目的を
達成する。基板の傾斜角度を適切に選ぶことにより、特
に効果的に前記の作用・効果を得ることができる。
[0012] More preferably, the above object is achieved by that the substrate has a surface inclined at an angle of 5 ° to 15 ° from the {001} plane to the {111} A plane. By appropriately selecting the inclination angle of the substrate, the above-described functions and effects can be obtained particularly effectively.

【0013】この発明(請求項3)に係る化合物半導体
の製造方法は、前記積層構造は、600℃以上750℃
以下の温度で結晶成長されることによって上記の目的を
達成する。
[0013] In the method for manufacturing a compound semiconductor according to the present invention (claim 3), the laminated structure may be at least 600 ° C and 750 ° C.
The above object is achieved by growing crystals at the following temperatures.

【0014】結晶成長の温度を適切に選ぶことにより、
特に効果的に前記の作用・効果を得ることができる。
By properly selecting the temperature of crystal growth,
Particularly, the above operation and effect can be obtained effectively.

【0015】この発明(請求項4)に係る化合物半導体
の製造方法は、前記のIII族元素として少なくともG
aとInとを共に含み、V族元素として少なくともNと
Asとを共に含む化合物半導体結晶は、V族元素として
結晶中に含まれているNの組成比 [N原子密度]/([N原子密度]+[As原子密
度]) が0.025以上0.1以下であることによって上記の
目的を達成する。
In the method for manufacturing a compound semiconductor according to the present invention (claim 4), at least G
A compound semiconductor crystal containing both a and In and containing at least N and As as a group V element has a composition ratio of N contained in the crystal as a group V element [N atom density] / ([N atom The above object is achieved when the [density] + [As atom density]) is 0.025 or more and 0.1 or less.

【0016】一定値以上のNを含んだAsとNとを共に
含むIII−V族化合物半導体混晶に対してこの発明を
適用することで、格段の効果を得ることができる。
A remarkable effect can be obtained by applying the present invention to a III-V compound semiconductor mixed crystal containing both As and N containing a certain amount of N or more.

【0017】この発明(請求項5)に係る化合物半導体
の製造方法は、V族元素としてP(燐)を含む化合物半
導体を積層し、その上にV族元素としてAsだけを有す
る化合物半導体を少なくとも1分子層以上10分子層以
下だけ積層し、その上にIII族元素として少なくとも
GaとInとを共に含み、V族元素として少なくともN
とAsとを共に含む化合物半導体結晶を結晶成長する工
程を含んでいることによって上記の目的を達成する。
In the method of manufacturing a compound semiconductor according to the present invention (claim 5), a compound semiconductor containing P (phosphorus) as a group V element is laminated, and at least a compound semiconductor having only As as a group V element is formed thereon. One or more molecular layers and 10 or less molecular layers are laminated, and at least Ga and In are both contained as Group III elements, and at least N is contained as Group V elements.
The above object is attained by including a step of growing a compound semiconductor crystal containing both As and As.

【0018】この工程を行うことにより、P化合物とG
aInNAs混晶結晶との界面が急峻になる。
By performing this step, the P compound and G
The interface with the aInNAs mixed crystal becomes sharp.

【0019】この発明(請求項6)に係る化合物半導体
の製造方法は、III族元素として少なくともGaとI
nとを共に含み、V族元素として少なくともNとAsと
を共に含む化合物半導体結晶を結晶成長する直前に、N
原料だけを供給する工程を含むことによって上記の目的
を達成する。
In the method of manufacturing a compound semiconductor according to the present invention (claim 6), at least Ga and I as Group III elements may be used.
Immediately before crystal growth of a compound semiconductor crystal containing both n and at least N and As as group V elements,
The above object is achieved by including a step of supplying only the raw material.

【0020】この工程を行うことにより、GaInNA
s混晶結晶を結晶成長する直前に、その下地の表面が窒
化される為、その上のGaInNAs混晶結晶が結晶成
長の初期からスムースなステップフロー成長が起こるよ
うになる。
By performing this step, GaInNA
Immediately before the crystal growth of the s mixed crystal, the surface of the base is nitrided, so that the GaInNAs mixed crystal on it grows smoothly from the initial stage of crystal growth.

【0021】この発明(請求項7)に係る化合物半導体
の製造方法は、基板として用いる閃亜鉛鉱型の半導体結
晶がGaAsからなることによって上記の目的を達成す
る。
In the method of manufacturing a compound semiconductor according to the present invention (claim 7), the above object is achieved by forming a zinc blende type semiconductor crystal used as a substrate from GaAs.

【0022】基板としてGaAsを用いることにより、
光ファイバー通信に重要な波長1.3μm,1.55μ
mに対応するGaInNAs混晶結晶を格子整合させて
得ることができる。
By using GaAs as a substrate,
1.3 μm, 1.55 μm wavelengths important for optical fiber communication
m can be obtained by lattice-matching a GaInNAs mixed crystal corresponding to m.

【0023】[0023]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施の形態1)本発明の実施形態1として、(00
1)面から(111)A面方向へ傾斜したGaAs基板
の上に、MBE法を用いてAlGaAs/GaInNA
s/AlGaAsからなるダブルヘテロ構造を作製した
場合について示す。
(Embodiment 1) As Embodiment 1 of the present invention, (00
AlGaAs / GaInNA is formed on the GaAs substrate inclined from the 1) plane toward the (111) A plane by MBE.
The case where a double hetero structure made of s / AlGaAs is manufactured will be described.

【0024】(001)面から(111)A面方向へ傾
斜した表面を有するGaAs基板を準備し、その上に、
Al分子線,Ga分子線,In分子線,As2分子線,
ラジカル励起されたN分子線を原料とするMBE法によ
り化合物半導体の多層膜を結晶成長した。
A GaAs substrate having a surface inclined from the (001) plane to the (111) A plane direction is prepared.
Al molecular beam, Ga molecular beam, In molecular beam, As 2 molecular beam,
A multilayer film of a compound semiconductor was grown by MBE using a radical-excited N molecular beam as a raw material.

