JPH10311674A - Helium collection method - Google Patents

Helium collection method

Info

Publication number
JPH10311674A
JPH10311674A JP9136209A JP13620997A JPH10311674A JP H10311674 A JPH10311674 A JP H10311674A JP 9136209 A JP9136209 A JP 9136209A JP 13620997 A JP13620997 A JP 13620997A JP H10311674 A JPH10311674 A JP H10311674A
Authority
JP
Japan
Prior art keywords
helium
gas
exhaust gas
liquid nitrogen
manufacturing process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9136209A
Other languages
Japanese (ja)
Other versions
JP3639087B2 (en
Inventor
Yoichi Urakawa
洋一 浦川
Katsuhiko Tsukada
勝彦 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYODO SANSO
KYODO SANSO KK
Taiyo Toyo Sanso Co Ltd
Original Assignee
KYODO SANSO
KYODO SANSO KK
Taiyo Toyo Sanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYODO SANSO, KYODO SANSO KK, Taiyo Toyo Sanso Co Ltd filed Critical KYODO SANSO
Priority to JP13620997A priority Critical patent/JP3639087B2/en
Publication of JPH10311674A publication Critical patent/JPH10311674A/en
Application granted granted Critical
Publication of JP3639087B2 publication Critical patent/JP3639087B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/08Separating gaseous impurities from gases or gaseous mixtures or from liquefied gases or liquefied gaseous mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/30Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/904External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/50Arrangement of multiple equipments fulfilling the same process step in parallel

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To collect a highly pure helium gas inexpensively from a helium gas where much air is mixed by using liquid nitrogen that is supplied after gasification to processes for manufacturing optical fibers and optical glass as a cold heat source of pressurized exhaust gas. SOLUTION: The exhaust gas, for example, at processes for manufacturing optical fibers and optical glass being stored in a gas holder 1 is pressurized by a high-voltage compressor 3 and is introduced into a pre-treatment device 4 by a pipe 5, and carbon dioxide gas and water are eliminated, and then the exhaust gas is introduced into a helium purifying equipment 6 that is dipped into a liquid nitrogen container 8 in a pipe 11. Then, the exhaust gas is cooled by the cold heat of the liquid nitrogen that is supplied by the pipe 10 from an extremely low-temperature nitrogen gas storage bath such as an optical fiber manufacturing process, the air content in the exhaust gas is liquefied and is separated and delivered out of a system. Further, an impurity is eliminated by an activated carbon when it passes the helium purifying equipment 6, is filled into a high-pressure container 13 as a highly pure helium, and is carried to a factory for using helium again by a pipe 15 after a pressure is partially reduced by a pressure reduction valve 14.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光ファイバー製造
工程、光ガラス製造工程、深海潜水チャンバーから排出
される空気が大量に混入したヘリウムガスを、安価にし
て高品質ガスとして回収する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber manufacturing process, an optical glass manufacturing process, and a method for recovering helium gas containing a large amount of air discharged from a deep sea diving chamber as a high quality gas at low cost.

【0002】[0002]

【従来の技術】ヘリウムは、極低温装置の冷却源、光フ
ァイバー製造工程や光ガラス製造工程の冷却装置の冷媒
ガス、溶接時の保護ガス、化学産業における不活性雰囲
気ガス、潜水作業の呼吸ガス、ガスクロマトグラフィー
の担体ガス、漏水漏気発見のトレーサガス、バルーンガ
ス等としてますます重要になっている。ヘリウムは、自
然界の空気中に5.2ppmしか存在しないため、空気
中から経済的に引き合う価格で分離することはできな
い。このため、我が国では、アメリカのテキサス州など
限られた地域の天然ガスから分離され、液化されたヘリ
ウムを輸入しているのが現状である。したがって、近年
では、上記光ファイバー製造工程等で使用後、大気に放
出されたヘリウムを捕集し、再度精製して循環使用する
ことが要望されている。
2. Description of the Related Art Helium is a cooling source for cryogenic equipment, a refrigerant gas for cooling equipment in optical fiber manufacturing processes and optical glass manufacturing processes, a protective gas for welding, an inert atmosphere gas in the chemical industry, a breathing gas for diving work, It is becoming increasingly important as a carrier gas for gas chromatography, a tracer gas for detecting leaks, and a balloon gas. Helium is present in natural air at only 5.2 ppm and cannot be separated from air at economically attractive prices. For this reason, Japan currently imports liquefied helium that is separated from natural gas in a limited area such as Texas in the United States. Therefore, in recent years, it has been demanded that helium released into the atmosphere after use in the above-described optical fiber manufacturing process and the like be collected, purified again, and recycled.

