JPH10317084A - Al-zr alloy and its production - Google Patents

Al-zr alloy and its production

Info

Publication number
JPH10317084A
JPH10317084A JP17536397A JP17536397A JPH10317084A JP H10317084 A JPH10317084 A JP H10317084A JP 17536397 A JP17536397 A JP 17536397A JP 17536397 A JP17536397 A JP 17536397A JP H10317084 A JPH10317084 A JP H10317084A
Authority
JP
Japan
Prior art keywords
alloy
pouring nozzle
sectional area
molten metal
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17536397A
Other languages
Japanese (ja)
Inventor
Akira Yamazaki
明 山崎
Hidemichi Fujiwara
英道 藤原
Katsutoshi Wakana
勝敏 若菜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP17536397A priority Critical patent/JPH10317084A/en
Publication of JPH10317084A publication Critical patent/JPH10317084A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an Al-Zr alloy suitable for overhead power transmission wire, etc., excellent in workability, minimal in fluctuations in properties, and having high reliability. SOLUTION: An endless belt 12 is moved in contact with a rotating wheel 10 having a groove 11 in the outside peripheral surface to form a moving mold 13 between the groove and the endless belt, and a molten Al-Zr alloy 16 is poured via a pouring nozzle 15 into the moving mold and cast continuously. In this method of production of the Al-Zr alloy, this Al-Zr alloy is an Al-Zr alloy containing, as alloying element, at least Zr by 0.3-0.4 wt.% and having the balance Al with inevitable impurities, and further, the flow velocity of the molten metal 16 at the end of the pouring nozzle is regulated to a velocity exceeding 20 m/min. By this method, the At-Zr alloy, practically free from the occurrence of casting crack, rollling crack, ware breakage, etc., and excellent in workability and having stable properties of tensile strength, etc., and increased in reliability, can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、架空送電線などに
適した、加工性に優れ、且つ特性変動が小さく信頼性の
高いAl−Zr系合金およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly reliable Al-Zr-based alloy suitable for overhead power transmission lines, which is excellent in workability, has small characteristic fluctuations, and has high reliability.

【0002】[0002]

【従来の技術】架空送電線には、一般にアルミニウム材
料が用いられているが、送電容量を増やそうとすると架
空送電線自身が抵抗発熱して軟化し強度が低下するとい
う問題がある。このため大容量送電線には耐熱性に優れ
るAlーZr系合金、特にZrの他にFe、Cu、B
e、Srなどを微量添加したAl−Zr系合金が多く用
いられている。
2. Description of the Related Art Aluminum materials are generally used for overhead power transmission lines, but there is a problem that if the power transmission capacity is to be increased, the overhead power transmission lines themselves are heated by resistance and soften, and their strength is reduced. For this reason, high-capacity transmission lines are made of Al-Zr-based alloys having excellent heat resistance, in particular, Fe, Cu, and B in addition to Zr.
Al-Zr-based alloys with a small amount of e, Sr, etc. added are often used.

【0003】前記Al−Zr系合金などの電線材料は、
たとえば、Al−Zr系合金溶湯をベルトホイール式連
続鋳造法により鋳造し、得られる鋳塊をその鋳造熱を利
用して熱間で連続圧延して荒引線とし、これを伸線加工
する方法により製造されている。前記ベルトホイール式
連続鋳造法は、図1に示すように、回転ホイール10の外
周面に形成された溝11の一部に金属製のエンドレスベル
ト12を接動させて移動鋳型13を形成し、この移動鋳型13
の一方の開口端14から注湯ノズル15を通して溶湯16を注
入し、溶湯16を移動鋳型13内で凝固させて鋳塊17とし、
この鋳塊17を前記移動鋳型13の他方の開口端18から連続
的に引出す鋳造法である。図1で31はエンドレスベルト
に張力を付与するテンションホイール、32はエンドレス
ベルトを回転ホイールに押さえ付けるロールである。
[0003] The electric wire material such as the Al-Zr alloy is
For example, a method of casting a molten Al-Zr-based alloy by a belt-wheel continuous casting method, continuously rolling the resulting ingot hot using the casting heat to obtain a rough drawn wire, and performing a wire drawing process. Being manufactured. As shown in FIG. 1, the belt-wheel continuous casting method forms a moving mold 13 by contacting a metal endless belt 12 with a part of a groove 11 formed on an outer peripheral surface of a rotating wheel 10, This moving mold 13
A molten metal 16 is poured from one open end 14 of the molten metal through a pouring nozzle 15, and the molten metal 16 is solidified in a moving mold 13 to form an ingot 17,
In this casting method, the ingot 17 is continuously drawn from the other open end 18 of the moving mold 13. In FIG. 1, 31 is a tension wheel for applying tension to the endless belt, and 32 is a roll for pressing the endless belt against the rotating wheel.

【0004】このベルトホイール式連続鋳造法では、通
常、移動鋳型13の一方の開口端14を回転ホイール10の頂
部に位置させ、この開口端14に注湯ノズル15を、その軸
を水平にして配する。注湯ノズル15は、図2に示すよう
に、先端部が鋳型内面形状より1回り小さい鉄殻18の内
外面に、厚さ1〜2mmのペーパー状断熱材19を貼着さ
せたもので、その先端部分の外周面は溶湯漏れを防止す
るため移動鋳型13の内面に密接される。前記ベルトホイ
ール式連続鋳造法では、通常、鋳塊断面積は2500m
2 、鋳造速度は13m/分、注湯ノズル先端部分の出
口断面積(図2参照)は2200mm2 程度である。
In this belt-wheel continuous casting method, one open end 14 of a moving mold 13 is usually located at the top of a rotating wheel 10, and a pouring nozzle 15 is placed at the open end 14 with its axis horizontal. Distribute. As shown in FIG. 2, the pouring nozzle 15 is formed by attaching a paper-like heat insulating material 19 having a thickness of 1 to 2 mm to the inner and outer surfaces of an iron shell 18 whose tip portion is one size smaller than the inner shape of the mold. The outer peripheral surface of the tip portion is in close contact with the inner surface of the movable mold 13 to prevent the molten metal from leaking. In the belt wheel type continuous casting method, the ingot cross-sectional area is usually 2500 m.
m 2 , the casting speed was 13 m / min, and the outlet cross-sectional area at the tip of the pouring nozzle (see FIG. 2) was about 2200 mm 2 .

