JPH10321346A - Self-temperature adjusting sheet-like heating element - Google Patents

Self-temperature adjusting sheet-like heating element

Info

Publication number
JPH10321346A
JPH10321346A JP13374697A JP13374697A JPH10321346A JP H10321346 A JPH10321346 A JP H10321346A JP 13374697 A JP13374697 A JP 13374697A JP 13374697 A JP13374697 A JP 13374697A JP H10321346 A JPH10321346 A JP H10321346A
Authority
JP
Japan
Prior art keywords
temperature
heating element
heating
self
crystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13374697A
Other languages
Japanese (ja)
Other versions
JP3428857B2 (en
Inventor
Toyoaki Kimura
豊明 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITAKE DENSHI KOGYO KK
Original Assignee
MITAKE DENSHI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITAKE DENSHI KOGYO KK filed Critical MITAKE DENSHI KOGYO KK
Priority to JP13374697A priority Critical patent/JP3428857B2/en
Publication of JPH10321346A publication Critical patent/JPH10321346A/en
Application granted granted Critical
Publication of JP3428857B2 publication Critical patent/JP3428857B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To adjust a temperature of a heating part thorough a sharp increase of electric resistance at the heating part resulting from thermal expansion by integrally forming the heating part composed of conductive particles and an amorphous high polymer composition and a control part composed of a crystalline substance to control a calorific value of the heating part so as to be brought into close contact with each other. SOLUTION: A crystalline high polymer is used as a control part (a base board) 4, and a heating part 5 composed of an amorphous high polymer in which conductive particles 1 are mixed, is adhered on the control part 4, and a self-temperature adjusting sheet-like heating body 6 is formed. The crystalline high polymer being the control part 4, particularly, polyethylene or the like lacks in an adhesive property, but when a polyethylene surface is roughened by processing by plasma etching or the like, adhesion becomes possible. The heating part 5 does not reveal a self-temperature adjusting function when it is independently used since the amorphous high polymer is used as a matrix, but when polyethylene of the control part 4 is heated, since it shows sharp thermal expansion at a melting point, the heating part 5 adhered on this also thermally expands, and a self-temperature heating function as a heating element 6 is exhibited.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、外部からの温度制
御を必要としない自己温度調節ヒーターの範疇に含まれ
る自己温度調節面状発熱体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a self-temperature control planar heating element included in the category of a self-temperature control heater that does not require external temperature control.

【0002】[0002]

【従来の技術】従来の自己温度調節面状発熱体6は、図
1に示すように、電気を通すための導電性粒子1と、こ
の導電性粒子1を保持するための高分子(マトリックス
高分子)2と、そして発熱体本体に電力を均等に供給す
るための電極3とが、最低限必要となる。前記構成要素
に加えて発熱体本体の絶縁や保護を図るための外皮や、
電極へのリード線等も準構成要素となるが、機能上重要
なものは(1)導電性粒子、(2)高分子、(3)電極である。
印刷法による面状発熱体の基板は準構成要素である外皮
の範疇に入る。
2. Description of the Related Art As shown in FIG. 1, a conventional self-temperature-controlling planar heating element 6 has conductive particles 1 for conducting electricity and a polymer (matrix height) for holding the conductive particles 1. (Molecule) 2 and an electrode 3 for evenly supplying power to the heating element body are required at a minimum. An outer skin for insulating and protecting the heating element body in addition to the above components,
The lead wire to the electrode is also a quasi-constituent element, but those important in function are (1) conductive particles, (2) polymer, and (3) electrode.
The substrate of the sheet heating element by the printing method falls in the category of the outer skin which is a sub-component.

【0003】こうした面状発熱体における自己温度調節
(スイッチング)の原理については、ポリエチレングリコ
ール系の唯一の例外を除き、すべて(2)高分子の熱膨張
により説明することができる。高分子中には、一定濃度
以上で導電性粒子が分散している。前記濃度は、導電性
粒子が直接接触して数珠繋ぎとなる連鎖から電極間に導
電性の経路を形成するのに必要な最低濃度であり、この
濃度をパーコレーション閾値という。導電性粒子がパー
コレーション閾値を越えると発熱体の抵抗値が急激に低
下し、スイッチングが明確に現れる。これらの発熱体に
おいては、導電性粒子の濃度がパーコレーション閾値を
越えていることが重要である。この条件が満たされてい
ると、電極間に粒子連鎖による導電回路が形成され、通
電する。この通電によるジュール熱が発熱体の温度を上
昇させ、高分子を熱膨張させる。このとき、高分子に固
定されていた導電性粒子も高分子の膨張に従って位置を
変えるので、接触していた導電性粒子間に間隙が生じ、
低温時に形成されてた導電経路が切断される。これが自
己温度調節(スイッチング)の原理である。「スイッチン
グ」いう呼び方は、低温時に導電回路ができているので
「入」の状態に、高温時に前記導電回路が切断されるので
「切」の状態にあることから名づけられた。
Self-temperature control in such a sheet heating element
Except for the only exception of polyethylene glycol, the principle of (switching) can be explained by (2) thermal expansion of polymer. Conductive particles are dispersed in the polymer at a certain concentration or higher. The concentration is the minimum concentration required to form a conductive path between the electrodes from a chain in which the conductive particles are in direct contact and form a bead, and this concentration is called a percolation threshold. When the conductive particles exceed the percolation threshold, the resistance value of the heating element sharply decreases, and switching clearly appears. In these heating elements, it is important that the concentration of the conductive particles exceeds the percolation threshold. When this condition is satisfied, a conductive circuit is formed between the electrodes by a chain of particles, and electricity is supplied. The Joule heat generated by the energization raises the temperature of the heating element, causing the polymer to thermally expand. At this time, since the position of the conductive particles fixed to the polymer also changes according to the expansion of the polymer, a gap is generated between the conductive particles in contact with each other,
The conductive path formed at a low temperature is cut. This is the principle of self-temperature control (switching). The term "switching" is named because the conductive circuit is formed at a low temperature and is in an "ON" state, and the conductive circuit is cut at a high temperature and is in an "OFF" state.