【0003】空気を多量に含むヘリウムガスの精製方法
としては、原料ガス中の水分と炭酸ガスを予め除去した
のち、液体窒素で冷却した粗ヘリウム分離塔で空気分を
液体空気として除去後、低温での吸着剤、例えば、活性
炭にヘリウム以外の不純ガスを吸着させ、高純度のヘリ
ウムガスを得る方法(ガス分離・精製とその利用技術−
フジテクノシステム、P434)、窒素、メタン、その
他のガスを吸着する炭素モレキュラーシーブに導入され
るヘリウム含有天然ガスから圧力変動吸着法によりヘリ
ウム濃縮を行う際に、ヘリウム含有天然ガスを循環式に
4つの並列接続した吸着装置に導入し、これらの吸着装
置をそれぞれ順次3工程を包含する圧力形成相、吸着相
および4工程を包含する放圧相とし、かつ、3工程での
圧力形成および第3放圧工程と第4放圧工程とを向流で
実施する4工程での放圧を部分的に他の吸着装置との2
段階の圧力平衡により行う方法(特公平8−32549
号公報)が提案されている。
[0003] As a method for purifying helium gas containing a large amount of air, after removing water and carbon dioxide in the raw material gas in advance, air is removed as liquid air in a crude helium separation tower cooled by liquid nitrogen, Of high-purity helium gas by adsorbing an impurity gas other than helium on an adsorbent, for example, activated carbon (gas separation / purification and its utilization technology)
When helium is concentrated by a pressure fluctuation adsorption method from a helium-containing natural gas introduced into a carbon molecular sieve that adsorbs nitrogen, methane, and other gases, the helium-containing natural gas is circulated into a circulation system. Are introduced into three adsorbers connected in parallel, and these adsorbers are sequentially formed into a pressure-forming phase including three steps, an adsorption phase, and a pressure-releasing phase including four steps. The pressure release in the four steps in which the pressure release step and the fourth pressure release step are performed in countercurrent is partially performed with another adsorption device.
Method using pressure equilibrium in stages (JP-B 8-32549)
Publication).

【0004】また、他の方法としては、製造工程で回収
された不純物を含むヘリウムガスを冷却する工程、冷却
により液化した不純物とヘリウムガスを分離する工程、
気液分離された液体成分を排出する工程とを経てヘリウ
ムを精製する方法(特開平5−172457号公報)、
製造工程で回収された不純物を含むヘリウムガスを圧縮
して冷却したのち濾過工程に導入し、冷却されたヘリウ
ムガス中の油、水分、粒状物を除去したのち、さらに、
膜分離システム、吸着システム等から選択的に構成され
る精製装置に導入し、ヘリウムガス中の不純高沸点成分
を除去してヘリウムを精製する方法(特開平6−210
157号公報)が提案されている。
Further, as another method, a step of cooling helium gas containing impurities recovered in the manufacturing process, a step of separating helium gas from impurities liquefied by cooling,
A method of purifying helium through a step of discharging a liquid component separated by gas-liquid (JP-A-5-172457).
After compressing and cooling the helium gas containing impurities recovered in the manufacturing process, introducing the helium gas into the filtration process, removing oil, moisture, and particulate matter in the cooled helium gas, and further,
A method of purifying helium by introducing it into a purifying apparatus selectively constituted by a membrane separation system, an adsorption system, etc., and removing an impurity high boiling point component in helium gas (JP-A-6-210)
157).

【0005】さらに、他の方法としては、原料ガスを圧
縮したのち、液化点付近まで冷却したのち精留塔の下部
に導入し、精留塔で精留分離して頂部から窒素とヘリウ
ムガスの混合ガスを取出し、凝縮器を経て気液分離器に
導入して気液分離した液体窒素を精留塔の精留部最上段
に還流し、未凝縮気体をヘリウム粗精留塔の下部に導入
し、ヘリウム粗精留塔で精留分離されたヘリウムガスを
頂部より製品として取出す方法(特開平8−26164
5号公報)が提案されている。
Further, as another method, after the raw material gas is compressed, cooled to near the liquefaction point, introduced into the lower part of the rectification column, rectified and separated in the rectification column, and nitrogen and helium gas are separated from the top. The mixed gas is taken out, introduced into the gas-liquid separator through the condenser, and the liquid nitrogen separated by gas-liquid is returned to the top of the rectification section of the rectification tower, and the uncondensed gas is introduced into the lower part of the helium crude rectification tower A method of taking out the helium gas rectified and separated in the helium crude rectification column as a product from the top (JP-A-8-26164)
No. 5) has been proposed.

【0006】[0006]

【発明が解決しようとする課題】上記ガス分離・精製と
その利用技術に開示の方法は、原料ガス中の水分と炭酸
ガスを予め除去したのち、液体窒素で冷却した粗ヘリウ
ム分離塔で液体空気を除去後、低温での吸着分離により
不純ガスを吸着分離するため、寒冷としての液体窒素を
多量に消費する難点がある。また、液体窒素は、冷熱を
利用しただけでそのまま大気中に無駄に放出されてい
る。また、特公平8−32549号公報に開示の方法
は、ヘリウム含有天然ガスから濃度76〜90%の濃縮
ヘリウムガスを回収するものであって、別途精製装置が
必要である。
The method disclosed in the above-mentioned gas separation / refining and utilization techniques is to remove water and carbon dioxide in the raw material gas in advance, and then to remove the liquid air in a crude helium separation tower cooled with liquid nitrogen. After removing the impurities, the impurity gas is adsorbed and separated at a low temperature, so that there is a problem that a large amount of liquid nitrogen as a cold is consumed. In addition, liquid nitrogen is wastefully released into the atmosphere as it is by utilizing cold heat. In addition, the method disclosed in Japanese Patent Publication No. H8-32549 recovers a concentrated helium gas having a concentration of 76 to 90% from a helium-containing natural gas, and requires a separate purification device.