【0005】ところで、Zrを0.3〜0.4wt%含む
Al合金溶湯を745〜755℃の高温から冷却してい
くと660.5℃の温度域で融点が1580℃のAl3
Zrが晶出する(図3の状態図参照)。この晶出物は、
粗大な単体として、或いは図4に示すように針状晶が複
数個集合して鋳塊中に混在する。また前記Al−Zr系
合金には、特性改善を目的として、Fe、Cu、Be、
Srなどの元素が適量添加されたり、不可避不純物とし
てSiなどが含まれたりするが、これら元素もAl−F
e系やAl−Fe−Si系などの高融点金属間化合物と
なって鋳塊中に混入する。
By the way, when the molten Al alloy containing 0.3 to 0.4 wt% of Zr is cooled from a high temperature of 745 to 755 ° C., Al 3 having a melting point of 1580 ° C. in a temperature range of 660.5 ° C.
Zr is crystallized (see the phase diagram in FIG. 3). This crystallized product
As shown in FIG. 4, a plurality of needle-like crystals are aggregated and mixed together in the ingot. The Al-Zr-based alloy has Fe, Cu, Be,
Elements such as Sr are added in an appropriate amount, and Si or the like is included as an inevitable impurity.
It becomes a high-melting intermetallic compound such as e-based or Al-Fe-Si-based and is mixed into the ingot.

【0006】ところで、図2に示したように、注湯ノズ
ルの先端部分は、冷却された回転ホイール10の溝11内面
に接しているため、溶湯16は注湯ノズル15の先端部分で
温度が急激に低下して晶出物が生成する。この晶出物は
注湯ノズル15の先端部分の内面に沈着し粗大化し、ある
大きさに達すると溶湯16の流れにより剥離して鋳塊中に
混入し、鋳造割れ、圧延割れ、伸線加工時の断線などの
原因になる。また前記晶出物が線材中に混在すると、晶
出物は靱性に乏しいため線材の強度に寄与しないばかり
か、むしろ、線材の有効断面積を減少させて強度などの
特性を大幅に変動させたりする。この晶出物の合金中に
占める最大断面積比率は7%を超えることがあり、この
ときの粗大晶出物による不良率は30%にも及んでい
る。
By the way, as shown in FIG. 2, the tip of the pouring nozzle is in contact with the inner surface of the groove 11 of the cooled rotating wheel 10, so that the molten metal 16 has a temperature at the tip of the pouring nozzle 15. It drops sharply to form crystals. This crystallized substance deposits on the inner surface of the tip of the pouring nozzle 15 and becomes coarse, and when it reaches a certain size, it is separated by the flow of the molten metal 16 and mixed into the ingot, casting cracks, rolling cracks, wire drawing It may cause disconnection at the time. Further, when the crystallized material is mixed in the wire, the crystallized material does not contribute to the strength of the wire because of poor toughness, but rather, the effective cross-sectional area of the wire is reduced to greatly change properties such as strength. I do. The maximum cross-sectional area ratio of the crystallized substance in the alloy may exceed 7%, and the defect rate due to the coarse crystallized substance reaches as much as 30%.

【0007】[0007]

【発明が解決しようとする課題】このようなことから、
前記注湯ノズルの出口断面積を鋳塊断面積の0.6倍以
下に狭めて、前記先端部分での溶湯の流速を速めて、前
記沈着晶出物を、粗大化する前に流出させるようにした
注湯ノズルが提案された(特願平7−247079
号)。しかし、この注湯ノズルを用いただけでは、沈着
物を流出させるに足る流速が得られるとは限らず、粗大
化した晶出物が鋳塊に混入して、後の圧延、伸線などの
工程で割れや断線を引き起こしたり、特性が変動するな
どの問題が発生する恐れがある。
SUMMARY OF THE INVENTION
The outlet cross-sectional area of the pouring nozzle is reduced to 0.6 times or less the cross-sectional area of the ingot to increase the flow rate of the molten metal at the tip, so that the deposited crystal is allowed to flow out before coarsening. (Japanese Patent Application No. 7-247079)
issue). However, using only this pouring nozzle does not always provide a flow velocity sufficient to allow the sediment to flow out, and coarsened crystallized substances are mixed into the ingot, and the subsequent steps such as rolling and drawing are performed. This may cause problems such as cracks and disconnections and fluctuations in characteristics.

【0008】このような事態を踏まえ、本発明者等は、
断線や特性変動の原因になる晶出物の粗大化を抑制する
方法について鋭意研究を行い、合金中に占める晶出物の
最大断面積比率の上限を押さえることにより改善できる
こと、また前記最大断面積比率の上限は注湯ノズル先端
での溶湯速度を高速化することにより制御し得ることを
知見し、さらに研究を進めて本発明を完成させるに至っ
た。本発明は合金中に占める晶出物の最大断面積比率を
制御して伸線加工性などを高め、かつ特性を安定化した
Al−Zr系合金およびその製造方法の提供を目的とす
る。
[0008] In view of such a situation, the present inventors,
Conducting intensive research on methods to suppress coarsening of crystallized substances that cause disconnection and characteristic fluctuations, it can be improved by holding down the upper limit of the maximum cross-sectional area ratio of crystallized substances in the alloy, and that the maximum cross-sectional area They found that the upper limit of the ratio could be controlled by increasing the speed of the molten metal at the tip of the pouring nozzle, and further advanced the research to complete the present invention. An object of the present invention is to provide an Al-Zr-based alloy in which the maximum cross-sectional area ratio of a crystallized substance in an alloy is controlled to enhance wire drawing workability and the properties are stabilized, and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】請求項1記載の発明は、
合金元素として少なくともZrを0.3〜0.4wt%含
有し、残部がAlと不可避不純物からなるAl−Zr系
合金において、前記合金中に占める晶出物の最大断面積
比率が5%以下であることを特徴とするAl−Zr系合
金である。
According to the first aspect of the present invention,
In an Al-Zr-based alloy containing at least 0.3 to 0.4 wt% of Zr as an alloy element and the balance being Al and unavoidable impurities, the maximum cross-sectional area ratio of a crystallized substance in the alloy is 5% or less. An Al-Zr-based alloy characterized by having a certain characteristic.