【0025】ここで「(001)面から(111)A面
方向へ傾斜した表面」とは、(001)面の傾斜基板で
あり、Ga原子で終端するステップ端を表面に有するよ
うに傾斜して切り出された基板である。(001)面か
ら(111)A面方向へ55°傾斜した基板は、(11
1)A面となる。なお、{111}A面は{111}G
a面、{111}B面は{111}As面とも呼ぶ。
Here, the “surface inclined from the (001) plane to the (111) A plane” is an inclined substrate of the (001) plane, which is inclined so as to have a step end terminated with Ga atoms on the surface. This is the substrate cut out. The substrate tilted 55 ° from the (001) plane toward the (111) A plane is (11)
1) Surface A The {111} A plane is {111} G
The a-plane and {111} B plane are also called {111} As plane.

【0026】作製した多層膜の構造は、まずGaAs基
板の上に層厚0.5μmのGaAsからなるバッファ層
を、その上に層厚0.5μmのAl0.2Ga0.8Asから
なる第一障壁層を、その上に層厚0.1μmのGa
0.928In0.0720.025As0.975からなる発光層を、そ
の上に層厚0.5μmのAl0.2Ga0.8Asからなる第
二障壁層を、その上に保護層として層厚0.5μmのG
aAsが形成されている。この時のGa0.928In0.072
0.025As0.975結晶は、GaAsに格子整合し、波長
1.3μmに相当するバンドギャップを有するGaIn
NAs結晶である。結晶成長温度は、多層膜を作製する
間中650℃に保持し、結晶成長速度は0.5μm/時
間とした。
The structure of the formed multilayer film is as follows. First, a buffer layer made of GaAs having a layer thickness of 0.5 μm is formed on a GaAs substrate, and a first barrier layer made of Al 0.2 Ga 0.8 As is formed with a layer thickness of 0.5 μm. With a 0.1 μm thick Ga
A light emitting layer made of 0.928 In 0.072 N 0.025 As 0.975 , a second barrier layer made of Al 0.2 Ga 0.8 As having a thickness of 0.5 μm thereon, a G layer having a thickness of 0.5 μm serving as a protective layer thereon.
aAs is formed. At this time, Ga 0.928 In 0.072
The N 0.025 As 0.975 crystal is GaIn lattice-matched to GaAs and has a band gap corresponding to a wavelength of 1.3 μm.
It is a NAs crystal. The crystal growth temperature was kept at 650 ° C. during the production of the multilayer film, and the crystal growth rate was 0.5 μm / hour.

【0027】また、MBE法による結晶成長は、図1に
示すシーケンスで行った。つまり、GaAs基板をMB
E結晶成長装置内に導入した後、(工程A)As2分子
線を照射しながら650℃にまで昇温し、GaAsの清
浄表面を得る。その後、(工程B)Ga分子線,As2
分子線により層厚0.5μmのGaAsを結晶成長し、
続いて(工程C)Al分子線,Ga分子線,As2分子
線により層厚0.5μmのAl0.2Ga0.8Asを得る。
次に(工程D)Nラジカル分子線だけを供給して成長層
最表面のテラスを形成するAs原子の一部を窒化により
N原子で置き換えた後、(工程E)Ga分子線,In分
子線,As2分子線,Nラジカル分子線により層厚0.
1μmのGaInNAs層を得る。再び(工程F)Al
分子線,Ga分子線,As2分子線により層厚0.5μ
mのAl0.2Ga0.8Asを、最後に(工程G)Al分子
線を止めて0.5μmのGaAsを得る。各層を結晶成
長する際の各分子線の強度は、それぞれの層に対して最
適となるように調節した。
The crystal growth by the MBE method was performed according to the sequence shown in FIG. That is, the GaAs substrate is changed to MB.
After being introduced into the E crystal growth apparatus, (step A) the temperature is raised to 650 ° C. while irradiating an As 2 molecular beam to obtain a clean surface of GaAs. Then, (Step B) Ga molecular beam, As 2
GaAs having a layer thickness of 0.5 μm is grown by molecular beam,
Subsequently (step C), Al 0.2 Ga 0.8 As having a layer thickness of 0.5 μm is obtained from an Al molecular beam, a Ga molecular beam, and an As 2 molecular beam.
Next, (Step D) After supplying only N radical molecular beams and replacing a part of As atoms forming a terrace on the outermost surface of the growth layer with N atoms by nitriding, (Step E) Ga molecular beams and In molecular beams , As 2 molecular beam and N radical molecular beam.
A 1 μm GaInNAs layer is obtained. Again (Step F) Al
Layer thickness 0.5μ by molecular beam, Ga molecular beam, As 2 molecular beam
m Al 0.2 Ga 0.8 As, and finally (step G), the Al molecular beam is stopped to obtain 0.5 μm GaAs. The intensity of each molecular beam during crystal growth of each layer was adjusted to be optimal for each layer.

【0028】0°〜60°の傾斜角を有する基板の上に
作製した試料に関して表面欠陥密度を評価した結果を図
2に示す。傾斜角0°の傾斜していない(001)面上
に作製された試料と比較して、傾斜基板上では高品質の
GaInNAs混晶を得ることができた。またその傾斜
角度とともに欠陥密度が低下し、最低値をとる。
FIG. 2 shows the result of evaluating the surface defect density of a sample manufactured on a substrate having a tilt angle of 0 ° to 60 °. As compared with the sample fabricated on the (001) plane having a tilt angle of 0 ° and not tilted, a high-quality GaInNAs mixed crystal could be obtained on the tilted substrate. Further, the defect density decreases with the inclination angle, and takes the lowest value.