【0004】このような自己温度調節の原理は、次のよ
うにも表現することができる。発熱体の構成要素は、導
電性粒子、高分子及び電極である。自己温度調節(スイ
ッチング)は、前記構成要素のうち、高分子の熱膨張特
性を利用している。ここで、自己温度調節(スイッチン
グ)に必要な高分子の熱膨張特性について述べる。鋭敏
な自己温度調節(スイッチング)機能を発現させるために
は、以下に示すように、スイッチング温度(Ts)でマト
リックス高分子が急激に膨張することが必要である。言
い換えれば、スイッチング温度で高分子密度が急激に低
下することが必要である。このような特性は、結晶性の
高い高分子に現れる。これを図2(a)に示す。一方、結
晶性の低い無定形高分子では密度変化が緩やかである。
これを図2(b)に示す。
The principle of such self-temperature control can be expressed as follows. The components of the heating element are conductive particles, polymers, and electrodes. The self-temperature control (switching) utilizes the thermal expansion characteristics of the polymer among the constituent elements. Here, the thermal expansion characteristics of the polymer necessary for self-temperature control (switching) will be described. In order to exhibit a sharp self-temperature control (switching) function, it is necessary that the matrix polymer rapidly expands at the switching temperature (Ts) as described below. In other words, it is necessary for the polymer density to rapidly decrease at the switching temperature. Such characteristics appear in a polymer having high crystallinity. This is shown in FIG. On the other hand, the amorphous polymer having low crystallinity changes slowly in density.
This is shown in FIG.

【0005】[0005]

【発明が解決しようとする課題】従来の面状発熱体にお
いて、構成要素である高分子が無定形高分子であるとシ
ャープな密度変化がないので、スイッチングは現れな
い。このことは、従来の面状発熱体に用いる高分子に対
して選択の制限を加える。すなわち、面状発熱体の構成
要素は、導電性粒子、結晶性のマトリックス高分子及び
電極でなければならなかった。ただし、マトリックスは
あえて高分子である必要はない。例えば、高分子のポリ
エチレンの代わりにワックス等を用いることは理論上可
能である。しかし、実用に耐えなければならないという
条件をつければ、やはり高分子にならざるをえない。実
用性を離れた点からいっても、従来の自己温度調節面状
発熱体にはマトリックスとして結晶性物質が不可欠であ
る。
In the conventional planar heating element, if the constituent polymer is an amorphous polymer, there is no sharp change in density, and no switching occurs. This imposes restrictions on the choice of polymers used in conventional sheet heating elements. That is, the components of the sheet heating element had to be conductive particles, a crystalline matrix polymer, and an electrode. However, the matrix need not be a polymer. For example, it is theoretically possible to use wax or the like instead of high-molecular polyethylene. However, given the condition that it must withstand practical use, it must be a polymer. Even if it is far from practicality, a crystalline substance is indispensable as a matrix in a conventional self-temperature-controlling planar heating element.

【0006】前述のように、結晶性の高分子中に導電性
粒子を分散させて面状発熱体を構成するわけであるが、
押出機を用いる場合でも高分子が無定形の場合の方が何
かと作業性が良い。結晶性の高分子では作業できないと
いうわけではないが、印刷による製造法の場合、結晶化
度の高い高分子ではインクの製造ができない。この問題
を解決するものとして、無定形の部分と結晶性の部分と
をもつ共重合体を用いる方法が提案されている(特願平8
-348608号)が、この方法は結晶性の特性をある程度犠牲
にする必要がある。やはり、印刷法には無定形の高分子
を用いる方が、すべての点で有利である。しかし、無定
形高分子では自己温度調節面状発熱体を製作することは
不可能であった。
[0006] As described above, a planar heating element is formed by dispersing conductive particles in a crystalline polymer.
Even when an extruder is used, the workability is better when the polymer is amorphous. Although it is not impossible to work with a crystalline polymer, in the case of a production method by printing, an ink cannot be produced with a polymer having a high crystallinity. In order to solve this problem, a method using a copolymer having an amorphous portion and a crystalline portion has been proposed (Japanese Patent Application No. Hei 8
However, this method requires some sacrifice of crystallinity characteristics. Again, the use of amorphous polymers for printing is advantageous in all respects. However, it has not been possible to produce a self-temperature-regulating planar heating element with an amorphous polymer.