【0010】請求項2記載の発明は、外周面に溝を有す
る回転ホイールにエンドレスベルトを接動させて前記溝
とエンドレスベルトとの間で移動鋳型を形成し、前記移
動鋳型内にAl−Zr系合金の溶湯を注湯ノズルを通し
て注入して連続鋳造するAl−Zr系合金の製造方法に
おいて、前記Al−Zr系合金が、合金元素として少な
くともZrを0.3〜0.4wt%含有し、残部がAlと
不可避不純物からなるAl−Zr系合金であり、前記注
湯ノズルの先端部分における溶湯の流速を20m/分を
超える速度にすることを特徴とするAl−Zr系合金の
製造方法である。
According to a second aspect of the present invention, an endless belt is brought into contact with a rotating wheel having a groove on an outer peripheral surface to form a moving mold between the groove and the endless belt, and an Al-Zr is formed in the moving mold. In the method for producing an Al-Zr alloy, in which a molten alloy is injected through a pouring nozzle and continuously cast, the Al-Zr alloy contains at least 0.3 to 0.4 wt% of Zr as an alloy element. A method for producing an Al-Zr-based alloy, characterized in that the balance is an Al-Zr-based alloy comprising Al and unavoidable impurities, and wherein the flow rate of the molten metal at the tip of the pouring nozzle is set to a speed exceeding 20 m / min. is there.

【0011】本発明において、Al−Zr系合金とは、
少なくともZrを0.3〜0.4wt%含有するAl−Z
r合金、またはZr以外に、特性改善に有効なFe、C
u、Mn、Be、Srなどの元素を含有させたAl−Z
r系合金などである。
In the present invention, the Al-Zr alloy is
Al-Z containing at least 0.3-0.4 wt% of Zr
Fe, C other than r alloy or Zr, effective for improving properties
Al-Z containing elements such as u, Mn, Be, Sr
An r-based alloy or the like.

【0012】本発明のAl−Zr系合金は、合金中に混
在する晶出物の最大断面積比率が所定値に限定されてい
るので、加工性に優れ、また特性が安定し信頼性が高
い。前記晶出物の最大断面積比率を5%以下に限定する
理由は、前記最大断面積比率が5%を超えると、特性が
不安定になって規格を外れるものが出たりして製品の信
頼性が低下するためである。本発明において、合金中に
占める晶出物の最大断面積比率とは、合金(鋳塊、荒引
線、線材など)から多数のサンプルを採取し、各サンプ
ルの断面に占める晶出物の断面積比率を測定し、その中
での最大の断面積比率を言う。サンプル数nは、多くの
実験を基に100以上あれば良いことを本発明者等は確
認している。
The Al-Zr-based alloy of the present invention is excellent in workability, stable in characteristics and high in reliability because the maximum cross-sectional area ratio of crystallized substances mixed in the alloy is limited to a predetermined value. . The reason that the maximum cross-sectional area ratio of the crystallized product is limited to 5% or less is that if the maximum cross-sectional area ratio exceeds 5%, the characteristics become unstable and some of the products are out of the standard. This is because the property is reduced. In the present invention, the maximum cross-sectional area ratio of a crystallized substance in an alloy refers to a cross-sectional area of a crystallized substance occupying a cross section of each sample by taking a large number of samples from an alloy (ingot, rough drawn wire, wire rod, etc.). The ratio is measured, and the maximum cross-sectional area ratio is measured. The present inventors have confirmed that the sample number n should be 100 or more based on many experiments.

【0013】請求項2記載の発明は、注湯ノズル先端部
分の溶湯の流速を速めて、注湯ノズル先端部分に沈着し
た晶出物を粗大化する前に溶湯流で流出させ、鋳塊に混
入する晶出物の合金中に占める最大断面積比率を5%以
下に抑制するAl−Zr系合金の製造方法である。この
発明で、注湯ノズル先端での溶湯流速を20m/分を超
える速度に限定した理由は、20m/分以下では晶出物
の流出が十分行われず、晶出物が粗大化するためであ
る。注湯ノズル先端部分での溶湯流速の上限は特には限
定しないが、余り速くすると鋳型内の溶湯が激しく攪拌
されて凝固が不均一となり鋳塊欠陥が発生する。従っ
て、注湯ノズル先端部分での溶湯の最大流速は70m/
分程度以下にするのが望ましい。
According to a second aspect of the present invention, the flow rate of the molten metal at the tip of the pouring nozzle is increased so that crystallized substances deposited at the tip of the pouring nozzle are made to flow out of the molten metal before being coarsened, and are cast into an ingot. This is a method for producing an Al—Zr-based alloy in which the maximum cross-sectional area ratio of the mixed crystallized substances in the alloy is suppressed to 5% or less. In the present invention, the reason why the flow rate of the molten metal at the tip of the pouring nozzle is limited to a speed exceeding 20 m / min is that at 20 m / min or less, outflow of the crystallized material is not sufficiently performed and the crystallized material is coarsened. . The upper limit of the flow velocity of the molten metal at the tip of the pouring nozzle is not particularly limited. However, if it is too high, the molten metal in the mold is vigorously stirred, so that the solidification becomes non-uniform and ingot defects occur. Therefore, the maximum flow velocity of the molten metal at the tip of the pouring nozzle is 70 m /
It is desirable to make it less than about a minute.

【0014】本発明において、注湯ノズル先端部分での
溶湯流速は、注湯ノズル先端部分の断面積、鋳造速度
(鋳塊の製出速度)などによって制御することができ
る。鋳造速度を速めたときの溶湯量の補給は、注湯ノズ
ル先端部分にかかる静水圧を高めれば良い。前記静水圧
を高めるには、注湯ノズルに連結されたタンディッシュ
を気密化してタンディッシュ内の気圧を高める方法や、
タンディッシュ内の溶湯ヘッドを高くする方法などがあ
る。
In the present invention, the flow velocity of the molten metal at the tip of the pouring nozzle can be controlled by the cross-sectional area of the tip of the pouring nozzle, casting speed (ingot production speed), and the like. To supply the molten metal when the casting speed is increased, the hydrostatic pressure applied to the tip of the pouring nozzle may be increased. To increase the hydrostatic pressure, a method of increasing the air pressure in the tundish by hermetically sealing the tundish connected to the pouring nozzle,
There is a method of increasing the height of the molten metal head in the tundish.