【0029】従来のように{001}面から傾斜してい
ない面方位を有する基板の上にGaInNAs混晶結晶
を結晶成長させた場合結晶性の低下が発生しやすい。こ
れは、この四元混晶の組成が非混和領域(miscib
ility gap)内に相当する組成であるため、微
視的には非混和領域外のより安定な二元もしくは三元混
晶の種々の化合物の微小領域が結晶内に発生し、母体の
格子定数の違いなどから多くの結晶欠陥が誘発されるた
めと考えられる。この微小領域の発生は特にIII族元
素種が複数ある場合、より誘発されやすい。これは、結
晶成長時には、III族元素であるGa、Inの成長表
面でのモビリティーがV族元素に比べて大きいので、よ
り安定な別のIII族組成比を持つ結晶が生成し、結晶
内に複数の相が分離して発生しやすいことによる。特
に、GaとNの結合力が他の組み合わせのものより特に
強いことにより、成長時に特にGaとNが優先的に結合
し、GaとNの組成が高い領域が結晶内に発生しやすい
ことが考えられる。このような不均一な領域の存在によ
り表面欠陥密度の増大などの結晶性の悪化が起こってい
ると思われる。これはIII族元素がGaとInの2つ
存在していることにより発生するものであり、Inの存
在しないGaNAs結晶の場合には、III族元素とし
てはGa元素のみのため、仮に成長時にGaとNが優先
的に結合したとしても、それにより組成が不均一になる
ことはない。
When a GaInNAs mixed crystal is grown on a substrate having a plane orientation not inclined from the {001} plane as in the prior art, the crystallinity tends to be reduced. This is because the composition of the quaternary mixed crystal is in an immiscible region (miscib).
(i.e., the composition of the compound), microscopically, microscopic regions of various compounds of a more stable binary or ternary mixed crystal outside the immiscible region are generated in the crystal, and the lattice constant of the matrix is obtained. It is considered that many crystal defects are induced due to the difference between the two. The generation of this minute region is more likely to be induced particularly when there are a plurality of group III element species. This is because at the time of crystal growth, the mobility of the group III elements Ga and In on the growth surface is larger than that of the group V element, so that a crystal having another more stable group III composition ratio is generated, and the crystal is formed in the crystal. This is because a plurality of phases are likely to be separated and generated. In particular, since the bonding force between Ga and N is particularly stronger than that of other combinations, Ga and N are particularly preferentially bonded during growth, and a region having a high Ga and N composition is likely to be generated in the crystal. Conceivable. It is considered that the presence of such a non-uniform region causes deterioration in crystallinity such as an increase in surface defect density. This is caused by the presence of two group III elements, Ga and In. In the case of a GaNAs crystal without In, only the Ga element is used as the group III element. And N are preferentially bonded, the composition does not become non-uniform.

【0030】一方でステップ端がIII族元素で終端し
た表面を持つ基板、つまり{100}面から{111}
A面方向へ傾斜した表面をもつ基板を用いた場合、ステ
ップ端はV族元素で安定になろうとするので、結晶成長
中に基板に付着したGa源とIn源はステップ端に到達
してそのままその位置でIII族サイトに取り込まれ
る。その結果、別のIII族組成比を持つ結晶の生成が
抑制され、組成の均一性が大きく向上し、InとNの組
成の大きな結晶を良好な結晶性で得ることができるよう
になる。このように、III族サイトで終端している表
面ステップを有する基板を用いることで、非混和領域内
に相当する組成でも均一で良好な結晶性を有するGaI
nNAs混晶結晶を作製することが可能になる新たな効
果が見い出された。
On the other hand, a substrate having a surface having a step end terminated with a group III element, that is, from a {100} plane to a {111} plane
When a substrate having a surface inclined in the direction of the A-plane is used, the step end tends to be stabilized by the group V element, so that the Ga source and the In source attached to the substrate during the crystal growth reach the step end and remain as they are. At that position, it is incorporated into the group III site. As a result, the generation of crystals having another group III composition ratio is suppressed, the composition uniformity is greatly improved, and crystals having a large composition of In and N can be obtained with good crystallinity. As described above, by using a substrate having a surface step terminating at a group III site, GaI having uniform and good crystallinity even with a composition corresponding to an immiscible region can be obtained.
A new effect has been found that makes it possible to produce an nNAs mixed crystal.

【0031】傾斜基板の角度に関しては、図2に見られ
るように3〜30°で十分な効果が現われ、5〜15°
とするのがより好ましい。傾斜角度が小さい場合にはス
テップの密度が低い為にその効果が顕著には現われず、
傾斜角度が大きすぎる場合にも結晶性の悪化が生じる。
With respect to the angle of the inclined substrate, as shown in FIG.
More preferably, When the inclination angle is small, the effect does not appear remarkably because the density of the step is low,
When the inclination angle is too large, the crystallinity is deteriorated.

【0032】図3に、(001)面から(111)A面
方向へ10°傾斜した表面を有するGaAs基板の上へ
多層構造を作製した時の表面欠陥密度の、結晶成長時の
基板温度の依存性を示す。いずれもGaAsに格子整合
する組成で、波長1.3μmに相当するバンドギャップ
を有するGaInNAs結晶の表面欠陥密度である。基
板温度600℃から750℃の間で表面欠陥密度の低い
試料が得られ、図3中で示されたΔTの範囲が最適な結
晶成長温度範囲であることがわかる。結晶成長の温度が
低い場合にはステップ端から結晶成長が生じるステップ
フロー成長が起こりにくく、また結晶成長温度が高い場
合には一旦結晶中に取り込まれたV族元素が再蒸発する
為に良好な結晶成長が生じない。
FIG. 3 shows the surface defect density when a multilayer structure was formed on a GaAs substrate having a surface inclined by 10 ° from the (001) plane to the (111) A plane, and the substrate temperature during crystal growth. Show dependencies. Each is a surface defect density of a GaInNAs crystal having a composition matching with GaAs and having a band gap corresponding to a wavelength of 1.3 μm. A sample having a low surface defect density was obtained at a substrate temperature of 600 ° C. to 750 ° C., and it can be seen that the range of ΔT shown in FIG. 3 is the optimum crystal growth temperature range. When the crystal growth temperature is low, the step flow growth in which crystal growth occurs from the step end is unlikely to occur, and when the crystal growth temperature is high, the group V element once incorporated in the crystal is re-evaporated, which is favorable. No crystal growth occurs.

【0033】図4に、傾斜角度0°(傾斜していない)
および10°の基板上に、上記化合物半導体多層膜を、
発光層のGa1-xInxyAs1-y結晶の組成(x,y)
をさまざまに変えて結晶成長を行い、表面欠陥密度を評
価した結果を示す。図4(a)が傾斜角度0°の場合、
図4(b)が傾斜角度10°の場合である。これによる
と傾斜角度0°の場合、yが0.025以上では実験し
た範囲内のx(0.01〜0.4)のすべてで表面欠陥
密度が高いのに対し、傾斜角度10°の場合yが0.0
25以上0.03以下ではすべての範囲で表面欠陥密度
が十分に低い値となり、またyが0.1以下ではxが小
さい範囲では表面欠陥密度が十分低い値となった。
FIG. 4 shows an inclination angle of 0 ° (not inclined).
And 10 ° on the substrate, the compound semiconductor multilayer film,
Composition (x, y) of Ga 1-x In x N y As 1-y crystal of light emitting layer
Are shown, the results of crystal growth performed and surface defect density evaluated. FIG. 4A shows a case where the inclination angle is 0 °.
FIG. 4B shows a case where the inclination angle is 10 °. According to this, when the inclination angle is 0 °, when y is 0.025 or more, the surface defect density is high at all x (0.01 to 0.4) within the range of the experiment, while when the inclination angle is 10 °. y is 0.0
When the value was 25 or more and 0.03 or less, the surface defect density was a sufficiently low value in all ranges, and when y was 0.1 or less, the surface defect density was a sufficiently low value when x was small.