【0007】面状発熱体の特性面からは、局部線状発熱
という厄介な問題から逃れることができず、これに対す
る何らかの対策が不可欠であった。自己温度調節の機能
を極端に弱くすれば前記対策は不要になるが、それでは
自己温度調節ではなくなってしまう。具体的な対策とし
て、面状発熱体表面にアルミ等の均熱板を張ったり、電
極間距離を短くすること等があったが、いずれの場合も
コスト増加を伴うし、対策が不十分であると安全性に問
題が生じてくる場合があった。
[0007] In view of the characteristics of the sheet heating element, it was not possible to avoid the trouble of local linear heating, and some countermeasures against this problem were indispensable. If the function of the self-temperature control is made extremely weak, the above-mentioned countermeasure becomes unnecessary. As a specific countermeasure, there was a method in which a heat equalizing plate made of aluminum or the like was provided on the surface of the sheet heating element, or the distance between the electrodes was shortened.However, in any case, the cost was increased, and the countermeasure was insufficient. In some cases, safety issues may arise.

【0008】自己温度調節面状発熱体は、確かにそれ自
身で固有の温度を維持するが、結晶性高分子を決定すれ
ば相転移温度も決まってしまうわけで、任意の固有温度
を有する自己温度調節面状発熱体を作るにはかなりの制
約がある。高分子ではなく、結晶性低分子物質を実用面
から使用することができれば、発熱体の固有温度の選択
はきわめて広くなる。従来の技術では実験的に結晶性低
分子の使用は可能であったが、実用に供する面状発熱体
を結晶性低分子物質から製造することは不可能であっ
た。
Although the self-temperature-regulating sheet heating element certainly maintains its own temperature, if the crystalline polymer is determined, the phase transition temperature is also determined. There are considerable limitations in making a temperature controlled planar heating element. If a crystalline low-molecular substance instead of a polymer can be used from a practical point of view, the selection of the specific temperature of the heating element becomes extremely wide. In the prior art, it was possible to experimentally use a crystalline low-molecular substance, but it was impossible to produce a practical heating element from a crystalline low-molecular substance.

【0009】[0009]

【課題を解決するための手段】自己温度調節の原理は、
ポリエチレングリコール-グラファイト系を除いて、す
べて結晶性高分子の熱膨張で説明されている。従って、
結晶性高分子又は結晶性低分子物質そのものを排除する
ことはできない。このように、結晶性物質そのものは用
いるわけであるが、これを発熱体本体から除外すること
を考えた。そして、従来の構成要素であるマトリックス
高分子に代えて、無定形高分子を用いることを意図し
た。もしも無定形高分子を用いることができれば、押出
機を使用する際の作業性も良くなり、印刷法が可能とな
る上、局部線状発熱の回避も可能になると考えられる。
The principle of self-temperature control is as follows.
Except for the polyethylene glycol-graphite system, all are described by the thermal expansion of crystalline polymers. Therefore,
It is not possible to exclude crystalline high-molecular substances or crystalline low-molecular substances themselves. As described above, the crystalline substance itself is used, but it has been considered that this substance is excluded from the heating element body. Then, it was intended to use an amorphous polymer instead of the matrix polymer which is a conventional component. If an amorphous polymer can be used, it is considered that workability when using an extruder is improved, a printing method can be performed, and local linear heat generation can be avoided.

【0010】結晶性物質を発熱体の構成要素から排除し
て発熱体の本体外部で使用することができれば、結晶性
低分子を用いる可能性も出てくる。そうすればスイッチ
ング温度も幅広く選択できるようになり、低温度発熱の
自己温度調節面状発熱体も可能になる。
[0010] If the crystalline substance can be used outside the body of the heating element by excluding it from the components of the heating element, there is a possibility that a crystalline low molecule may be used. Then, a wide range of switching temperatures can be selected, and a self-temperature-regulating planar heating element that generates low-temperature heat is also possible.

【0011】以上述べたことから、課題解決の手段とし
て、発熱体本体から結晶性マトリックス高分子を除外
し、代わりに無定形高分子を構成要素として使用しつ
つ、結晶性物質を面状発熱体の本体外部で用いた面状発
熱体を開発した。すなわち、導電性粒子及び無定形高分
子組成物からなる発熱部と、この発熱部の発熱量を制御
する結晶性物質からなる制御部とを直接又は間接的に密
着一体化してなり、発熱部の熱を受けて熱膨張し、この
制御部に密着している発熱部の電気抵抗が急増すること
により発熱部の温度調節をする自己温度調節面状発熱体
である。
As described above, as a means for solving the problem, as a means for solving the problem, the crystalline matrix polymer is excluded from the heating element main body, and the crystalline substance is used as a component while using the amorphous polymer as a component. We have developed a planar heating element used outside the main body. That is, the heating section made of the conductive particles and the amorphous polymer composition, and the control section made of a crystalline substance that controls the heating value of the heating section are directly or indirectly closely adhered and integrated, and the heating section is formed. This is a self-temperature-adjusting planar heating element that adjusts the temperature of the heat-generating part by thermal expansion due to the heat and rapid increase in electric resistance of the heat-generating part in close contact with the control part.