【0015】図6は、本発明で用いる注湯ノズルの例を
示す正面図で、注湯ノズル先端部分の上部(エンドレス
ベルト側)を断熱部材21で閉塞し、溝11の底部側に溶湯
出口20を配したものである。
FIG. 6 is a front view showing an example of a pouring nozzle used in the present invention. The upper end (endless belt side) of the pouring nozzle is closed by a heat insulating member 21 and a molten metal outlet is provided at the bottom of the groove 11. 20 is arranged.

【0016】[0016]

【実施例】以下に本発明を実施例により詳細に説明す
る。 (実施例1)Al−0.4wt%Zr−0.1〜0.2wt
%Fe合金溶湯を800℃に加熱し、これをベルトホイ
ール式連続鋳造法で断面積2500mm2 の鋳塊に連続
鋳造し、この鋳塊を直ちに熱間で連続圧延して9.5m
mφの荒引線に加工した。次いでこの荒引線を400℃
で48時間時効処理したのち、4.5mmφの線材に伸
線加工した。鋳造速度および注湯ノズル先端部分の出口
断面積は種々に変化させた。
The present invention will be described below in detail with reference to examples. (Example 1) Al-0.4wt% Zr-0.1 ~ 0.2wt
% Fe alloy melt is heated to 800 ° C. and continuously cast into an ingot having a cross-sectional area of 2500 mm 2 by a belt-wheel continuous casting method, and this ingot is immediately and continuously hot-rolled to 9.5 m.
It was processed into a rough drawn wire of mφ. Next, the rough drawn line was heated to 400 ° C.
After aging treatment for 48 hours, the wire was drawn into a 4.5 mmφ wire. The casting speed and the outlet cross-sectional area at the tip of the pouring nozzle were varied.

【0017】得られた各々の線材について、引張強さと
晶出物の断面積比率を測定した。引張強さはJIS−Z
2241に準じて測定した。晶出物の断面積比率はサン
プルの断面を研摩して光学顕微鏡または走査電顕により
写真撮影し、これを基に画像処理装置を用いて晶出物の
断面積比率を測定した。引張強さのサンプル数は各3
本、断面積比率のサンプル数は各100個とした。晶出
物の最大断面積比率と引張強さの関係を図5に示す。
For each of the obtained wires, the tensile strength and the cross-sectional area ratio of the crystallized product were measured. Tensile strength is JIS-Z
It was measured according to H.241. The cross-sectional area ratio of the crystallized product was measured by polishing the cross section of the sample and photographing it with an optical microscope or a scanning electron microscope, and measuring the cross-sectional area ratio of the crystallized product using an image processing apparatus based on this. The number of samples of tensile strength is 3
The number of samples for this and the cross-sectional area ratio was 100 each. FIG. 5 shows the relationship between the maximum cross-sectional area ratio of the crystallized product and the tensile strength.

【0018】図5より明らかなように、晶出物の最大断
面積比率は0.4〜7%の範囲で変化しており、規格値
の153MPa以上の引張強さを確保するには、晶出物
の最大断面積比率を5%以下にする必要性が認められ
た。図5で、晶出物の断面積比率が増すにつれて引張強
さが低下するのは、線材中の晶出物は、線材の引張強さ
に寄与せず、その断面積比率が増すほど線材の有効断面
積が減少するためである。前記の引張強さ153MPa
以上の規定は4.5mmφのAl−0.35wt%Zr合
金線材の規格値である。
As is apparent from FIG. 5, the maximum cross-sectional area ratio of the crystallized material varies in the range of 0.4 to 7%. It was recognized that the maximum cross-sectional area ratio of the output was required to be 5% or less. In FIG. 5, the reason why the tensile strength decreases as the cross-sectional area ratio of the crystal increases is that the crystal in the wire does not contribute to the tensile strength of the wire. This is because the effective area is reduced. The above tensile strength of 153 MPa
The above specifications are the standard values for a 4.5 mmφ Al-0.35 wt% Zr alloy wire.

【0019】(実施例2)Al−0.3wt%Zr−0.
1〜0.2wt%Fe合金を、実施例1と同様にして4.
5mmφの線材とし、この線材の引張強さおよび晶出物
の断面積比率を実施例1と同様にして測定した。その結
果、規格値の153MPa以上の引張強さを確保するに
は、晶出物の断面積比率を5%以下にする必要性が認め
られた。
Example 2 Al-0.3 wt% Zr-0.
3. A 1-0.2 wt% Fe alloy was prepared in the same manner as in Example 1.
A 5 mmφ wire was used, and the tensile strength of the wire and the cross-sectional area ratio of the crystallized product were measured in the same manner as in Example 1. As a result, it was recognized that the cross-sectional area ratio of the crystallized product had to be 5% or less in order to secure the tensile strength of 153 MPa or more, which is the standard value.

【0020】(実施例3)Al−0.3wt%Zr−0.
3wt%Fe−0.2wt%Cu合金を、実施例1と同様に
して4.5mmφの線材とし、この線材の引張強さおよ
び晶出物の断面積比率を実施例1と同様にして測定し
た。その結果、規格値の241MPa以上の引張強さを
確保するには、晶出物の断面積比率を5%以下にする必
要性が認められた。
Example 3 Al-0.3 wt% Zr-0.
A 3 mm wt Fe-0.2 wt% Cu alloy was used as a 4.5 mmφ wire in the same manner as in Example 1, and the tensile strength of the wire and the cross-sectional area ratio of the crystallized material were measured in the same manner as in Example 1. . As a result, it was recognized that the cross-sectional area ratio of the crystallized material had to be 5% or less in order to secure the tensile strength of 241 MPa or more, which is the standard value.