【0034】なお、図1に示したように、GaInNA
s層を結晶成長する直前にNラジカル分子線だけを供給
し、下地のAl0.2Ga0.8As層最表面のテラスを形成
するAs原子の一部をN原子で置き換え(工程D)、そ
の後にGaInNAs層の結晶成長を開始した(工程
E)。最初に基板表面のAs原子の一部をN原子で置換
しておくと、その後のAsとNとを共に含むIII−V
族化合物半導体混晶の成長がホモエピタキシャル成長と
なるのでステップフロー成長が生じやすく、初期の結晶
成長がスムースに開始され、その上に作製された結晶の
質が向上する。特に電子のド・ブロイ波長よりも薄いG
aInNAs層を量子井戸層として結晶成長させた場
合、その時に生じる量子効果は、テラスの窒化工程の採
用により著しく増大することがわかった。窒化工程を含
まない場合には、As化合物(Al0.2Ga0.8As)と
AsとNとを共に含むIII−V族化合物半導体混晶
(GaInNAs)との界面とが急俊に切り替わらない
為に量子効果が低減していると考えられる。界面に窒化
工程を入れることで、その組成の切り替えが急俊に生じ
るようになり、良好な界面が得られるようになる。
Note that, as shown in FIG.
Immediately before crystal growth of the s layer, only N radical molecular beams are supplied, and part of As atoms forming the terrace on the outermost surface of the underlying Al 0.2 Ga 0.8 As layer is replaced with N atoms (step D). Crystal growth of the layer was started (step E). When part of the As atoms on the substrate surface is first replaced with N atoms, the subsequent III-V containing both As and N
Since the growth of the group compound semiconductor mixed crystal is homoepitaxial growth, step flow growth is likely to occur, and the initial crystal growth is started smoothly, and the quality of the crystal formed thereon is improved. Especially G thinner than the electron's de Broglie wavelength
It was found that when the aInNAs layer was grown as a quantum well layer, the quantum effect generated at that time was significantly increased by adopting the terrace nitriding step. In the case where the nitriding step is not included, since the interface between the As compound (Al 0.2 Ga 0.8 As) and the III-V compound semiconductor mixed crystal (GaInNAs) containing both As and N does not switch rapidly, It is considered that the effect has been reduced. By introducing a nitriding step at the interface, the composition can be switched quickly and a good interface can be obtained.

【0035】以上のように、本発明により、高品質のG
aInNAs混晶を得ることができた。さらに、上記の
方法を、1.3μmの波長域に対応する活性層の作製に
適用して半導体レーザ素子を作製したところ、高性能の
レーザが得られた。
As described above, according to the present invention, high quality G
An aInNAs mixed crystal was obtained. Further, when the above method was applied to the production of an active layer corresponding to a wavelength region of 1.3 μm to produce a semiconductor laser device, a high-performance laser was obtained.

【0036】(実施の形態2)本発明の実施形態2とし
て、(001)面から(111)A面方向へ傾斜したG
aAs基板の上に、有機金属気相成長(Metal O
rganic Chemical Vapor Dep
osition:MO−CVD)法を用いてGaInP
/GaInNAs/GaInPからなる単一量子井戸構
造を作製した場合について示す。
(Embodiment 2) As Embodiment 2 of the present invention, G inclined from the (001) plane to the (111) A plane direction.
Metalorganic vapor phase epitaxy (Metal O.D.
rganic Chemical Vapor Dep
GaInP using the MO: CVD method.
The case where a single quantum well structure composed of / GaInNAs / GaInP is manufactured will be described.

【0037】(001)面から(111)A面方向へ傾
斜した表面を有するGaAs基板を準備し、その上に、
トリメチルガリウム(TMG),トリメチルインジウム
(TMI),アルシン(AsH3),フォスフィン(P
3),ジメチルヒドラジン(DMeHy)を原料ガス
とし、水素(H2)をキャリアガスとするMO−CVD
法により化合物半導体の多層膜を結晶成長した。
A GaAs substrate having a surface inclined from the (001) plane to the (111) A plane direction is prepared.
Trimethyl gallium (TMG), trimethyl indium (TMI), arsine (AsH 3 ), phosphine (P
MO-CVD using H 3 ), dimethylhydrazine (DMeHy) as a source gas and hydrogen (H 2 ) as a carrier gas
A compound semiconductor multilayer film was crystal-grown by the method.

【0038】作製した多層膜の構造は、まずGaAs基
板の上に層厚0.5μmのGaAsからなるバッファ層
を、その上にGa0.51In0.49Pからなる第一障壁層
を、その上に層厚8nmのGa0.89In0.110.04As
0.96からなる単一量子井戸発光層を、その上に層厚0.
5μmのGa0.51In0.49Pからなる第二障壁層を、そ
の上に保護層として層厚0.5μmのGaAsが形成さ
れている。この時のGa0.89In0.110.04As0.96
晶は、GaAsに格子整合するGaInNAs結晶であ
る。結晶成長は常圧で行い、結晶成長温度は多層膜を作
製する間中700℃に保持し、結晶成長速度は1μm/
時間とした。
The structure of the manufactured multilayer film is as follows. First, a buffer layer made of GaAs having a thickness of 0.5 μm is formed on a GaAs substrate, a first barrier layer made of Ga 0.51 In 0.49 P is formed thereon, and a layer is formed thereon. 8 nm thick Ga 0.89 In 0.11 N 0.04 As
A single quantum well light-emitting layer of 0.96 , with a layer thickness of 0.
A 0.5 μm-thick GaAs layer is formed as a protective layer on a second barrier layer made of 5 μm Ga 0.51 In 0.49 P. At this time, the Ga 0.89 In 0.11 N 0.04 As 0.96 crystal is a GaInNAs crystal lattice-matched to GaAs. The crystal growth was performed at normal pressure, the crystal growth temperature was maintained at 700 ° C. during the production of the multilayer film, and the crystal growth rate was 1 μm /
Time.