【0012】導電性粒子には、黒鉛、カーボンブラッ
ク、カーボン繊維、カーボンウィスカー、金属粒子、金
属箔片、微小金属条、又はPVD(物理的蒸着)、CVD(化学
的蒸着)、無電解メッキ等によりチタン酸カリウムやマ
イカ等の絶縁性微粒子の表面に金属を付与したものを用
いることができる。
The conductive particles include graphite, carbon black, carbon fiber, carbon whiskers, metal particles, metal foil pieces, fine metal strips, PVD (physical vapor deposition), CVD (chemical vapor deposition), electroless plating, etc. In this case, an insulating fine particle such as potassium titanate or mica having a surface provided with a metal can be used.

【0013】無定形高分子には、ポリ塩化ビニル、シリ
コーンポリマー、ポリエチレンテレフタレート、アクリ
ル樹脂、ポリ酢酸ビニル、γ線重合によるポリアルデヒ
ド、ゴム及びこれらの誘導体を用いることができる。
As the amorphous polymer, polyvinyl chloride, silicone polymer, polyethylene terephthalate, acrylic resin, polyvinyl acetate, polyaldehyde by γ-ray polymerization, rubber, and derivatives thereof can be used.

【0014】結晶性物質には、ポリエチレン、ナイロ
ン、ポリアセタール、ポリトリオキサン、ポリエチレン
グリコール等の結晶性高分子や、ワックス、n-ヘキサ
トリアコンタン、テトラコサン等の脂肪族アルカン、ビ
フェニル、ナフタレン等の芳香族化合物、t-ブタノー
ル、ネオペンタノール等の結晶性低分子であり、いずれ
も実用上の温度範囲に転移点をもつ結晶性化合物を用い
ることができる。また、無機結晶も使用可能で、例えば
硫化カリウム5水和物、硫酸ナトリウム、硫酸ナトリウ
ム10水和物、ホスホン酸ナトリウム5水和物、リン酸水
素2ナトリウム12水和物、リン酸2水素ナトリウム2水
和物、4ホウ酸ナトリウム10水和物、メタホウ酸ナトリ
ウム4水和物、酢酸ナトリウム3水和物等がある。
Crystalline substances include crystalline polymers such as polyethylene, nylon, polyacetal, polytrioxane and polyethylene glycol, and aliphatic alkanes such as wax, n-hexatriacontan and tetracosane, and aromatics such as biphenyl and naphthalene. Compounds, crystalline low-molecular compounds such as t-butanol and neopentanol, and crystalline compounds having a transition point in a practical temperature range can be used. Inorganic crystals can also be used, for example, potassium sulfide pentahydrate, sodium sulfate, sodium sulfate decahydrate, sodium phosphonate pentahydrate, disodium hydrogen phosphate dodecahydrate, sodium dihydrogen phosphate Dihydrate, sodium borate decahydrate, sodium metaborate tetrahydrate, sodium acetate trihydrate and the like.

【0015】[0015]

【発明の実施の形態】上述のように、自己温度調節面状
発熱体の構成要素から結晶性マトリックス高分子を排除
し、これに代えて無定形高分子を発熱部として用いた。
結晶性高分子は、制御部として面状発熱体の本体外部に
配置した。ただし、この結晶性高分子からなる制御部と
無定形高分子からなる発熱部とは、直接又は間接的に密
着一体化せしめ、結晶性物質が膨脹すれば発熱体も膨脹
するようにした。発熱部の熱が制御部を加熱し、この発
熱部外の制御部の熱膨張が発熱部をも膨脹せしめるよう
にした。具体的には次のような方法がある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, the crystalline matrix polymer was excluded from the components of the self-regulating surface heating element, and an amorphous polymer was used as the heating section instead.
The crystalline polymer was disposed outside the main body of the sheet heating element as a control unit. However, the control section made of the crystalline polymer and the heating section made of the amorphous polymer were directly or indirectly closely adhered and integrated, so that when the crystalline substance expanded, the heating element also expanded. The heat of the heating section heats the control section, and the thermal expansion of the control section outside the heating section also causes the heating section to expand. Specifically, there is the following method.