【0007】上記特開平5−172457号公報、特開
平6−210157号公報に開示の方法は、いずれもヘ
リウム80%以上を含有し、残りの不純物として空気を
含んでいる原料ガスを対象としたものであり、製品とし
てヘリウムガスだけが製造されるものである。しかも、
再精製の対象外となったヘリウム50%以下を含有する
低濃度ヘリウムガスは、他の不純物と共に排ガスとして
処理されているのが現状である。
The methods disclosed in the above-mentioned JP-A-5-172457 and JP-A-6-210157 both target a raw material gas containing 80% or more of helium and containing air as the remaining impurity. And only helium gas is produced as a product. Moreover,
At present, low-concentration helium gas containing 50% or less of helium, which has been excluded from repurification, is treated as exhaust gas together with other impurities.

【0008】さらに、特開平8−261645号公報に
開示の方法は、粗精留塔が必要で、設備が複雑となる難
点を有し、低濃度ヘリウムを原料とし、流量が安定して
いる場合のみ有利である。
Further, the method disclosed in Japanese Patent Application Laid-Open No. 8-261645 requires a crude rectification column, has the disadvantage of complicated equipment, uses low-concentration helium as a raw material, and has a stable flow rate. Only advantageous.

【0009】一方、光ファイバー製造工場や光ガラス製
造工場では、ヘリウムと共に多量の窒素ガスが使用され
ているが、その窒素ガスの供給は、極低温液化ガス貯槽
に貯蔵された液体窒素を空温式の蒸発器でガス化して供
給するのが一般的である。
On the other hand, in an optical fiber manufacturing plant and an optical glass manufacturing plant, a large amount of nitrogen gas is used together with helium. The supply of the nitrogen gas is performed by using liquid nitrogen stored in a cryogenic liquefied gas storage tank in an air-temperature type. It is generally supplied by gasification with an evaporator.

【0010】本発明の目的は、上記従来技術の欠点を解
消し、空気が多量に混入したヘリウムガスから安価に高
純度ヘリウムガスを回収できるヘリウム回収方法を提供
することにある。
An object of the present invention is to provide a helium recovery method capable of solving the above-mentioned disadvantages of the prior art and recovering high-purity helium gas from helium gas containing a large amount of air at low cost.

【0011】[0011]

【課題を解決するための手段】本発明のヘリウム回収方
法は、空気が大量に混入したヘリウム濃度5〜70容量
%の排ガスを昇圧したのち液体窒素を冷熱源として冷却
し、排ガス中の空気を液化分離した後、残余の微量成分
を活性炭等の吸着剤で除去して高純度ヘリウムを得るヘ
リウム回収方法において、前記昇圧した排ガスの冷熱源
として光ファイバー製造工程や光ガラス製造工程にガス
化したのち供給される液体窒素を使用すると共に、冷熱
のみを利用された低温窒素ガスを加温器で常温に昇温し
たのち、光ファイバー製造工程や光ガラス製造工程等に
供給することとしている。このように、前記昇圧した排
ガスの冷熱源として光ファイバー製造工程や光ガラス製
造工程にガス化したのち供給される液体窒素を使用する
ことによって、前記昇圧した排ガスの冷却に使用する冷
熱は、従来大気に放出していたエネルギーを有効に利用
するので、冷熱コストをゼロと評価できる。また、冷熱
を利用された低温窒素ガスは、加温器で常温に昇温した
のち光ファイバー製造工程や光ガラス製造工程に供給す
ることによって、従来通りに使用することができるの
で、安価に高純度のヘリウムを回収することができる。
According to the helium recovery method of the present invention, an exhaust gas having a helium concentration of 5 to 70% by volume containing a large amount of air is pressurized, and then cooled using liquid nitrogen as a cooling source to remove air in the exhaust gas. After liquefaction and separation, in the helium recovery method of removing the remaining trace components with an adsorbent such as activated carbon to obtain high-purity helium, the gas is gasified in the optical fiber manufacturing process or the optical glass manufacturing process as a cold heat source of the pressurized exhaust gas. In addition to using the supplied liquid nitrogen, a low-temperature nitrogen gas using only cold heat is heated to a normal temperature by a heater, and then supplied to an optical fiber manufacturing process, an optical glass manufacturing process, and the like. As described above, by using liquid nitrogen supplied after being gasified in the optical fiber manufacturing process or the optical glass manufacturing process as a cold heat source of the pressurized exhaust gas, the cold used for cooling the pressurized exhaust gas is the same as that of the conventional air. Since the energy that has been released to the city is effectively used, the cost of cooling and heating can be evaluated as zero. In addition, low-temperature nitrogen gas using cold heat can be used as usual by raising it to room temperature with a heater and then supplying it to the optical fiber manufacturing process and optical glass manufacturing process. Of helium can be recovered.