【0021】(実施例4)Al−0.35wt%Zr合金
を、実施例1と同様にして4.5mmφの線材とし、こ
の線材について引張強さおよび晶出物の断面積比率を実
施例1と同様にして測定した。その結果、規格値の15
3MPa以上の引張強さを確保するには、晶出物の断面
積比率を5%以下にする必要性が認められた。
Example 4 An Al-0.35 wt% Zr alloy was made into a 4.5 mmφ wire in the same manner as in Example 1, and the tensile strength and the cross-sectional area ratio of the crystallized material of this wire were measured in Example 1. The measurement was performed in the same manner as described above. As a result, the standard value of 15
In order to secure a tensile strength of 3 MPa or more, it was recognized that the cross-sectional area ratio of the crystallized product had to be 5% or less.

【0022】前記実施例1〜4により、Zrを0.3〜
0.4wt%含有するAl−Zr合金、或いはZrの他
に、Fe、Cuなどを適量含有させて特性を改善したA
l−Zr系合金において、晶出物の断面積比率を5%以
下に限定することで、特性が安定し高い信頼性の合金
(電線などの製品)が得られることが実証された。この
他、Mn、Be、Srなどを添加したAl−Zr系合金
についても実験し、同様の結果が得られることを確認し
た。
According to the first to fourth embodiments, Zr is set to 0.3 to
A with improved properties by containing an appropriate amount of Fe, Cu, etc. in addition to Al-Zr alloy or Zr containing 0.4 wt%
It has been demonstrated that in an l-Zr alloy, by limiting the cross-sectional area ratio of the crystallized substance to 5% or less, an alloy (product such as an electric wire) having stable characteristics and high reliability can be obtained. In addition, experiments were conducted on Al-Zr-based alloys to which Mn, Be, Sr, etc. were added, and it was confirmed that similar results were obtained.

【0023】次に、請求項2記載の発明の実施例につい
て説明する。 (実施例5)Al−0.33wt%Zr−0.1〜0.2
wt%Fe合金溶湯を800℃に加熱し、これをベルトホ
イール式連続鋳造法により鋳造して断面積2500mm
2 の鋳塊とし、この鋳塊を直ちに熱間で連続圧延して
9.5mmφの荒引線を製造し巻取った。荒引線は巻取
り前に渦流探傷法により欠陥を計測した。ここで、鋳造
速度は13.0m/分で一定とし、前記連続鋳造法での
注湯ノズルの出口断面積は1600〜450mm2 の範
囲(注湯ノズル先端部分での溶湯流速は20.3〜7
2.4m/分の範囲)で変化させた。
Next, an embodiment of the present invention will be described. (Example 5) Al-0.33 wt% Zr-0.1 to 0.2
A molten wt% Fe alloy is heated to 800 ° C. and cast by a continuous casting method using a belt wheel to obtain a cross-sectional area of 2500 mm.
The ingot of No. 2 was immediately hot-rolled continuously to produce a 9.5 mmφ rough drawn wire, which was wound. Rough lines were measured for defects by eddy current testing before winding. Here, the casting speed is constant at 13.0 m / min, and the outlet cross-sectional area of the pouring nozzle in the continuous casting method is in the range of 1600 to 450 mm 2 (the flow rate of the molten metal at the tip of the pouring nozzle is 20.3 to 7
(In the range of 2.4 m / min).

【0024】なお、注湯ノズルの溶湯出口の断面積を減
少させると溶湯供給量が減少して、鋳造速度を低下させ
ないと健全な鋳塊が得られなくなるが、タンディッシュ
内の溶湯ヘッドを高くすることにより溶湯供給量を増や
して鋳造速度を回復させた。
If the cross-sectional area of the molten metal outlet of the pouring nozzle is reduced, the supply amount of the molten metal is reduced, and a sound ingot cannot be obtained unless the casting speed is reduced. By doing so, the casting speed was restored by increasing the supply amount of the molten metal.

【0025】(従来例1)比較のため、図2に示した従
来の注湯ノズルを用い、その溶湯出口断面積を2200
mm2 とし、注湯ノズル先端部分での溶湯流速を14.
8m/分とした他は実施例5と同じ方法により9.5m
mφの荒引線を製造した。
(Conventional Example 1) For comparison, a conventional pouring nozzle shown in FIG.
mm 2 and the flow rate of molten metal at the tip of the pouring nozzle is 14.
Except that it was set to 8 m / min, 9.5 m was obtained in the same manner as in Example 5.
A rough drawn wire of mφ was manufactured.

【0026】得られた各々の荒引線を2m毎に切断し、
その一端をサンプリングして、実施例1と同じようにし
て晶出物の最大断面積比率を調べた。前記のサンプル数
nは100とした。前記晶出物の最大断面積比率と荒引
線の欠陥個数を表1に示す。また注湯ノズル先端部分の
溶湯流速と晶出物の断面積比率との関係、および前記溶
湯流速と荒引線の欠陥個数との関係を図7に示す。
Each of the obtained rough drawn lines is cut every 2 m.
One end was sampled, and the maximum cross-sectional area ratio of the crystallized substance was examined in the same manner as in Example 1. The sample number n was set to 100. Table 1 shows the maximum sectional area ratio of the crystallized product and the number of defects in the rough drawn line. FIG. 7 shows the relationship between the flow rate of the molten metal at the tip of the pouring nozzle and the cross-sectional area ratio of the crystallized material, and the relationship between the flow rate of the molten metal and the number of defects in the rough drawn line.

【0027】[0027]

【表1】 (注)注湯ノズル先端部の出口断面積、注湯ノズル先端部の溶湯流速、 晶出物の最大断面積比率。[Table 1] (Note) The exit cross-sectional area at the tip of the pouring nozzle, the flow velocity of the molten metal at the tip of the pouring nozzle, and the maximum cross-sectional area ratio of crystallized material.