【0016】先ず最初に、結晶性高分子を制御部(基盤)
4として用い、その制御部4上に導電性粒子1を混入し
た無定形高分子からなる発熱部5を接着した例の面状発
熱体6を図3に示す。制御部4である結晶性高分子、特
にポリエチレン等は接着性に乏しいが、ポリエチレン表
面をプラズマエッチングで処理したり、トリクロロエチ
レン等の蒸気に曝したり、テトラリン、デカリン等の溶
媒に浸漬する等して表面を荒らせば、接着が可能にな
る。発熱部5は無定形高分子をマトリックスに用いてい
るので、単独で使用すれば自己温度調節の機能は発現し
ない。ところが、制御部4のポリエチレンが加熱される
と融点でシャープな熱膨張を示すので、この上に接着さ
れている発熱部5も熱膨張し、発熱体6としての自己温
度調節機能が発現する。
First, a crystalline polymer is used as a control unit (base).
FIG. 3 shows an example of a planar heating element 6 which is used as the control section 4 and has a heating section 5 made of an amorphous polymer mixed with the conductive particles 1 adhered to the control section 4. The crystalline polymer, especially polyethylene, etc., which is the control unit 4, has poor adhesion, but the polyethylene surface is treated by plasma etching, exposed to vapor such as trichloroethylene, or immersed in a solvent such as tetralin, decalin, etc. If the surface is roughened, bonding becomes possible. Since the heating section 5 uses an amorphous polymer for the matrix, if it is used alone, it does not exhibit the function of self-temperature control. However, when the polyethylene of the control unit 4 is heated, the melting point shows sharp thermal expansion at the melting point. Therefore, the heating unit 5 bonded thereon also thermally expands, and the self-temperature control function as the heating element 6 is developed.

【0017】図4の例は、結晶性物質からなる制御部4
が直接発熱部5に接着されているのではなく、間接的に
発熱部5に接着されている面状発熱体6の例である。こ
の場合、制御部4となる結晶性物質が外皮7に覆われて
いて、前記外被7と発熱部5とを接着している点が図3
の例と異なっている。この図3の例では、結晶性物質と
して、低分子物質を用いたり、常温で液体である物質も
使用可能である。この場合、低温度の自己温度調節面状
発熱体6が実現できる。
FIG. 4 shows an example of a control unit 4 made of a crystalline material.
Is an example of the planar heating element 6 which is not directly bonded to the heat generating portion 5 but is indirectly bonded to the heat generating portion 5. In this case, the point that the crystalline material to be the control unit 4 is covered with the outer cover 7 and the outer cover 7 and the heat generating unit 5 are bonded to each other is shown in FIG.
Is different from the example. In the example of FIG. 3, a low molecular substance or a substance that is liquid at normal temperature can be used as the crystalline substance. In this case, a low-temperature self-temperature adjusting planar heating element 6 can be realized.

【0018】[0018]

【実施例】【Example】

実施例1 シリコーン(セメダイン、バスコーク)70重量部に黒鉛
(日本黒鉛、J-SP)30部を加えてよく混合してからトルエ
ンを少量加えたものを低密度ポリエチレン(三井石油化
学ハイゼックス5001、100×50×1mm)に塗布し、厚さ0.
6mmの塗膜(発熱部、シリコーンと黒鉛との混合物)を形
成した。ポリエチレン基板(制御部)は、予めテトラリン
に室温で24時間浸漬した後、ソックスレーでテトラリン
を抽出しておいた。こうして作成した試料を100℃で12
時間加熱した後、銀ペイント(藤倉化成ドーダイト550)
で電極を形成した。電極は長さ100mm、電極間距離16m
m、電極幅17mmとした。比較のために、シリコーン-黒鉛
組成物を直径20mm、厚さ2.0mmにテフロン皿を用いてキ
ャスト成型し、同じく銀ペイントで電極を設けた。この
二つの試料を空気恒温槽内に置き、デジタルマルチメー
ターを用いて温度抵抗特性を測定した。その結果を図5
に示した。図5において、結晶性高分子ポリエチレン基
板に塗布した試料(○)においては110℃近くから抵抗値
の急増、すなわちスイッチング特性が見られることが確
認できた。一方、基板を用いないキャスト試料(□)の場
合はスイッチング特性はまったく見られない。これは、
シリコーンが無定形高分子であるから当然のことであ
る。このように、結晶性の基板に接着させれば無定形高
分子を用いた発熱体においてもスイッチング特性が得ら
れることが確認された。
Example 1 Graphite was added to 70 parts by weight of silicone (Cemedine, Bascork)
(Nippon Graphite, J-SP) Add 30 parts and mix well, then apply a small amount of toluene to low-density polyethylene (Mitsui Petrochemical Hi-Zex 5001, 100 × 50 × 1 mm) and apply a thickness of 0.
A 6 mm coating film (heating section, mixture of silicone and graphite) was formed. The polyethylene substrate (control unit) was previously immersed in tetralin at room temperature for 24 hours, and then tetralin was extracted with Soxhlet. The sample prepared in this way was
After heating for hours, silver paint (Fujikura Kasei Dodite 550)
To form an electrode. The electrodes are 100 mm long and the distance between the electrodes is 16 m
m, and the electrode width was 17 mm. For comparison, a silicone-graphite composition was cast into a 20 mm diameter and 2.0 mm thick using a Teflon dish, and electrodes were also provided with silver paint. These two samples were placed in an air bath, and the temperature resistance characteristics were measured using a digital multimeter. The result is shown in FIG.
It was shown to. In FIG. 5, it was confirmed that in the sample (○) applied to the crystalline polymer polyethylene substrate, the resistance value rapidly increased from about 110 ° C., that is, switching characteristics were observed. On the other hand, in the case of the cast sample (□) using no substrate, no switching characteristics are observed. this is,
Naturally, silicone is an amorphous polymer. As described above, it was confirmed that switching characteristics could be obtained even in a heating element using an amorphous polymer by adhering to a crystalline substrate.