【0012】[0012]

【発明の実施の形態】本発明において原料ガスとして用
いる空気が多量に混入したヘリウム濃度5〜70容量%
の排ガスとしては、光ファイバー製造工程や光ガラス製
造工程等から排出される排ガスを用いることができる。
この光ファイバー製造工場や光ガラス製造工場、半導体
製造工場等では、ヘリウムと共に酸素、窒素が使用され
ているが、窒素源として空温式の蒸発器で液体窒素をガ
ス化して供給しており、空温式の蒸発器の冷熱は従来そ
のまま大気中に放出されていた。本発明では、この従来
大気に放出していた液体窒素をガス化する際の冷熱を前
記昇圧した排ガスの冷熱源として利用するので、冷熱コ
ストをゼロと評価できる。
BEST MODE FOR CARRYING OUT THE INVENTION Helium concentration of 5 to 70% by volume containing a large amount of air used as a source gas in the present invention
Exhaust gas discharged from an optical fiber manufacturing process, an optical glass manufacturing process, or the like can be used as the exhaust gas.
At the optical fiber manufacturing plant, optical glass manufacturing plant, semiconductor manufacturing plant, etc., oxygen and nitrogen are used together with helium, but liquid nitrogen is gasified and supplied by an air-heated evaporator as a nitrogen source. Conventionally, the cold heat of the warm evaporator has been directly discharged into the atmosphere. In the present invention, since the cold generated when gasifying the liquid nitrogen which has been conventionally released into the atmosphere is used as a cold source of the pressurized exhaust gas, the cooling cost can be evaluated to be zero.

【0013】本発明において原料ガスとして用いる空気
が多量に混入したヘリウム濃度5〜70容量%の排ガス
は、先ず回収排ガス量の変動を吸収するためにガスホル
ダーに一旦貯蔵したのち、所定圧力、例えば、150k
g/cm2・Gでヘリウム回収精製装置に導入する。
In the present invention, the exhaust gas having a helium concentration of 5 to 70% by volume containing a large amount of air used as a raw material gas is first stored once in a gas holder in order to absorb fluctuations in the amount of recovered exhaust gas, and then is stored at a predetermined pressure, for example. , 150k
g / cm 2 · G is introduced into the helium recovery and purification device.

【0014】昇圧した空気が多量に混入したヘリウム濃
度5〜70容量%の排ガス中の水分と炭酸ガスを除去す
る前処理装置は、排ガス中の水分と炭酸ガスを除去でき
ればよく、特に限定されないが、炭酸ガスと水分を選択
的に吸着する吸着剤を充填した除炭乾燥器が適してい
る。また、ヘリウム濃度5〜70容量%の排ガス中に光
ファイバー製造工程等においてSiO2パーティクルや
塩化物が混入している場合は、除塵用のフィルターおよ
び/または中和剤を充填した前処理装置を設置し、後段
のヘリウム精製器へ過大な負荷がかかることを防止する
ことが望ましい。
The pretreatment device for removing water and carbon dioxide in the exhaust gas having a helium concentration of 5 to 70% by volume and containing a large amount of pressurized air is not particularly limited as long as it can remove moisture and carbon dioxide in the exhaust gas. A decarburization dryer filled with an adsorbent for selectively adsorbing carbon dioxide and moisture is suitable. If SiO 2 particles or chlorides are mixed in the exhaust gas with a helium concentration of 5 to 70% by volume in an optical fiber manufacturing process or the like, a filter for dust removal and / or a pretreatment device filled with a neutralizing agent is installed. However, it is desirable to prevent an excessive load from being applied to the subsequent helium purifier.

【0015】本発明において使用するヘリウム精製器
は、液体窒素の冷熱を用いての低温液化分離・吸着法を
用いる。低温液化分離・吸着法は、液体窒素が供給され
る容器に吸着剤を充填したヘリウム精製器を浸漬したも
ので、ヘリウム精製器に導入された水分と炭酸ガスが除
去された排ガスは、液体窒素の冷熱により冷却されて空
気分が液化して排ガス中から分離されるので系外に排出
し、残存する不純物を活性炭、炭素モレキュラーシーブ
等の吸着剤に吸着分離させて高純度ヘリウムを回収す
る。
The helium purifier used in the present invention employs a low-temperature liquefaction separation / adsorption method using cold heat of liquid nitrogen. In the low-temperature liquefaction separation / adsorption method, a helium purifier filled with an adsorbent is immersed in a container to which liquid nitrogen is supplied, and the exhaust gas from which moisture and carbon dioxide gas introduced into the helium purifier are removed is liquid nitrogen. The air is liquefied by the cold heat of the air, and the air is liquefied and separated from the exhaust gas. Therefore, the air is discharged out of the system, and the remaining impurities are adsorbed and separated by an adsorbent such as activated carbon or carbon molecular sieve to recover high-purity helium.