【0039】また、MO−CVD法による結晶成長は、
図5に示すシーケンスで行った。つまり、GaAs基板
をMO−CVD結晶成長装置内に導入した後、(工程
I)AsH3とH2の雰囲気により700℃にまで昇温
し、その後、(工程J)TMG,AsH3により層厚
0.5μmのGaAsを結晶成長させ、(工程K)TM
G,TMI,PH3により層厚0.5μmのGa0.51
0.49Pを得る。次に(工程L)TMGとAsH3とを
供給して1から3分子層分のGaAsを結晶成長した
後、(工程M)DMeHyだけを供給して成長層最表面
のテラスを形成するAs原子の一部を窒化によりN原子
で置き換えた後、(工程N)TMG,TMI,As
3,DMeHyにより層厚8nmのGaInNAs層
を得る。再び(工程O)TMGとAsH3とを供給して
1から3分子層分のGaAsを結晶成長した後、(工程
P)TMG,TMI,PH3より層厚0.5μmのGa
0.51In0.49Pを、最後に(工程Q)TMG,AsH3
で0.5μmのGaAsを得た。各層を結晶成長する際
の各ガスの流量は、それぞれの層に対して最適となるよ
うに調節した。
Further, the crystal growth by the MO-CVD method is as follows.
This was performed according to the sequence shown in FIG. That is, after the GaAs substrate is introduced into the MO-CVD crystal growth apparatus, (Step I) the temperature is raised to 700 ° C. in an atmosphere of AsH 3 and H 2 , and then (Step J) the layer thickness is determined by TMG and AsH 3. A 0.5 μm GaAs crystal is grown (Step K) TM
Ga 0.51 I having a layer thickness of 0.5 μm by G, TMI, PH 3
n 0.49 P is obtained. Next, (step L) TMG and AsH 3 are supplied to grow GaAs for one to three molecular layers, and then (step M) only DMeHy is supplied to form As atoms forming a terrace on the outermost surface of the growth layer. Is partially replaced with N atoms by nitridation, (Step N) TMG, TMI, As
A GaInNAs layer having a thickness of 8 nm is obtained by H 3 and DMeHy. (Step O) TMG and AsH 3 are supplied again to grow GaAs for one to three molecular layers, and then (Step P) Ga with a layer thickness of 0.5 μm from TMG, TMI and PH 3.
0.51 In 0.49 P and finally (Step Q) TMG, AsH 3
Was used to obtain 0.5 μm GaAs. The flow rate of each gas during the crystal growth of each layer was adjusted to be optimal for each layer.

【0040】各試料の表面欠陥密度を評価したところ、
図2に示した第一実施形態のものと同様の結果が得ら
れ、{001}面から{111}A面方向へ3〜30
°、望ましくは5〜15°だけ傾斜した表面を有するG
aAs基板の上へGaInNAs結晶を結晶成長するこ
とでその結晶性が格段に向上することが見い出された。
表面欠陥密度の、結晶成長時の基板温度の依存性も図4
と同様の結果であった。
When the surface defect density of each sample was evaluated,
The same result as that of the first embodiment shown in FIG. 2 is obtained, and 3 to 30 from the {001} plane to the {111} A plane direction.
°, preferably with a surface inclined by 5 to 15 °
It has been found that the crystallinity is significantly improved by growing a GaInNAs crystal on an aAs substrate.
The dependence of the surface defect density on the substrate temperature during crystal growth is also shown in FIG.
It was the same result as.

【0041】なお、図5に示したように、下地のGaI
nP層の上にGaInNAs層を結晶成長する前に、数
分子層程度のAs化合物を成長させ(工程L)、かつそ
の最表面のテラスを形成するAs原子の一部をN原子で
置き換え(工程M)、その後にGaInNAs層の結晶
成長を開始した(工程N)。P化合物の上にGaInN
As層を直接的に結晶成長させると、結晶成長の初期に
おいてGaInNAsのステップフロー成長が生じにく
く、傾斜基板を用いた効果が十分に発揮されない傾向が
あった。これに対し、P化合物の上に、As化合物の薄
層を界してから結晶成長を開始することで解決されるこ
とが見い出された。As化合物の薄層の厚さは、少なく
とも1分子層以上は必要であるが、P化合物とGaIn
NAs層とのヘテロ接合のバンドラインナップに影響を
与えないように10分子層以下であるのが望ましい。
As shown in FIG. 5, the underlying GaI
Before crystal growth of the GaInNAs layer on the nP layer, an As compound of several molecular layers is grown (step L), and part of the As atoms forming the terrace on the outermost surface is replaced with N atoms (step L). M) Then, the crystal growth of the GaInNAs layer was started (step N). GaInN on P compound
When the As layer is directly crystal-grown, step flow growth of GaInNAs is unlikely to occur in the initial stage of crystal growth, and the effect of using the inclined substrate tends to be insufficient. On the other hand, it has been found that the problem can be solved by initiating crystal growth after a thin layer of the As compound is bounded on the P compound. The thickness of the thin layer of the As compound is required to be at least one molecular layer or more.
It is desirable that the thickness be 10 molecular layers or less so as not to affect the band lineup of the heterojunction with the NAs layer.

【0042】また、中間層のAs化合物の上にGaIn
NAs層を結晶成長する時には、界面に窒化工程を入れ
て表面のAs原子の一部をN原子で置換しておくと、そ
の後のV族元素としてAsとNとを共に含むIII−V
族化合物半導体混晶の成長がホモエピタキシャル成長と
なるのでステップフロー成長が生じやすく、初期の結晶
成長がスムースに開始され、その上の成長層の結晶性が
向上する。また、As化合物とAsとNとを共に含むI
II−V族化合物半導体混晶の組成との切り替えが急峻
に生じるようになる。
Further, GaIn is placed on the As compound of the intermediate layer.
At the time of crystal growth of the NAs layer, a nitridation step is performed at the interface to partially replace As atoms on the surface with N atoms, and then III-V containing both As and N as Group V elements.
Since the growth of the group compound semiconductor mixed crystal is homoepitaxial growth, step flow growth is likely to occur, and the initial crystal growth is smoothly started, and the crystallinity of the grown layer thereon is improved. In addition, I containing both an As compound and As and N
The switching to the composition of the II-V compound semiconductor mixed crystal occurs sharply.