【0019】実施例2 シリコーンとしては東レ・ダウコーニングのSE9176を用
い、実施例1と同様に2通りの試料を作製し、各々の温
度抵抗特性を測定した。ポリエチレン(PE)基板に塗布し
た試料の場合は80℃から抵抗値が顕著に増加しはじめ、
スイッチング特性が明瞭に現れている。一方、キャスト
試料の場合はスイッチング特性がまったく見られない。
従って、本実施例においても無定形マトリックス高分子
を用いた発熱部(シリコーンと黒鉛との混合物)単独では
スイッチング特性はまったく現れないが、結晶性高分子
(制御部)をこの発熱部に密着させることによりスイッチ
ング特性が現れることが確認できた。
Example 2 Two kinds of samples were prepared in the same manner as in Example 1 by using SE9176 manufactured by Dow Corning Toray Co., Ltd. as silicone, and their temperature resistance characteristics were measured. In the case of a sample applied to a polyethylene (PE) substrate, the resistance starts to increase significantly from 80 ° C,
Switching characteristics clearly appear. On the other hand, in the case of the cast sample, no switching characteristics are observed.
Therefore, even in the present embodiment, the switching characteristic does not appear at all when the heating part (mixture of silicone and graphite) using the amorphous matrix polymer alone is used, but the crystalline polymer is used.
It was confirmed that switching characteristics appeared when the (control section) was brought into close contact with the heating section.

【0020】実施例3 今度は無定形マトリックス高分子としてポリブタジエン
を用いた。ポリブタジエン(JSRBR01)7gをトルエン140
mLに溶解し、これに黒鉛(日本黒鉛J-SP)3gを加えよく
混合して得られる発熱部を、前述の低密度ポリエチレン
及びPETフィルム(制御部)に印刷し、60℃で6時間乾燥
した。実施例1及び実施例2と同様に2つの試料につい
て温度抵抗特性を測定し、図7に示した。ポリブタジエ
ンは無定形高分子であることはよく知られている。この
実施例では、2つの試料はともに基板に印刷して作製さ
れた。すなわち、一方は結晶性のPE、他方は無定形のPE
T基板に印刷された。図7からわかるように、結晶性基
板(制御部)に印刷された場合(○)は顕著にスイッチング
特性が現れるのに対し、無定形の基板の場合(△)スイッ
チングは現れない。
Example 3 This time, polybutadiene was used as an amorphous matrix polymer. 7 g of polybutadiene (JSRBR01)
Dissolve it in mL, add 3 g of graphite (Nippon Graphite J-SP), mix well, print the heat-generating part on the low-density polyethylene and PET film (control part) described above, and dry at 60 ° C for 6 hours. did. The temperature resistance characteristics of the two samples were measured in the same manner as in Example 1 and Example 2, and are shown in FIG. It is well known that polybutadiene is an amorphous polymer. In this example, both samples were produced by printing on a substrate. That is, one is crystalline PE and the other is amorphous PE
Printed on T board. As can be seen from FIG. 7, when printed on a crystalline substrate (control unit) (ス イ ッ チ ン グ), switching characteristics remarkably appear, whereas in the case of an amorphous substrate (△), switching does not appear.

【0021】実施例4 170×100×0.1mmのPETフィルムに印刷面160×90mmをと
り、36wt%の黒鉛(J-SP)-シリコーン(東レ・ダウコーニ
ングSE9176)組成物を少量のトルエンで適当な粘度に調
整して得られる発熱部を、このPETフィルム(制御部)に
印刷した。電極は前述の銀ペイントで長さ160mm、幅5m
m、80mmとした。印刷膜は厚さ0.1mmであった。これを10
0℃で3時間加熱した。一方、深さ2mm、165×90mmの四
角な窪みを持つ厚さ0.1mmのPETフィルムを用意し、この
窪みにぴったり入るように前述の低密度ポリエチレン
(厚さ2mm)を2枚重ねて入れ、先に印刷したPETフィル
ムを上に載せ、周囲の四辺を接着した。こうして作成し
た試料の温度抵抗特性を図8に示した。このように、結
晶性ポリエチレンをPETフィルムに閉じこめ、これに無
定形高分子マトリックスの面状発熱体を印刷しても、前
述の実施例と同様にスイッチング機能が発現することが
確認できた。
Example 4 A printed surface of 160 × 90 mm was placed on a 170 × 100 × 0.1 mm PET film, and a 36 wt% of graphite (J-SP) -silicone (Toray Dow Corning SE9176) composition was appropriately treated with a small amount of toluene. A heating part obtained by adjusting the viscosity to a suitable value was printed on this PET film (control part). The electrode is 160mm long and 5m wide with the above-mentioned silver paint
m and 80 mm. The printed film was 0.1 mm thick. This is 10
Heat at 0 ° C. for 3 hours. On the other hand, prepare a 0.1mm thick PET film with a square recess of 2mm depth and 165x90mm.
(Thickness: 2 mm) were placed one on top of the other, and the previously printed PET film was placed on top, and the surrounding four sides were adhered. FIG. 8 shows the temperature resistance characteristics of the sample thus prepared. Thus, even when the crystalline polyethylene was confined in the PET film and the planar heating element of the amorphous polymer matrix was printed on the PET film, it was confirmed that the switching function was exhibited in the same manner as in the above-described example.