【0028】表1と図7から明らかなように、本発明例
のNo.1〜5 はいずれも晶出物の断面積比率が5%以下で
荒引線欠陥が少なかった。これは注湯ノズルの溶湯流速
が20m/分を超えて速かったため、注湯ノズル先端部
分に沈着した晶出物が粗大化する前に流出したためであ
る。No.5は荒引線の欠陥個数が若干多かったが、これは
注湯ノズルの溶湯流速が70m/分を超えたため注湯ノ
ズルを出た溶湯が鋳型内の溶湯を激しく攪拌して凝固を
不均一にして鋳塊欠陥を誘発したためである。他方、従
来例のNo.6は荒引線欠陥が多かった。これは注湯ノズル
の出口速度が14.8m/分と遅かったため、注湯ノズ
ル先端部分に沈着した晶出物が粗大化して鋳塊に混入し
たためで、晶出物の最大断面積比率は7.2%にも達し
た。
As is clear from Table 1 and FIG. 7, all of No. 1 to No. 5 of the present invention had a cross-sectional area ratio of the crystallized substance of 5% or less, and the number of rough drawing defects was small. This is because the molten metal flow velocity of the pouring nozzle was higher than 20 m / min, and the crystallized substances deposited at the tip of the pouring nozzle flowed out before being coarsened. In No. 5, the number of defects in the rough drawn wire was slightly large, but this was because the molten metal flow out of the pouring nozzle violently stirred the molten metal in the mold because the molten metal flow velocity of the pouring nozzle exceeded 70 m / min. This is because the ingot was made uniform to induce ingot defects. On the other hand, No. 6 of the conventional example had many rough drawing defects. This is because the outlet speed of the pouring nozzle was as low as 14.8 m / min, and the deposited material deposited at the tip of the pouring nozzle was coarsened and mixed into the ingot. .2%.

【0029】次に、前記の各荒引線を400℃で48時
間時効処理し、次いでこれを4.5mmφに伸線加工し
た。得られた線材について引張強さを測定して、引張強
さが153MPa(規格値)以下となった不良率を調べ
たところ、本発明例のNo.1〜4 は0%、No.5は3%であ
った。No.5の特性不良は鋳塊欠陥に基づくソゲ欠陥によ
るものであった。これに対し、従来例のNo.6の不良率は
30%にも達した。なお、4.5mmφの線材について
も晶出物の断面積比率を測定したが、これの断面積比率
は荒引線のそれより僅かながら大きかった。これは伸線
加工時の晶出物の塑性変形量が周囲のAlマトリックス
より小さいためである。
Next, each of the rough drawn wires was aged at 400 ° C. for 48 hours, and was then drawn to 4.5 mmφ. When the tensile strength of the obtained wire was measured and the defective rate at which the tensile strength became 153 MPa (standard value) or less was examined, No. 1 to No. 4 of the present invention examples were 0%, and No. 5 was No. 3%. The characteristic failure of No. 5 was due to a sock defect based on an ingot defect. In contrast, the defect rate of No. 6 of the conventional example reached 30%. The cross-sectional area ratio of the crystallized product was also measured for the 4.5 mmφ wire rod, and the cross-sectional area ratio was slightly larger than that of the rough drawn wire. This is because the amount of plastic deformation of the crystallized product during wire drawing is smaller than the surrounding Al matrix.

【0030】(実施例6)実施例5では、鋳造速度を一
定として注湯ノズル先端部分の出口断面積を変化させた
が、この実施例では注湯ノズルの出口断面積を一定とし
て鋳造速度を変化させて、注湯ノズル先端での溶湯流速
を制御した。Al−0.3wt%Zr−0.1〜0.2wt
%Fe合金溶湯を800℃に加熱し、これをベルトホイ
ール式連続鋳造法により断面積2500mm2 の鋳塊に
鋳造し、この鋳塊を直ちに熱間で連続圧延して9.5m
mφの荒引線を製造した。ここで、注湯ノズル先端部分
の出口断面積は460mm2 で一定とし、鋳造速度を
3.7〜13.3m/分(注湯ノズル出口での溶湯流速
20.1〜72.3m/分)の範囲で変化させた。溶湯
の供給量は加圧注湯法により制御した。
(Embodiment 6) In Embodiment 5, the outlet cross-sectional area at the tip of the pouring nozzle was changed while the casting speed was kept constant. In this embodiment, the casting speed was kept constant while the outlet cross-sectional area of the pouring nozzle was kept constant. The flow rate of the molten metal at the tip of the pouring nozzle was controlled by changing the flow rate. Al-0.3wt% Zr-0.1 ~ 0.2wt
% Fe alloy melt is heated to 800 ° C. and cast into an ingot having a cross-sectional area of 2500 mm 2 by a belt-wheel continuous casting method. This ingot is immediately and continuously hot-rolled to 9.5 m.
A rough drawn wire of mφ was manufactured. Here, the outlet cross-sectional area at the tip of the pouring nozzle is fixed at 460 mm 2 , and the casting speed is 3.7 to 13.3 m / min (melt flow rate at the pouring nozzle outlet is 20.1 to 72.3 m / min). Was changed within the range. The supply amount of the molten metal was controlled by the pressure pouring method.

【0031】(従来例2)比較のため、鋳造速度を3.
0mとした他は実施例6と同じ方法により9.5mmφ
の荒引線を製造した。得られた各々の荒引線について実
施例5と同様にして、晶出物の最大断面積比率を測定し
た。結果を表2に示す。
(Conventional Example 2) For comparison, the casting speed was set to 3.
9.5 mmφ by the same method as in Example 6 except that the distance was set to 0 m.
Was manufactured. The maximum cross-sectional area ratio of the crystallized product was measured in the same manner as in Example 5 for each of the obtained rough drawn lines. Table 2 shows the results.

【0032】[0032]

【表2】 (注)注湯ノズル先端部の出口断面積、注湯ノズル先端部の溶湯流速、 晶出物の最大断面積比率。[Table 2] (Note) The exit cross-sectional area at the tip of the pouring nozzle, the flow velocity of the molten metal at the tip of the pouring nozzle, and the maximum cross-sectional area ratio of crystallized material.