【0043】以上のように、本発明により、高品質のG
aInNAs混晶を得ることができた。さらに、上記の
方法を、1.55μmの波長域に対応する活性層の作製
に適用して半導体レーザ素子を作製したところ、高性能
のレーザが得られた。
As described above, according to the present invention, high quality G
An aInNAs mixed crystal was obtained. Furthermore, when the above method was applied to the production of an active layer corresponding to a wavelength range of 1.55 μm to produce a semiconductor laser device, a high-performance laser was obtained.

【0044】ところで、これまでに示した全ての実施形
態において、{001}基板の傾斜方向は、{111}
A面の方向から{001}面内で±10°程度ずれてい
ても表面ステップはV族元素で終端するので同様の効果
が得られた。
By the way, in all the embodiments described so far, the inclination direction of the {001} substrate is {111}.
Even when the surface step deviates from the direction of the A-plane by about ± 10 ° within the {001} plane, the same effect can be obtained because the surface step is terminated with the group V element.

【0045】また、基板は閃亜鉛鉱型の半導体結晶であ
ればGaAsやGaPに限定されるものではなく、その
他のIII−V族半導体やII−VI族半導体結晶でも
同様の効果が得られた。
The substrate is not limited to GaAs or GaP as long as it is a zinc blende type semiconductor crystal. Similar effects can be obtained with other III-V semiconductors and II-VI semiconductor crystals. .

【0046】また、上記の実施形態では固体原料を用い
たMBE法およびMO−CVD法について述べたが、I
II族原料として固体原料,V族原料としてAsH3
用いたガスソースMBE(GS−MBE)法、あるいは
III族原料に有機金属化合物,V族原料にガス原料に
用いた化学分子線エピタキシャル成長(CBE)法など
を用いても同様の効果が得られた。
In the above embodiment, the MBE method and the MO-CVD method using solid raw materials have been described.
Gas source MBE (GS-MBE) method using a solid raw material as a group II raw material and AsH 3 as a group V raw material, or a chemical molecular beam epitaxial growth (CBE) using an organic metal compound as a group III raw material and a gas raw material as a group V raw material The same effect was obtained by using the method.

【0047】また、上記の実施形態ではIII族元素と
してGa,In,Al,V族元素としてAs,Nを適宜
含んだ化合物について示したが、その他のIII族元素
(B等)やV族元素(P,Sb等)や不純物元素(Z
n,Be,Mg,Te,S,Se,Si等)が適宜含ま
れていても同様の効果が得られる。
In the above embodiment, a compound containing Ga, In, Al as a group III element and As and N as a group V element as appropriate is described. However, other group III elements (such as B) and group V elements (P, Sb, etc.) and impurity elements (Z
n, Be, Mg, Te, S, Se, Si, etc.), the same effect can be obtained.

【0048】なお、これまでの記述の中で「上」と示さ
れた方向は基板から離れる方向を示しており、「下」は
基板へ近づく方向を示している。「下」から「上」の方
向へ向かって結晶成長は進行する。
In the above description, the direction indicated as "up" indicates a direction away from the substrate, and the "down" indicates a direction approaching the substrate. Crystal growth proceeds from “down” to “up”.

【0049】本発明は上記の実施形態に示した結晶組
成,バンドギャップ波長,ヘテロ接合の組み合わせに限
定されることなく、III族元素として少なくともGa
とInとを共に含み、V族元素として少なくともNとA
sとを共に含む化合物半導体結晶であれば、他の組成,
バンドギャップをもつ半導体結晶の作製に対して適用す
ることが可能であることは言うまでもない。また、本発
明は成長層が基板結晶に格子整合する場合に限定される
ものではなく、例えば半導体レーザの歪量子井戸構造な
ど、結晶欠陥を誘発するものでなければ格子不整を有す
る混晶比であっても良い。
The present invention is not limited to the combination of the crystal composition, bandgap wavelength, and heterojunction shown in the above embodiment, and at least Ga is used as a group III element.
And In together with at least N and A as Group V elements
If the compound semiconductor crystal contains both s and s, another composition,
It goes without saying that the present invention can be applied to the production of a semiconductor crystal having a band gap. Further, the present invention is not limited to the case where the growth layer lattice-matches to the substrate crystal. For example, in a mixed crystal ratio having a lattice mismatch unless a crystal defect is induced, such as a strained quantum well structure of a semiconductor laser. There may be.

【0050】また、結晶成長の方法、原料に関しても上
記の具体例に示されたもの以外のものを用いることが可
能である。特にMBE法,CVD法共に、ラジカル励起
されたN2,NH3または有機窒素化合物がN源として望
ましい。
As for the method of crystal growth and the raw materials, those other than those shown in the above specific examples can be used. In particular, in both the MBE method and the CVD method, radical-excited N 2 , NH 3 or an organic nitrogen compound is preferable as the N source.

【0051】[0051]

【発明の効果】以上のようにこの発明(請求項1)に係
る化合物半導体の製造方法によれば、III族元素とし
て少なくともGaとInとを共に含み、V族元素として
少なくともNとAsとを共に含む化合物半導体結晶を、
非混和領域内に相当する組成でも相分離することなく極
めて均一で良好な結晶性にて作製することができる。特
に、波長1.3μm,1.55μmに相当するバンドギ
ャップを有し、半導体レーザの活性層として用いるのに
十分な結晶性を有する化合物半導体混晶を作製すること
ができるようになる。
As described above, according to the method for manufacturing a compound semiconductor according to the present invention (claim 1), at least Ga and In are contained together as Group III elements, and at least N and As are contained as Group V elements. The compound semiconductor crystal containing both
Even a composition corresponding to an immiscible region can be produced with very uniform and good crystallinity without phase separation. In particular, a compound semiconductor mixed crystal having a band gap corresponding to wavelengths of 1.3 μm and 1.55 μm and having sufficient crystallinity to be used as an active layer of a semiconductor laser can be manufactured.

【0052】この発明(請求項2,3)に係る化合物半
導体の製造方法によれば、請求項1の効果をより好適に
得ることができる。
According to the method of manufacturing a compound semiconductor according to the present invention (claims 2 and 3), the effect of claim 1 can be more suitably obtained.

【0053】この発明(請求項4)に係る化合物半導体
の製造方法によれば、従来の結晶成長方法では良好な結
晶を得ることができない大きなN組成をもつ結晶が得ら
れるようになる。
According to the method of manufacturing a compound semiconductor according to the present invention (claim 4), it is possible to obtain a crystal having a large N composition which cannot obtain a good crystal by the conventional crystal growth method.