【0016】[0016]

【実施例】【Example】

実施例1 以下に本発明のヘリウム回収方法の詳細を実施の一例を
示す図1に基づいて説明する。図1は本発明のヘリウム
回収精製装置のブロックダイヤグラムである。図1にお
いて、1はガスホルダーで空気が多量に混入したヘリウ
ム濃度5〜70容量%の光ファイバー製造工程や光ガラ
ス製造工程等の排ガスが500mmAqで配管2により
導入され、一旦貯蔵される。3はガスホルダー1内の前
記排ガスを150kg/cm2・Gに昇圧する高圧圧縮
機、4は炭酸ガスと水分を選択的に吸着する吸着剤を充
填した前処理装置で、高圧圧縮機3で150kg/cm
2・Gに昇圧され配管5により導入された前記排ガス中
の水分と炭酸ガスを吸着分離する。6、7は液体窒素容
器8、9に浸漬したヘリウム精製器で、ヘリウム以外の
不純ガスを吸着する活性炭が充填されている。液体窒素
容器8、9には、光ファイバー製造工程や光ガラス製造
工程等の既設の極低温液化ガス貯槽から配管10により
7kg/cm2・Gの液体窒素が供給される。
Example 1 Details of the helium recovery method of the present invention will be described below with reference to FIG. FIG. 1 is a block diagram of the helium recovery / purification apparatus of the present invention. In FIG. 1, reference numeral 1 denotes a gas holder, into which a large amount of air is introduced, and exhaust gas from an optical fiber manufacturing process or an optical glass manufacturing process having a helium concentration of 5 to 70% by volume is introduced at 500 mmAq through a pipe 2 and temporarily stored. Reference numeral 3 denotes a high-pressure compressor which pressurizes the exhaust gas in the gas holder 1 to 150 kg / cm 2 · G, and 4 denotes a pretreatment device filled with an adsorbent for selectively adsorbing carbon dioxide and moisture. 150kg / cm
The water and carbon dioxide in the exhaust gas which has been pressurized to 2 · G and introduced through the pipe 5 are adsorbed and separated. Reference numerals 6 and 7 denote helium purifiers immersed in liquid nitrogen containers 8 and 9 and are filled with activated carbon that adsorbs impurity gases other than helium. The liquid nitrogen containers 8 and 9 are supplied with 7 kg / cm 2 · G of liquid nitrogen through a pipe 10 from an existing cryogenic liquefied gas storage tank in an optical fiber manufacturing process or an optical glass manufacturing process.

【0017】ヘリウム精製器6、7に配管11により導
入された水分と炭酸ガスの除去された排ガスは、液体窒
素容器8、9中の液体窒素の冷熱により冷却されて空気
分が液化分離し、ヘリウム精製器6、7から排出される
と共に、残存する不純物は、ヘリウム精製器6、7中に
充填した活性炭に低温下で吸着される。空気分が液化分
離されると共に不純物が吸着分離された高純度のヘリウ
ムガスは、ヘリウム精製器6、7を通過して配管12を
経由し、高圧容器13に150kg/cm2・Gで充填
される。また、一部の高純度ヘリウムガスは、減圧弁1
4により7kg/cm2・Gに減圧され、光ファイバー
製造工程や光ガラス製造工程等のヘリウム使用工場へ配
管15により送られ使用される。
The exhaust gas from which water and carbon dioxide gas introduced into the helium purifiers 6 and 7 from which the moisture and carbon dioxide gas have been removed is cooled by the cold heat of the liquid nitrogen in the liquid nitrogen containers 8 and 9 to liquefy and separate the air component. The impurities discharged from the helium purifiers 6 and 7 and remaining are adsorbed on the activated carbon filled in the helium purifiers 6 and 7 at a low temperature. The high-purity helium gas from which the air is liquefied and separated and the impurities are adsorbed and separated passes through the helium purifiers 6 and 7, passes through the pipe 12, and is charged into the high-pressure vessel 13 at 150 kg / cm 2 · G. You. Some high-purity helium gas is supplied to the pressure reducing valve 1
The pressure is reduced to 7 kg / cm 2 · G by 4 and sent to a helium-using factory such as an optical fiber manufacturing process or an optical glass manufacturing process through a pipe 15 for use.

【0018】一方、ヘリウム精製器6または7からヘリ
ウム以外の不純物が流出しはじめる前の時点で、図示し
ない切替弁を操作し、水分と炭酸ガスの除去された排ガ
スの導入をヘリウム精製器7または6に切替えて連続運
転する。切替えられて排ガスの導入が停止したヘリウム
精製器6または7の吸着器は、図示しない切替弁を操作
し、活性炭から不純物を図示しないヒータで加熱して追
い出す再生作業を行い、次の切替えまで待機する。ヘリ
ウム精製器6または7の冷却に使用された液体窒素は、
液体窒素容器8または9中でガス化されるが、まだ常温
までは温度が上昇していないので、ガス化窒素ガスを配
管16により加温器17に導入して常温まで加温し、配
管18により搬送してそのまま使用するか、窒素圧縮機
19で7kg/cm2・Gに昇圧して配管20により光
ファイバー製造工程や光ガラス製造工程等のヘリウム使
用工場へ送り使用するか、あるいは配管21により既設
の図示しない寒冷蒸発器の出側に導入されるよう構成さ
れている。
On the other hand, at a point before impurities other than helium start flowing out of the helium purifier 6 or 7, a switching valve (not shown) is operated to introduce the exhaust gas from which moisture and carbon dioxide gas have been removed. Switch to 6 for continuous operation. The adsorber of the helium purifier 6 or 7 where the introduction of the exhaust gas has been switched is switched, the regeneration valve is operated by operating a switching valve (not shown), and the impurities are heated and removed from the activated carbon by a heater (not shown), and a standby operation is performed until the next switching. I do. The liquid nitrogen used for cooling the helium purifier 6 or 7 is:
The gas is gasified in the liquid nitrogen container 8 or 9, but the temperature has not yet risen to room temperature, so the gasified nitrogen gas is introduced into the heater 17 through the pipe 16 and heated to room temperature. Or use it as it is, or pressurize it to 7 kg / cm 2 · G with a nitrogen compressor 19 and send it to a helium using plant such as an optical fiber manufacturing process or an optical glass manufacturing process through a pipe 20, or use a pipe 21. It is configured to be introduced into the outlet side of an existing cold evaporator (not shown).