【0022】実施例5 実施例4で用いたのと同じ試料にDC24Vを印加し、電極
に対して垂直な直線上の温度分布を熱電対を用いて測定
した。この測定結果を図9に示した。図9に示されてい
るように、面状発熱体の両側縁では幾分温度が低いもの
の、局部発熱を示している部分はまったくなかった。通
電直後は当然直線上の点で温度が低く、時間経過ととも
に上昇してほぼ一定値に到達したが、どの時点において
も異常に高い温度を示すことはなかった。従って、本発
明の面状発熱体は、従来の面状発熱体の局部線状発熱の
問題がまったくないことが確認できた。
Example 5 A voltage of 24 V DC was applied to the same sample as used in Example 4, and the temperature distribution on a straight line perpendicular to the electrodes was measured using a thermocouple. This measurement result is shown in FIG. As shown in FIG. 9, although the temperature was somewhat lower at both side edges of the sheet heating element, there was no portion showing local heating. Immediately after the energization, the temperature was naturally low at a point on the straight line, increased with the passage of time and reached a substantially constant value, but did not show an abnormally high temperature at any time. Therefore, it was confirmed that the planar heating element of the present invention has no problem of local linear heating of the conventional planar heating element.

【0023】[0023]

【発明の効果】すでに述べたように、従来の自己温度調
節面状発熱体においては結晶性マトリックス高分子が構
成要素の一つとして不可欠であり、押出機の場合では作
業性の低下を招き、印刷法による場合にはスイッチング
特性を幾分切り捨てる以外に方法がなかった。また、発
熱体固有の性質である局部線状発熱も回避することは不
可能で、均熱板を設ける等、追加的対策を強いられてき
た。
As described above, the crystalline matrix polymer is indispensable as one of the constituent elements in the conventional self-temperature-controlling planar heating element, and in the case of the extruder, the workability is reduced. In the case of the printing method, there was no method other than cutting off the switching characteristics to some extent. In addition, it is impossible to avoid local linear heat generation, which is a characteristic of the heating element, and additional measures such as providing a heat equalizing plate have been required.

【0024】本発明による面状発熱体、すなわち構成要
素の一つであるマトリックス高分子に代えて無定形の高
分子を用い、結晶性物質は発熱部に密着一体化する制御
部として使用するようにしたことにより、実施例1〜5
に示されたように、無定形マトリックス高分子を用いて
いても優れたスイッチング特性が得られることが明らか
になった。そして、従来の自己温度調節面状発熱体では
不可避の問題であった局部線状発熱も実施例5に見られ
るように、本発明においては本質的に起こらないことが
確認された。
The planar heating element according to the present invention, that is, an amorphous polymer is used in place of the matrix polymer which is one of the constituent elements, and the crystalline substance is used as a control unit which is tightly integrated with the heating unit. As a result, Examples 1 to 5
As shown in the above, it was revealed that excellent switching characteristics can be obtained even when an amorphous matrix polymer is used. Then, it was confirmed that the local linear heating, which was an inevitable problem in the conventional self-temperature-regulating planar heating element, essentially did not occur in the present invention as seen in Example 5.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の面状発熱体の基本構成を示す断面図であ
る。
FIG. 1 is a cross-sectional view showing a basic configuration of a conventional planar heating element.

【図2】(a)結晶性高分子の密度-温度特性と(b)無定形
高分子の密度-温度特性を示すグラフである。
FIG. 2 is a graph showing (a) density-temperature characteristics of a crystalline polymer and (b) density-temperature characteristics of an amorphous polymer.

【図3】本発明による面状発熱体の構成を示す断面図で
ある。
FIG. 3 is a cross-sectional view illustrating a configuration of a sheet heating element according to the present invention.

【図4】本発明による別例の面状発熱体の構成を示す断
面図である。
FIG. 4 is a cross-sectional view showing a configuration of another example of the planar heating element according to the present invention.

【図5】実施例1の温度抵抗特性を示すグラフである。FIG. 5 is a graph showing temperature resistance characteristics of Example 1.

【図6】実施例2の温度抵抗特性を示すグラフである。FIG. 6 is a graph showing temperature resistance characteristics of Example 2.