【0054】この発明(請求項5)に係る化合物半導体
の製造方法によれば、P化合物の上のAsとNとを共に
含むIII−V族化合物半導体混晶が結晶成長の初期か
らスムースなステップフロー成長が起こるようになり、
結晶性が向上する。
According to the method of manufacturing a compound semiconductor according to the present invention (claim 5), the III-V compound semiconductor mixed crystal containing both As and N on the P compound is a smooth step from the beginning of the crystal growth. Flow growth occurs,
Crystallinity is improved.

【0055】この発明(請求項6)に係る化合物半導体
の製造方法によれば、その上のAsとNとを共に含むI
II−V族化合物半導体混晶が結晶成長の初期からスム
ースなステップフロー成長が起こるようになり、結晶性
が向上する。また、下地のAs化合物とV族元素として
AsとNとを共に含むIII−V族化合物半導体混晶と
の界面が、量子井戸構造を作製するのに十分なくらいに
急峻になる。
According to the method for manufacturing a compound semiconductor according to the present invention (claim 6), the compound semiconductor including both As and N thereon is provided.
In the II-V compound semiconductor mixed crystal, smooth step flow growth occurs from the initial stage of crystal growth, and the crystallinity is improved. Further, the interface between the underlying As compound and the III-V compound semiconductor mixed crystal containing both As and N as the group V element becomes steep enough to produce a quantum well structure.

【0056】この発明(請求項7)に係る化合物半導体
の製造方法によれば、波長1.3μm,1.55μmに
対応するバンドギャップを有する均一で良好な組成分布
をもつ化合物半導体混晶を格子整合させて得ることがで
きるようになり、請求項1から5の方法で作製される化
合物半導体混晶を用いて光ファイバー通信に重要な高品
質の発光素子を創出することが可能になる。
According to the method of manufacturing a compound semiconductor according to the present invention (claim 7), a compound semiconductor mixed crystal having a band gap corresponding to wavelengths of 1.3 μm and 1.55 μm and having a uniform and favorable composition distribution is latticed. It is possible to obtain a high-quality light-emitting element important for optical fiber communication using the compound semiconductor mixed crystal produced by the method according to any one of the first to fifth aspects.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一実施形態における結晶成長のタイ
ムチャートを示す図である。(a)は基板温度、(b)
から(f)はそれぞれの分子線のシャッターシーケンス
を示す。
FIG. 1 is a diagram showing a time chart of crystal growth in a first embodiment of the present invention. (A) is the substrate temperature, (b)
(F) shows the shutter sequence of each molecular beam.

【図2】本発明の第一実施形態において作製されるGa
InNAs結晶の表面欠陥密度の、基板の傾斜角度依存
性を示す図である。
FIG. 2 shows a Ga produced in the first embodiment of the present invention.
FIG. 3 is a diagram illustrating the dependency of the surface defect density of an InNAs crystal on the tilt angle of a substrate.

【図3】本発明の第一実施形態において作製されるGa
InNAs結晶の表面欠陥密度の、基板温度依存性を示
す図である。
FIG. 3 shows a Ga produced in the first embodiment of the present invention.
FIG. 3 is a diagram illustrating the substrate temperature dependence of the surface defect density of an InNAs crystal.

【図4】本発明の第一実施形態において作製されるGa
InNAs結晶の表面欠陥の、InおよびNの組成に対
する依存性を示す図である。(a)傾斜なし5°傾斜、
(b)10°傾斜。
FIG. 4 shows a Ga produced in the first embodiment of the present invention.
FIG. 4 is a diagram showing the dependence of the surface defects of an InNAs crystal on the composition of In and N. (A) 5 ° tilt without tilt,
(B) 10 ° tilt.

【図5】本発明の第二実施形態における結晶成長のタイ
ムチャートを示す図である。(a)は基板温度、(b)
から(f)はそれぞれの原料ガスのシーケンスを示す。
FIG. 5 is a diagram showing a time chart of crystal growth in a second embodiment of the present invention. (A) is the substrate temperature, (b)
(F) shows the sequence of each source gas.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 III族元素として少なくともGa(ガ
リウム)とIn(インジウム)とを共に含み、V族元素
として少なくともN(窒素)とAs(砒素)とを共に含
む化合物半導体結晶を少なくとも1層含む積層構造を半
導体基板上に作製する化合物半導体の製造方法であっ
て、 該半導体基板が閃亜鉛鉱型の半導体結晶から成り、かつ
前記基板が{001}面から{111}A面方向へ傾斜
させた表面を有していることを特徴とする化合物半導体
の製造方法。
At least one layer of a compound semiconductor crystal containing at least Ga (gallium) and In (indium) as a group III element and at least N (nitrogen) and As (arsenic) as a group V element is included. A method for producing a compound semiconductor, wherein a laminated structure is formed on a semiconductor substrate, wherein the semiconductor substrate is made of a zinc blende type semiconductor crystal, and the substrate is inclined from a {001} plane to a {111} A plane. A method for producing a compound semiconductor, characterized by having a bent surface.
【請求項2】 請求項1に記載の化合物半導体の製造方
法において、前記基板が{001}面から{111}A
面方向へ3度以上30度以下の角度で傾斜された表面を
有していることを特徴とする化合物半導体の製造方法。
2. The method for manufacturing a compound semiconductor according to claim 1, wherein the substrate is {111} A from a {001} plane.
A method for manufacturing a compound semiconductor, comprising a surface inclined at an angle of 3 degrees or more and 30 degrees or less in a plane direction.
【請求項3】 請求項1又は2のいずれかに記載の化合
物半導体の製造方法において、前記積層構造は、600
℃以上750℃以下の温度で結晶成長されることを特徴
とする化合物半導体の製造方法。
3. The method of manufacturing a compound semiconductor according to claim 1, wherein said laminated structure has a thickness of 600.
A method for producing a compound semiconductor, wherein a crystal is grown at a temperature of from 750C to 750C.
【請求項4】 請求項1乃至3のいずれかに記載の化合
物半導体の製造方法において、前記のIII族元素とし
て少なくともGaとInとを共に含み、V族元素として
少なくともNとAsとを共に含む化合物半導体結晶は、
V族元素として結晶中に含まれているNの組成比 [N原子密度]/([N原子密度]+[As原子密
度]) が0.025以上0.1以下であることを特徴とする化
合物半導体の製造方法。
4. The method for producing a compound semiconductor according to claim 1, wherein said group III element contains at least Ga and In together, and said group V element contains at least N and As together. Compound semiconductor crystals
The composition ratio of N contained in the crystal as a group V element [N atom density] / ([N atom density] + [As atom density]) is 0.025 or more and 0.1 or less. A method for manufacturing a compound semiconductor.
【請求項5】 請求項1乃至4のいずれかに記載の化合
物半導体の製造方法において、V族元素としてP(燐)
を含む化合物半導体を積層し、その上にV族元素として
Asだけを有する化合物半導体を少なくとも1分子層以
上10分子層以下積層し、その上に前記のIII族元素
として少なくともGaとInとを共に含み、V族元素と
して少なくともNとAsとを共に含む化合物半導体結晶
を結晶成長する工程を含んでいることを特徴とする化合
物半導体の製造方法。
5. The method for producing a compound semiconductor according to claim 1, wherein P (phosphorus) is used as a group V element.
Is laminated, and a compound semiconductor having only As as a group V element is laminated thereon at least one molecular layer or more and ten molecular layers or less, and at least Ga and In as the above-mentioned group III element together are formed. A method of manufacturing a compound semiconductor, comprising the step of: crystal growing a compound semiconductor crystal containing at least N and As as group V elements.
【請求項6】 請求項1乃至5のいずれかに記載の化合
物半導体の製造方法において、III族元素として少な
くともGaとInとを共に含み、V族元素として少なく
ともNとAsとを共に含む化合物半導体結晶を結晶成長
する直前に、N原料だけを供給する工程を含むことを特
徴とする化合物半導体の製造方法。
6. The method of manufacturing a compound semiconductor according to claim 1, wherein the compound semiconductor includes at least Ga and In as a group III element and at least N and As as a group V element. A method for producing a compound semiconductor, comprising a step of supplying only an N raw material immediately before growing a crystal.
【請求項7】 請求項1乃至6のいずれかに記載の化合
物半導体の製造方法において、基板として用いる閃亜鉛
鉱型の半導体結晶がGaAsからなることを特徴とする
化合物半導体の製造方法。
7. The method for producing a compound semiconductor according to claim 1, wherein the zinc-blende-type semiconductor crystal used as the substrate is made of GaAs.
JP12845497A 1997-05-19 1997-05-19 Method for producing compound semiconductor Expired - Fee Related JP4002323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12845497A JP4002323B2 (en) 1997-05-19 1997-05-19 Method for producing compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12845497A JP4002323B2 (en) 1997-05-19 1997-05-19 Method for producing compound semiconductor