【0033】表2より明らかなように、本発明例のNo.7
〜12はいずれも晶出物の断面積比率が5%以下であっ
た。これは注湯ノズル先端部の溶湯流速が20m/分を
超えたため、注湯ノズル先端部に沈着した晶出物が粗大
化する前に溶湯流により流出したためである。なお、 N
o.12は溶湯流速が速すぎて凝固が不均一となり、鋳塊欠
陥が僅かながら生じた。他方、従来例のNo.13 は溶湯流
速が20m/分未満であり、このため注湯ノズル先端部
に沈着した晶出物が粗大化したのち鋳塊に混入し、晶出
物の断面積比率は5%を超えた。本発明例品は鋳造割
れ、圧延割れを起こさずに荒引線にまで加工できた。ま
た得られた荒引線を4.5mmφの線材に伸線加工した
が、途中で断線することもなかった。得られた線材は引
張強さの変動が小さかった。
As is clear from Table 2, No. 7 of the present invention example
In each of the samples No. to No. 12, the cross-sectional area ratio of the crystallized product was 5% or less. This is because the flow rate of the molten metal at the tip of the pouring nozzle exceeded 20 m / min, and the crystallized substance deposited at the tip of the pouring nozzle flowed out by the molten metal before coarsening. Note that N
In o.12, the flow rate of the molten metal was too high, the solidification became uneven, and the ingot defect was slightly generated. On the other hand, in No. 13 of the conventional example, the flow velocity of the molten metal is less than 20 m / min. Exceeded 5%. The product of the present invention could be processed into a rough drawn wire without causing casting cracks and rolling cracks. The obtained rough drawn wire was drawn into a wire having a diameter of 4.5 mm, but was not broken in the middle. The obtained wire had a small variation in tensile strength.

【0034】(実施例7)Al−0.3wt%Zr−0.
1〜0.2wt%Fe合金に極微量のBeまたはSrを添
加した合金を用い、実施例5と同様にして荒引線を製造
し、得られた荒引線について実施例5と同様の調査を行
った。結果は実施例5、6の場合と同様に、晶出物の断
面積比率が5%以下で、加工性に優れ、また引張強さの
変動も小さかった。
Example 7 Al-0.3 wt% Zr-0.
Using an alloy obtained by adding a very small amount of Be or Sr to a 1-0.2 wt% Fe alloy, a rough wire was manufactured in the same manner as in Example 5, and the obtained rough wire was subjected to the same investigation as in Example 5. Was. As a result, similarly to Examples 5 and 6, the cross-sectional area ratio of the crystallized product was 5% or less, the workability was excellent, and the fluctuation of the tensile strength was small.

【0035】前記実施例5〜7から、注湯ノズル出口で
の溶湯流速を制御する手段として、鋳造速度を一定にし
て注湯ノズル先端部分の出口断面積を変化させても、ま
た前記出口断面積を一定にして鋳造速度を変化させて
も、同様な効果が得られることが分かる。要するに、本
発明によれば、注湯ノズル先端における溶湯の流速が2
0m/分を超えるようにすれば、前記注湯ノズル先端部
分に沈着した晶出物は粗大化する前に溶湯流により流出
し、従って粗大な晶出物が鋳塊中に混入して起きる鋳造
割れ、圧延割れ、断線などが抑制され、また引張強さな
どの特性の変動が低減される。
From the above Examples 5 to 7, the means for controlling the flow rate of the molten metal at the outlet of the pouring nozzle can be obtained by changing the cross-sectional area of the outlet of the pouring nozzle at a constant casting speed. It can be seen that the same effect can be obtained even when the casting speed is changed while keeping the area constant. In short, according to the present invention, the flow rate of the molten metal at the tip of the pouring nozzle is 2
If it is set to exceed 0 m / min, the crystallized substance deposited at the tip of the pouring nozzle flows out by the molten metal flow before it is coarsened, so that the coarse crystallized substance is mixed into the ingot to cause casting. Cracks, rolling cracks, disconnection, and the like are suppressed, and variations in properties such as tensile strength are reduced.

【0036】[0036]

【発明の効果】以上に述べたように、本発明のAl−Z
r系合金は、鋳造割れ、圧延割れ、断線などが生じ難く
加工性に優れ、また引張強さなどの特性が安定していて
信頼性が高い。また前記合金はベルトホイール式連続鋳
造法を用い、その注湯ノズル先端部分の溶湯流速を20
m/分を超える高速に制御することにより容易に製造で
きる。依って、工業上顕著な効果を奏する。
As described above, according to the present invention, the Al-Z
An r-based alloy is excellent in workability with less occurrence of casting cracks, rolling cracks, disconnections, and the like, and has stable properties such as tensile strength and high reliability. In addition, the alloy uses a belt-wheel continuous casting method, and the flow velocity of the molten metal at the tip of the pouring nozzle is set to 20.
It can be easily manufactured by controlling at a high speed exceeding m / min. Therefore, an industrially remarkable effect is achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ベルトホイール式連続鋳造法の説明図である。FIG. 1 is an explanatory view of a belt wheel type continuous casting method.

【図2】ベルトホイール式連続鋳造法における注湯ノズ
ルの先端部分の正面図である。
FIG. 2 is a front view of a tip portion of a pouring nozzle in a belt-wheel continuous casting method.

【図3】Al−Zr系合金の状態図である。FIG. 3 is a phase diagram of an Al—Zr-based alloy.

【図4】Al3 Zrの晶出物の走査電顕による結晶組織
図である。
FIG. 4 is a crystallographic view of a crystallized product of Al 3 Zr by scanning electron microscope.

【図5】晶出物の断面積比率と引張強さとの関係図であ
る。
FIG. 5 is a diagram showing a relationship between a cross-sectional area ratio of a crystallized substance and a tensile strength.

【図6】本発明で用いる注湯ノズルの例を示す正面図で
ある。
FIG. 6 is a front view showing an example of a pouring nozzle used in the present invention.

【図7】注湯ノズル先端部分の溶湯流速と、晶出物の断
面積比率または荒引線の欠陥個数との関係図である。
FIG. 7 is a diagram showing the relationship between the flow velocity of the molten metal at the tip of the pouring nozzle and the cross-sectional area ratio of the crystallized material or the number of defects in the rough drawn line.