【0019】上記のとおり構成したことによって、ガス
ホルダー1に一旦貯蔵された空気が多量に混入したヘリ
ウム濃度5〜70容量%の光ファイバー製造工程や光ガ
ラス製造工程等の排ガスは、高圧圧縮機3で150kg
/cm2・Gに昇圧されたのち、配管5により炭酸ガス
と水分を選択的に吸着する吸着剤を充填した前処理装置
4に導入され、炭酸ガスと水分が除去される。炭酸ガス
と水分が除去された前記排ガスは、配管11により例え
ば液体窒素容器8に浸漬されたヘリウム精製器6に導入
され、液体窒素の冷熱により冷却されて排ガス中の空気
分が液化して系外へ分離排出される。さらに、排ガス中
に残存する不純物は、ヘリウム精製器6を通過時に活性
炭に低温吸着されて除去され、精製された高純度ヘリウ
ム(純度99.995%以上)となる。
With the above construction, the exhaust gas from the optical fiber manufacturing process or the optical glass manufacturing process with a helium concentration of 5 to 70% by volume, in which a large amount of air once stored in the gas holder 1 is mixed, is discharged to the high-pressure compressor 3 At 150kg
After the pressure is raised to / cm 2 · G, the gas is introduced into the pretreatment device 4 filled with an adsorbent for selectively adsorbing carbon dioxide and moisture through the pipe 5 to remove carbon dioxide and moisture. The exhaust gas from which the carbon dioxide gas and moisture have been removed is introduced into, for example, a helium purifier 6 immersed in a liquid nitrogen container 8 by a pipe 11, and cooled by the cold heat of liquid nitrogen to liquefy the air component in the exhaust gas. Separated and discharged outside. Further, impurities remaining in the exhaust gas are adsorbed on the activated carbon at a low temperature when they pass through the helium purifier 6, and are removed to become purified high-purity helium (purity of 99.995% or more).

【0020】ヘリウム精製器6を通過した高純度ヘリウ
ムは、配管12により抜き出され、高圧容器13に15
0kg/cm2・Gで充填され、一部は減圧弁14によ
り7kg/cm2・Gに減圧したのち、配管15により
再度光ファイバー製造工場や光ガラス製造工場等のヘリ
ウム使用工場に搬送されて使用される。ヘリウム精製器
6の活性炭に吸着した不純物が飽和した時点で、図示し
ない切替弁を操作して炭酸ガスと水分が除去された前記
排ガスを液体窒素容器9に浸漬されたヘリウム精製器7
への導入に切替えて連続運転すると共に、ヘリウム精製
器6の吸着剤は不純物を加熱して追出す再生操作を行
い、次の切替えに備える。
The high-purity helium that has passed through the helium purifier 6 is extracted through a pipe 12 and put into a high-pressure vessel 13.
Filled with 0 kg / cm 2 · G, a part of the pressure is reduced to 7 kg / cm 2 · G by the pressure reducing valve 14, and then transported again to the helium factory such as the optical fiber manufacturing factory or the optical glass manufacturing factory by the pipe 15 for use. Is done. When the impurities adsorbed on the activated carbon of the helium purifier 6 are saturated, the switching valve (not shown) is operated to remove the carbon dioxide and water from the exhaust gas, and the helium purifier 7 is immersed in a liquid nitrogen container 9.
In addition to the continuous operation after switching to the introduction into the helium purifier, the adsorbent of the helium purifier 6 performs a regeneration operation of heating and purging impurities to prepare for the next switching.

【0021】一方、液体窒素容器8で冷熱が使用された
液体窒素は、ガス化するが、まだ常温となっていないの
で、配管16によりガス化した窒素ガスを加温器17に
導入し、常温まで加温したのち、そのまま使用する場合
は配管18により使用先に搬送するか、窒素圧縮機19
で7kg/cm2・Gまで昇圧して配管20により光フ
ァイバー製造工場や光ガラス製造工場等のヘリウム使用
工場に搬送するか、あるいは、配管21により図示しな
い既設の空温式の蒸発器の出側に搬入する。
On the other hand, the liquid nitrogen which has been cooled and used in the liquid nitrogen container 8 is gasified, but has not yet reached room temperature, so that the nitrogen gas gasified by the pipe 16 is introduced into the heater 17 and After heating to the use place, if it is to be used as it is, it is conveyed to the place of use by piping 18 or a nitrogen compressor 19
And pressurized to 7 kg / cm 2 · G and transported to a helium-using factory such as an optical fiber manufacturing factory or an optical glass manufacturing factory via a pipe 20, or the exit side of an existing air-heated evaporator (not shown) via a pipe 21. Carry in.