【図7】実施例3の温度抵抗特性を示すグラフである。FIG. 7 is a graph showing temperature resistance characteristics of Example 3.

【図8】実施例4の温度抵抗特性を示すグラフである。FIG. 8 is a graph showing temperature resistance characteristics of Example 4.

【図9】実施例4の電極に対して垂直な直線上の温度分
布を示したグラフである。
FIG. 9 is a graph showing a temperature distribution on a straight line perpendicular to the electrode of Example 4.

【符号の説明】[Explanation of symbols]

1 導電性粒子 2 (マトリックス)高分子 3 電極 4 制御部(基盤) 5 発熱部 6 自己温度調節面状発熱体 7 外皮 DESCRIPTION OF SYMBOLS 1 Conductive particle 2 (matrix) polymer 3 Electrode 4 Control part (base) 5 Heating part 6 Self-temperature control surface heating element 7 Outer shell

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 導電性粒子及び無定形高分子組成物から
なる発熱部と、該発熱部の発熱量を制御する結晶性物質
からなる制御部とを直接又は間接的に密着一体化してな
り、該制御部が発熱部の熱を受けて熱膨張し、前記制御
部に密着している発熱部の電気抵抗が急増することによ
り発熱部の温度調節をすることを特徴とする自己温度調
節面状発熱体。
1. A heating unit comprising conductive particles and an amorphous polymer composition, and a control unit comprising a crystalline substance for controlling the calorific value of the heating unit, which are directly or indirectly closely adhered and integrated, The self-regulating surface is characterized in that the control section receives the heat of the heat generating section and thermally expands, and the temperature of the heat generating section is adjusted by a sudden increase in the electric resistance of the heat generating section in close contact with the control section. Heating element.
JP13374697A 1997-05-23 1997-05-23 Self-temperature control surface heating element Expired - Lifetime JP3428857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13374697A JP3428857B2 (en) 1997-05-23 1997-05-23 Self-temperature control surface heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13374697A JP3428857B2 (en) 1997-05-23 1997-05-23 Self-temperature control surface heating element

Publications (2)

Publication Number Publication Date
JPH10321346A true JPH10321346A (en) 1998-12-04
JP3428857B2 JP3428857B2 (en) 2003-07-22

Family

ID=15111969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13374697A Expired - Lifetime JP3428857B2 (en) 1997-05-23 1997-05-23 Self-temperature control surface heating element

Country Status (1)

Country Link
JP (1) JP3428857B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005312680A (en) * 2004-04-28 2005-11-10 Deed Corp Heat-insulated bottle holder
JP2006325335A (en) * 2005-05-19 2006-11-30 Hitachi Ltd Actuator and its material
KR100889195B1 (en) * 2007-07-10 2009-03-17 김호섭 Carbon paste composition for areal heating element added with self switch function

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005312680A (en) * 2004-04-28 2005-11-10 Deed Corp Heat-insulated bottle holder
JP4651304B2 (en) * 2004-04-28 2011-03-16 株式会社ディード Medical thermal bottle holder
JP2006325335A (en) * 2005-05-19 2006-11-30 Hitachi Ltd Actuator and its material
JP4732798B2 (en) * 2005-05-19 2011-07-27 株式会社日立製作所 Actuators and actuator modules
KR100889195B1 (en) * 2007-07-10 2009-03-17 김호섭 Carbon paste composition for areal heating element added with self switch function

Also Published As

Publication number Publication date
JP3428857B2 (en) 2003-07-22

Similar Documents

Publication Publication Date Title
KR970003210B1 (en) Electrical device comprising conductive polymers
CA1062755A (en) Layered self-regulating heating article
US4719335A (en) Devices comprising conductive polymer compositions
KR101414200B1 (en) Heating element
US4761541A (en) Devices comprising conductive polymer compositions
US6197859B1 (en) Thermally conductive interface pads for electronic devices
JP2010518590A (en) Internally heatable, hot-melt adhesive flat structure
IE880491L (en) Electrically resistive tracks
EP0918339A3 (en) Electrical device containing positive temperature coefficient resistor composition and method of manufacturing the device
JPS5964685A (en) Anisotropically conductive, heat-bondable film
SK11342000A3 (en) Flat heating element and use of flat heating elements
KR19990036855A (en) PCB elements, protection devices and circuit boards
US4801785A (en) Electrical devices
EP0740841B1 (en) Heat-sensitive resistive compound and method for producing it and using it
JP3428857B2 (en) Self-temperature control surface heating element
JP2004090445A (en) Carbon graphite sheet
JP2008300050A (en) Polymer heating element
JP4126637B2 (en) Printing ink for self-temperature control heater
EP3873170A1 (en) Pptc heater and material having stable power and self-limiting behavior
JPH07183078A (en) Self-temperature controlling, current-carrying heating element
JP4529111B2 (en) PTC sheet heating element with fuse function
EP0209224B1 (en) Sheet heaters
JP3085307B2 (en) Tape or plate heating element with self-controlled temperature
JPS63278396A (en) Printed circuit board with circuit protecting function
JPH0748396B2 (en) Sheet heating element

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term