Publications (2)

Publication Number Publication Date
JPH10321959A true JPH10321959A (en) 1998-12-04
JP4002323B2 JP4002323B2 (en) 2007-10-31

Family

ID=14985115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12845497A Expired - Fee Related JP4002323B2 (en) 1997-05-19 1997-05-19 Method for producing compound semiconductor

Country Status (1)

Country Link
JP (1) JP4002323B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100591252B1 (en) * 2001-11-05 2006-06-19 주식회사 비첼 InGaNAs COMPOUND SEMICONDUCTOR THIN FILM AND METHOD FOR GROWTH THEREOF
JP2006339675A (en) * 2006-09-07 2006-12-14 Sharp Corp Nitride semiconductor laser element and semiconductor optical device
JP2008066327A (en) * 2006-09-04 2008-03-21 Sumitomo Electric Ind Ltd Method for growing iii-v compound semiconductor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100591252B1 (en) * 2001-11-05 2006-06-19 주식회사 비첼 InGaNAs COMPOUND SEMICONDUCTOR THIN FILM AND METHOD FOR GROWTH THEREOF
JP2008066327A (en) * 2006-09-04 2008-03-21 Sumitomo Electric Ind Ltd Method for growing iii-v compound semiconductor
JP2006339675A (en) * 2006-09-07 2006-12-14 Sharp Corp Nitride semiconductor laser element and semiconductor optical device

Also Published As

Publication number Publication date
JP4002323B2 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
US7101444B2 (en) Defect-free semiconductor templates for epitaxial growth
US20070051969A1 (en) Group III-V nitride-based semiconductor substrate and method of making same
US20060205197A1 (en) Compound semiconductor devices and methods of manufacturing the same
JP3550070B2 (en) GaN-based compound semiconductor crystal, growth method thereof and semiconductor substrate
US6653166B2 (en) Semiconductor device and method of making same
JPH10312971A (en) Iii-v compound semiconductor film and growth method, gan system semiconductor film and its formation, gan system semiconductor stacked structure and its formation, and gan system semiconductor element and its manufacture
US9012919B2 (en) III-V semiconductor structures and methods for forming the same
JP2002335051A (en) Nitride semiconductor element and forming method thereof
KR100319300B1 (en) Semiconductor Device with Quantum dot buffer in heterojunction structures
US7361522B2 (en) Growing lower defect semiconductor crystals on highly lattice-mismatched substrates
US20070160100A1 (en) Misfit dislocation forming interfacial self-assembly for growth of highly-mismatched III-Sb alloys
US20190326730A1 (en) Semiconductor device and fabrication method
JP2010225870A (en) Semiconductor element
JPWO2002078144A1 (en) Semiconductor device and crystal growth method
JP2905667B2 (en) Method for manufacturing II-VI compound semiconductor thin film and II-VI compound semiconductor device
US6881601B2 (en) Nitride compound semiconductor, nitride compound semiconductor light emitting device and method of manufacturing the same
JP3934320B2 (en) GaN-based semiconductor device and manufacturing method thereof
JP2001510281A (en) Method for manufacturing II-VI semiconductor component
JPH10321959A (en) Manufacture of compound semiconductor
JP2000150388A (en) Iii nitride semiconductor thin film and manufacture thereof
JP4583523B2 (en) III-V nitride semiconductor light emitting device and method for manufacturing the same
JP4006055B2 (en) Compound semiconductor manufacturing method and compound semiconductor device
US5246878A (en) Capping layer preventing deleterious effects of As--P exchange
JP2737748B2 (en) Compound semiconductor bonding method
JP3635613B2 (en) Semiconductor laminated structure and semiconductor light emitting device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040408

A621 Written request for application examination

Effective date: 20040408

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Effective date: 20040408

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061024

A131 Notification of reasons for refusal

Effective date: 20061121

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070112

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20070814

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070817

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110824

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20120824

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20130824

LAPS Cancellation because of no payment of annual fees