【0022】ガスホルダー1の空気が多量に混入したヘ
リウム濃度5〜70容量%の排ガスは、上記操作を繰り
返すことによって連続的に精製されて高純度ヘリウムが
回収される。この排ガスの精製に使用する冷熱は、従来
空温式の蒸発器でガス化していた液体窒素の冷熱を有効
利用するので、冷熱コストはゼロと評価できる。
Exhaust gas having a helium concentration of 5 to 70% by volume into which a large amount of air is mixed in the gas holder 1 is continuously purified by repeating the above operation, and high-purity helium is recovered. As the cold heat used for purifying the exhaust gas, the cold heat of liquid nitrogen, which has been gasified by a conventional air-heated evaporator, is effectively used, so that the cold heat cost can be evaluated as zero.

【0023】実施例2 ヘリウム30%、空気70%からなる原料ガス10Nm
3/Hrを、高圧圧縮機で150kg/cm2・Gに昇圧
して前処理装置で水分と炭酸ガスを除去したのち、3k
g/cm2・Gの液体窒素で冷却された活性炭充填のヘ
リウム精製器に導入し、空気を液化分離すると共に、不
純物を活性炭で吸着し、純度99.995%以上のヘリ
ウムガス2.9Nm3/Hrを得た。ヘリウム精製器で
冷熱を利用された液体窒素は、ガス化するので加温器に
導入して常温まで加温し、光ファイバー製造工程に3k
g/cm2・Gで搬送して使用に供した。
Example 2 Source gas 10 Nm consisting of helium 30% and air 70%
3 / Hr is pressurized to 150 kg / cm 2 · G by a high-pressure compressor, and water and carbon dioxide gas are removed by a pretreatment device.
g / cm 2 · G was introduced into a helium purifier filled with activated carbon cooled with liquid nitrogen, air was liquefied and separated, impurities were adsorbed on activated carbon, and 2.9 Nm 3 of helium gas having a purity of 99.995% or more was obtained. / Hr. Liquid nitrogen, which uses cold heat in the helium purifier, is gasified and introduced into a warmer, which is heated to room temperature and used for the optical fiber manufacturing process in 3k.
It was transported at g / cm 2 · G and used.

【0024】[0024]

【発明の効果】本発明のヘリウム回収方法は、従来空温
式の蒸発器を用いてガス化していた液体窒素の冷熱を有
効利用するので、冷熱コストがゼロと評価できると共
に、冷熱を利用されてガス化した窒素ガスは、必要圧力
まで昇圧して従来通りに使用でき、しかも、液体窒素を
用いての低温液化分離・吸着法であるため、回収ヘリウ
ムガスの純度は99.995%以上であり、高価なヘリ
ウムガスを、安価で高品質で効率よく回収・精製して再
使用できる。
According to the helium recovery method of the present invention, the cold energy of liquid nitrogen, which has been gasified by using an air-heated evaporator, is effectively used. The nitrogen gas gasified by pressure can be used as usual by increasing the pressure to the required pressure, and since the low-temperature liquefaction separation / adsorption method using liquid nitrogen, the purity of the recovered helium gas is not less than 99.995%. Yes, expensive helium gas can be efficiently recovered, purified and reused at low cost, with high quality.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のヘリウム回収精製装置のブロックダイ
ヤグラムである。
FIG. 1 is a block diagram of a helium recovery and purification apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 ガスホルダー 2、5、10、11、12、15、16、18、20、
21 配管 3 高圧圧縮機 4 前処理装置 6、7 ヘリウム精製器 8、9 液体窒素容器 13 高圧容器 14 減圧弁 17 加温器 19 窒素圧縮機
1 Gas holders 2, 5, 10, 11, 12, 15, 16, 18, 20,
21 piping 3 high-pressure compressor 4 pretreatment device 6,7 helium purifier 8,9 liquid nitrogen container 13 high-pressure container 14 pressure reducing valve 17 heater 19 nitrogen compressor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 空気が大量に混入したヘリウム濃度5〜
70容量%の排ガスを昇圧したのち液体窒素を冷却源と
して冷却し、排ガス中の空気を液化分離した後、残余の
微量成分を活性炭等の吸着剤で除去して高純度ヘリウム
を得るヘリウム回収方法において、前記排ガスを昇圧し
たのち光ファイバー製造工程や光ガラス製造工程にガス
化したのち供給される液体窒素を冷却源として使用する
と共に、冷熱のみを利用された低温窒素ガスを加温器で
常温に昇温したのち光ファイバー製造工程や光ガラス製
造工程等に供給することを特徴とするヘリウム回収方
法。
1. A helium concentration of 5 containing a large amount of air.
A helium recovery method in which a 70% by volume exhaust gas is pressurized, cooled using liquid nitrogen as a cooling source, air in the exhaust gas is liquefied and separated, and residual trace components are removed with an adsorbent such as activated carbon to obtain high-purity helium. In the above, the liquid nitrogen supplied after gasification to the optical fiber manufacturing process and the optical glass manufacturing process after pressurizing the exhaust gas is used as a cooling source, and a low-temperature nitrogen gas using only cold heat is brought to room temperature by a heater. A method for recovering helium, wherein the temperature is increased and then supplied to an optical fiber manufacturing process or an optical glass manufacturing process.
【請求項2】 空気が大量に混入したヘリウム濃度5〜
70容量%の排ガス中にSiO2パーティクルや塩化物
が混入している場合、予めフィルターおよび/または前
処理装置で除去することを特徴とする請求項1記載のヘ
リウム回収方法。
2. A helium concentration of 5 to which a large amount of air is mixed.
2. The helium recovery method according to claim 1, wherein when SiO 2 particles or chloride are mixed in the exhaust gas of 70% by volume, the helium is removed by a filter and / or a pretreatment device in advance.
JP13620997A 1997-05-09 1997-05-09 Helium recovery method Expired - Fee Related JP3639087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13620997A JP3639087B2 (en) 1997-05-09 1997-05-09 Helium recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13620997A JP3639087B2 (en) 1997-05-09 1997-05-09 Helium recovery method