【符号の説明】[Explanation of symbols]

10 回転ホイール 11 回転ホイールの外周面に形成された溝 12 エンドレスベルト 13 移動鋳型 14 移動鋳型の一方の開口端 15 注湯ノズル 16 溶湯 17 鋳塊 18 移動鋳型13の他方の開口端 19 ペーパー状断熱材 20 注湯ノズルの溶湯出口 21 断熱部材 10 Rotating wheel 11 Groove formed on outer peripheral surface of rotating wheel 12 Endless belt 13 Moving mold 14 One opening end of moving mold 15 Pouring nozzle 16 Melt 17 Ingot 18 The other opening end of moving mold 13 19 Paper-like heat insulation Material 20 Melt outlet of pouring nozzle 21 Insulation material

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 合金元素として少なくともZrを0.3
〜0.4wt%含有し、残部がAlと不可避不純物からな
るAl−Zr系合金において、前記合金中に占める晶出
物の最大断面積比率が5%以下であることを特徴とする
Al−Zr系合金。
1. An alloying element containing at least 0.3% of Zr.
In an Al-Zr alloy containing up to 0.4 wt% and the balance being Al and unavoidable impurities, the maximum cross-sectional area ratio of crystallized substances in the alloy is 5% or less. System alloy.
【請求項2】 外周面に溝を有する回転ホイールにエン
ドレスベルトを接動させて前記溝とエンドレスベルトと
の間で移動鋳型を形成し、前記移動鋳型内にAl−Zr
系合金の溶湯を注湯ノズルを通して注入して連続鋳造す
るAl−Zr系合金の製造方法において、前記Al−Z
r系合金が、合金元素として少なくともZrを0.3〜
0.4wt%含有し、残部がAlと不可避不純物からなる
Al−Zr系合金であり、前記注湯ノズルの先端部分に
おける溶湯の流速を20m/分を超える速度にすること
を特徴とするAl−Zr系合金の製造方法。
2. A moving mold is formed between the groove and the endless belt by bringing an endless belt into contact with a rotating wheel having a groove on an outer peripheral surface, and an Al-Zr is formed in the moving mold.
In the method for producing an Al-Zr-based alloy, in which a molten alloy is injected through a pouring nozzle and continuously cast,
The r-based alloy has at least Zr of 0.3 to
Al-Zr alloy containing 0.4 wt%, the balance being Al and unavoidable impurities, wherein the flow rate of the molten metal at the tip of the pouring nozzle is set to a speed exceeding 20 m / min. A method for producing a Zr-based alloy.
JP17536397A 1997-05-20 1997-05-20 Al-zr alloy and its production Pending JPH10317084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17536397A JPH10317084A (en) 1997-05-20 1997-05-20 Al-zr alloy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17536397A JPH10317084A (en) 1997-05-20 1997-05-20 Al-zr alloy and its production

Publications (1)

Publication Number Publication Date
JPH10317084A true JPH10317084A (en) 1998-12-02

Family

ID=15994783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17536397A Pending JPH10317084A (en) 1997-05-20 1997-05-20 Al-zr alloy and its production

Country Status (1)

Country Link
JP (1) JPH10317084A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007321A1 (en) * 2003-07-23 2005-01-27 Showa Denko K.K. Continuous casting method, cast member, metal worked article, and continuous casting apparatus
CN100396404C (en) * 2003-07-23 2008-06-25 昭和电工株式会社 Continuous casting method, cast member, metal worked article, and continuous casting apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007321A1 (en) * 2003-07-23 2005-01-27 Showa Denko K.K. Continuous casting method, cast member, metal worked article, and continuous casting apparatus
EP1651373A1 (en) * 2003-07-23 2006-05-03 Showa Denko K.K. Continuous casting method, cast member, metal worked article, and continuous casting apparatus
CN100396404C (en) * 2003-07-23 2008-06-25 昭和电工株式会社 Continuous casting method, cast member, metal worked article, and continuous casting apparatus
EP1651373A4 (en) * 2003-07-23 2009-10-28 Showa Denko Kk Continuous casting method, cast member, metal worked article, and continuous casting apparatus
US7681626B2 (en) 2003-07-23 2010-03-23 Showa Denko K.K. Continuous casting method, cast member, metal worked article, and continuous casting apparatus

Similar Documents

Publication Publication Date Title
JPS59107041A (en) Method of rendering strength and ductility to intermetallic compound phase
SE447395B (en) KIT FOR MANUFACTURING TAPE MATERIAL OF ALUMINUM AND ALUMINUM ALLOYS
JP4534573B2 (en) Al-Mg alloy plate excellent in high-temperature high-speed formability and manufacturing method thereof
CA1037742A (en) High iron aluminum alloy
JP4193171B2 (en) Method for producing Ti-containing copper alloy sheet or ingot for producing strip with excellent workability
JPH0118979B2 (en)
KR102119552B1 (en) Copper alloy wire and method for manufacturing copper alloy wire
US6083328A (en) Casting rolls made of hardenable copper alloy
JPH0964082A (en) Gold alloy fine bonding wire and its manufacture
JPH0693397A (en) Production of aluminum foil excellent in strength and foil rollability
WO2006100859A1 (en) Process for producing continuous magnesium material
JPH10317084A (en) Al-zr alloy and its production
JPH06101003A (en) Production of aluminum foil excellent in strength and foil rollability
JP3885123B2 (en) Method for producing Zn-Al alloy wire
JPH0635624B2 (en) Manufacturing method of high strength aluminum alloy extruded material
JPH049253A (en) Production of copper alloy
JPH06101004A (en) Manufacture of aluminum foil excellent in strength and foil rollability
JP2007021584A (en) Zn-Al ALLOY WIRE, ITS MANUFACTURING METHOD, AND Zn-Al ALLOY WIRE ROD
JPH0693396A (en) Production of aluminum foil excellent in strength and foil rollability
JPH0313935B2 (en)
FI71353C (en) FOERFARANDE FOER FRAMSTAELLNING AV ALUMINIUMVALSTRAODAR
JPS6362836A (en) Aluminum-alloy rolled sheet combining high strength with heat resistance and production thereof
JP3137779B2 (en) Continuous casting method of Cu-Ni-Sn alloy
JPH06235034A (en) Silver base low resistance temperature coefficient alloy and its production
JPH06184668A (en) Copper chromium thin wire and its production