Publications (2)

Publication Number Publication Date
JPH10311674A true JPH10311674A (en) 1998-11-24
JP3639087B2 JP3639087B2 (en) 2005-04-13

Family

ID=15169875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13620997A Expired - Fee Related JP3639087B2 (en) 1997-05-09 1997-05-09 Helium recovery method

Country Status (1)

Country Link
JP (1) JP3639087B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6792774B2 (en) * 2002-03-07 2004-09-21 Alcatel Method of treating gaseous waste from an optical fiber preform fabrication unit
CN102597670A (en) * 2009-10-26 2012-07-18 西班牙高等科研理事会 Helium-recovery plant
JP2012162444A (en) * 2011-01-21 2012-08-30 Sumitomo Seika Chem Co Ltd Refining method and refining apparatus of helium gas
JP2013124193A (en) * 2011-12-13 2013-06-24 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying helium gas
JP2018118893A (en) * 2017-01-27 2018-08-02 大陽日酸株式会社 Heat recovery type oxygen and nitrogen supply system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6792774B2 (en) * 2002-03-07 2004-09-21 Alcatel Method of treating gaseous waste from an optical fiber preform fabrication unit
CN102597670A (en) * 2009-10-26 2012-07-18 西班牙高等科研理事会 Helium-recovery plant
CN102597670B (en) * 2009-10-26 2015-12-16 西班牙高等科研理事会 Helium reclaimer
JP2012162444A (en) * 2011-01-21 2012-08-30 Sumitomo Seika Chem Co Ltd Refining method and refining apparatus of helium gas
JP2013124193A (en) * 2011-12-13 2013-06-24 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying helium gas
JP2018118893A (en) * 2017-01-27 2018-08-02 大陽日酸株式会社 Heat recovery type oxygen and nitrogen supply system

Also Published As

Publication number Publication date
JP3639087B2 (en) 2005-04-13

Similar Documents

Publication Publication Date Title
US5656557A (en) Process for producing various gases for semiconductor production factories
TWI480087B (en) Method for recovering high-value components from waste gas streams
US5125934A (en) Argon recovery from argon-oxygen-decarburization process waste gases
JPS62223587A (en) Method and device for recovering argon from purge gas of ammonia plant using combination of low-temperature separation means and non-low temperature separation means
JPS63501549A (en) Ammonia treatment method and equipment
MXPA04000965A (en) Helium recovery.
TW381976B (en) Method and apparatus for purifying ammonia
JPH04280807A (en) Method of recovering argon from supply mixture containing argon, carbon monoxide, methane, hydrogen and nitrogen
CN116600878A (en) Purification of landfill biogas by combined membrane and cryogenic distillation, plant for producing gaseous methane by purifying biogas from landfill
CN102602899B (en) Helium purification method and device
CA3033841A1 (en) Method for recovering hydrogen from biomass pyrolysis gas
JP6659717B2 (en) Hydrogen recovery method
WO2004085941A1 (en) Air separator
US4874592A (en) Production process of xenon
KR20090005702A (en) Apparatus for enriching and purifying waste helium gases
KR20080021245A (en) Method and apparatus for recovery and recycling of used helium gas
JPH1059705A (en) Method for separating and recovering gaseous carbon dioxide
JP3639087B2 (en) Helium recovery method
JP3169647B2 (en) Pressure swing type suction method and suction device
JP4070399B2 (en) Helium gas purification method
JP3268177B2 (en) Method for producing neon and helium
PL168674B1 (en) Method of isolatimg and purifying helium and method of regenerating the catalytic resin
JP3294067B2 (en) Krypton manufacturing method
US5787730A (en) Thermal swing helium purifier and process
JP3256811B2 (en) Method for purifying krypton and xenon

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040416

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees