JPH10309591A - Method and device for infiltrating sewage into soil - Google Patents

Method and device for infiltrating sewage into soil

Info

Publication number
JPH10309591A
JPH10309591A JP18155198A JP18155198A JPH10309591A JP H10309591 A JPH10309591 A JP H10309591A JP 18155198 A JP18155198 A JP 18155198A JP 18155198 A JP18155198 A JP 18155198A JP H10309591 A JPH10309591 A JP H10309591A
Authority
JP
Japan
Prior art keywords
soil
pipe
sewage
infiltration
diffusion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18155198A
Other languages
Japanese (ja)
Other versions
JP3281315B2 (en
Inventor
Satoshi Matsumoto
聰 松本
You Kou
鷹 江
Yutaka Kojima
豊 小島
Kazuyuki Hatano
一幸 羽田野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ONODA ALC KK
Onoda Autoclaved Light Weight Concrete Co Ltd
Taiyo Kogyo Co Ltd
Original Assignee
ONODA ALC KK
Onoda Autoclaved Light Weight Concrete Co Ltd
Taiyo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ONODA ALC KK, Onoda Autoclaved Light Weight Concrete Co Ltd, Taiyo Kogyo Co Ltd filed Critical ONODA ALC KK
Priority to JP18155198A priority Critical patent/JP3281315B2/en
Publication of JPH10309591A publication Critical patent/JPH10309591A/en
Application granted granted Critical
Publication of JP3281315B2 publication Critical patent/JP3281315B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Biological Wastes In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the method and device for infiltrating sewage into soil by which the life period of the device is prolonged while utilizing the advantage of soil infiltration. SOLUTION: A water sprinkling pipe 5p is embedded in soil 3 and 6, the infiltration mat 5m for a diffusion layer having high porosity is provided around the water sprinkling pipe 5p, the sewage supplied to the pipe 5p is diffused and infiltrated into the surrounding soil through the mat 5m, and the sewage is purified. An air-permeable pipe 9 is laid in the mat 5m in its longitudinal direction, an outward extension 9z is furnished to the air-permeable pipe 9, air is forcedly supplied to the pipe 9 by a blower B, etc., through the extension 9z, and oxygen is supplied to the soil 6 close to the boundary with the mat 5m.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、汚水の土壌浸潤処
理方法に関し、特に一般にトレンチ法と呼ばれる土壌浸
潤処理方法及びそれに用いる土壌浸潤処理装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a soil infiltration method for wastewater, and more particularly to a soil infiltration method generally called a trench method and a soil infiltration apparatus used therein.

【0002】[0002]

【従来の技術】トレンチ法と呼ばれる土壌浸潤処理方法
は、土壌中に散水管と孔隙率の高い拡散層などを埋設
し、散水管に供給した汚水を拡散層を介して周囲の土壌
に拡散浸潤させて浄化処理を行なう方法で、他の方法に
ない多くの利点を持っている。例えば、自然の機構をほ
ぼそのまま利用できるので資源やエネルギーの節約を図
れる。装置構造が簡単で済む。悪臭や害虫の発生がな
い。維持管理の手間が少なくそのコストも低くて済む等
々である。
2. Description of the Related Art In a soil infiltration treatment method called a trench method, a sprinkler pipe and a diffusion layer having a high porosity are buried in soil, and sewage supplied to the sprinkler pipe is diffused and infiltrated into the surrounding soil through the diffusion layer. The method of performing the purification process has many advantages not found in other methods. For example, natural mechanisms can be used almost as they are, so that resources and energy can be saved. The device structure is simple. No foul odors or pests are generated. The maintenance work is low and the cost is low.

【0003】土壌浸潤処理方法は、このように多くの利
点を持っているが、一方で装置の処理効率が数年程度の
短期間で低下してしまうという耐用期間について問題点
を抱えており、このことがその広い普及の上での大きな
障害となっている。
[0003] Although the soil infiltration method has many advantages as described above, it has a problem in the service life in which the treatment efficiency of the device is reduced in a short period of about several years. This is a major obstacle to its widespread use.

【0004】土壌浸潤処理の処理効率を低下させる要因
が装置における土壌の目詰まりにあることは古くより知
られている。しかし、そのメカニズムについては未だ十
分な解明がなされていない。このため、目詰まり対策と
して試行錯誤的に種々の方法が提案されているものの、
何れも的確なものでなく、却って例えば装置の複雑化や
エネルギーの浪費などを招き、土壌浸潤処理における上
記のような利点を殺してしまう結果を来すことになって
いた。
It has long been known that a factor that reduces the treatment efficiency of the soil infiltration treatment is clogging of the soil in the apparatus. However, its mechanism has not yet been sufficiently elucidated. For this reason, although various methods have been proposed by trial and error as measures against clogging,
Neither of them is accurate, and rather, for example, the apparatus becomes complicated or energy is wasted, and the above-mentioned advantages in soil infiltration treatment are killed.

【0005】このような事情を背景に本願発明者等は土
壌浸潤処理における目詰まり形成のメカニズムについて
体系的な研究を重ねると共にその対策について研究して
来た。そして、その結果得られたのが本発明である。
[0005] Against this background, the present inventors have systematically studied the mechanism of clogging in soil infiltration treatment and have studied the countermeasures. The result is the present invention.

【0006】[0006]

【発明が解決しようとする課題】即ち本発明は、目詰ま
り形成のメカニズムに的確に対応した目詰まり防止策を
施すことにより、土壌浸潤処理の利点を有効に活かしつ
つ装置の耐用期間を長くさせることができるような土壌
浸潤処理方法及び土壌浸潤処理装置を提供するものであ
る。
That is, the present invention extends the service life of the apparatus by effectively taking advantage of the soil infiltration treatment by taking measures for preventing clogging that accurately corresponds to the mechanism of clogging. It is an object of the present invention to provide a soil infiltration treatment method and a soil infiltration treatment device that can perform the method.

【0007】[0007]

【課題を解決するための手段】本願発明者等の研究によ
ると、目詰まりには物理的目詰まり、化学的目詰まり及
び生物学的目詰まりがあり、なかでも大きく影響するの
は物理的目詰まりと生物学的目詰まりであり、そしてこ
れら両目詰まりに共通する要因は土壌中における一定以
上の嫌気的状態の発生であることが分かった。
According to the study of the present inventors, clogging includes physical clogging, chemical clogging, and biological clogging. Among them, physical clogging greatly affects physical clogging. It was found that clogging and biological clogging, and a factor common to both clogging was the occurrence of certain anaerobic conditions in the soil.

【0008】即ち、物理的目詰まりは土壌の団粒構造が
破壊されて微細粒子化した土壌による緻密層の形成によ
り発生するもので、その原因となる団粒構造の破壊は、
団粒構造の形成に働いている多荷電金属が酸化状態から
還元状態に移行する際に粘度鉱物と腐植複合物との結合
が弱まることを主因としており、土壌中における一定以
上の嫌気的状態の発生に大きく依存している。
In other words, physical clogging is caused by the formation of a dense layer of finely divided soil due to the destruction of the aggregated structure of the soil.
This is mainly due to the weakening of the bond between the viscous mineral and the humus complex when the multi-charged metal working to form the aggregate structure transitions from the oxidized state to the reduced state. Depends heavily on occurrence.

【0009】また、生物学的目詰まりは、主に微生物が
合成する多糖の過剰蓄積に起因し、多糖の過剰蓄積は、
当該部位の土壌が一定以上の嫌気的状態となることによ
り、分解能力が小さく逆に多糖の合成量の多い嫌気性菌
に活動微生物の主体が移ることにある。
[0009] Biological clogging is mainly caused by excessive accumulation of polysaccharides synthesized by microorganisms.
When the soil at the site becomes anaerobic beyond a certain level, the active microorganisms mainly shift to anaerobic bacteria having a low decomposition ability and a large amount of synthesized polysaccharide.

【0010】そして、これらに共通する嫌気的状態は特
に微生物の資化となる汚水に最初に曝される、つまりB
ODなどの濃度が最も高い状態の汚水に曝される拡散層
との境界部分近辺における土壌中において微生物が大量
に増殖して酸素を過度に消費することによりもたらされ
ること、従って主に拡散層との境界部分近辺の土壌に一
定以上の嫌気的状態を生じないように管理するだけで、
目詰まりの発生を有効に防止できて装置の耐用期間を長
くすることができるということを見出し得た。また、嫌
気的状態は酸化還元電位の継続的乃至定期的な計測によ
り監視することができ、その基準となる酸化還元電位
(白金電極を用いたEh計にて計測)は100mV程度
にあり、100mV以下の状態を一定時間以上継続させ
てしまうと多糖の過剰蓄積による嫌気的状態の急激な進
行及びそれに伴う団粒構造の破壊による回復不能な目詰
まりを生じてしまい、従って100mV程度を下限とし
て好ましくは150〜300mV程度に維持しておけば
ほとんど目詰まりを来さないで済むことが分かった。こ
の点については以下に説明する実験例においてさらに詳
しく明らかにする。
An anaerobic condition common to these is that the anaerobic condition is first exposed to sewage, which is particularly assimilation of microorganisms.
Microbial growth in the soil near the boundary with the diffusion layer exposed to the sewage with the highest concentration of OD, etc., results from the large growth of microorganisms and excessive consumption of oxygen. Just manage to prevent a certain level of anaerobic condition on the soil near the boundary of,
It has been found that the occurrence of clogging can be effectively prevented and the service life of the device can be extended. The anaerobic state can be monitored by continuous or periodic measurement of the oxidation-reduction potential. The reference oxidation-reduction potential (measured by an Eh meter using a platinum electrode) is about 100 mV, and is 100 mV. If the following conditions are continued for a certain period of time or more, rapid progression of the anaerobic state due to excessive accumulation of polysaccharide and irrecoverable clogging due to the destruction of the aggregate structure accompanying it will occur. Therefore, the lower limit is preferably about 100 mV. It was found that if c was maintained at about 150 to 300 mV, almost no clogging would occur. This point will be further clarified in an experimental example described below.

【0011】従って、上記課題を解決するための土壌浸
潤処理方法は、拡散層との境界部分近辺における土壌中
の酸化還元電位をEh計などを用いて監視し、この値が
基準値、具体的には100mV以下になった場合に拡散
層との境界部分近辺の土壌に対し重点的に酸素を供給し
て当該部位の酸化還元電位を例えば150〜300mV
程度の所定値に戻すようにしてなっている。
[0011] Therefore, in the soil infiltration method for solving the above-mentioned problem, the oxidation-reduction potential in the soil near the boundary with the diffusion layer is monitored using an Eh meter or the like, and this value is used as a reference value, specifically. When it becomes 100 mV or less, oxygen is intensively supplied to the soil near the boundary with the diffusion layer, and the oxidation-reduction potential of the site is set to, for example, 150 to 300 mV.
To a predetermined value.

【0012】このように、酸化還元電位の監視に基づい
て必要時に必要最小限の範囲で酸素を供給、つまり曝気
処理を行うようにしているので、運転用のエネルギーの
消費を最小限に抑えることができ、自然の機構の利用に
よる資源やエネルギーの節約という土壌浸潤処理の特性
を有効に活かす処理とすることができる。
As described above, oxygen is supplied in a necessary minimum range, that is, aeration treatment is performed when necessary based on monitoring of the oxidation-reduction potential, so that consumption of operating energy is minimized. It is possible to make effective use of the characteristics of soil infiltration treatment, such as saving resources and energy by using natural mechanisms.

【0013】このような土壌浸潤処理方法を実現する土
壌浸潤処理装置の好ましい一形態は、散水管の周囲の拡
散層を、透水性の袋状材に粒状の多孔質ケイ酸カルシウ
ム水和物を含む充填材を充填してなる浸潤マットで形成
し、この浸潤マットを散水管の上側から散水管の上部を
覆うように配設した構造とし、且つ浸潤マットの左右各
端部にそれぞれ通気管を長手方向で挿通させて設ける構
造である。
A preferred embodiment of the soil infiltration apparatus for realizing such a soil infiltration method is to form a diffusion layer around a sprinkler pipe by using granular porous calcium silicate hydrate in a water-permeable bag. It is formed of an infiltration mat filled with a filling material including the infiltration mat, and the infiltration mat is arranged so as to cover the upper part of the sprinkler pipe from the upper side of the sprinkler pipe. This is a structure provided to be inserted in the longitudinal direction.

【0014】この土壌浸潤処理装置によると多孔質ケイ
酸カルシウム水和物を充填材として含む浸潤マットによ
り土壌浸潤処理の効率を高めることができるし、特にこ
の浸潤マットの両端に設けた通気管を利用して上記の必
要時における曝気処理を浸潤マットつまり浸潤層との境
界部分近辺に対し重点的に行なうことができる。
According to this soil infiltration apparatus, the efficiency of soil infiltration can be increased by using an infiltration mat containing porous calcium silicate hydrate as a filler, and in particular, ventilation pipes provided at both ends of the infiltration mat can be used. By utilizing the above, the aeration treatment at the time of the above-mentioned necessity can be mainly performed on the infiltration mat, that is, the vicinity of the boundary with the infiltration layer.

【0015】次に、上記課題を解決するための別の土壌
浸潤処理方法は、土壌中に散水管を埋設すると共に、こ
の散水管の周囲に孔隙率の高い拡散層を配設し、散水管
に供給した汚水を拡散層を介して周囲の土壌に拡散浸潤
させて浄化処理を行なう汚水の土壌浸潤処理方法におい
て、拡散層に通気管を長さ方向で挿通させ、通気管に外
部への延設部を設け、延設部を介して通気管にブロアー
などにより強制的に通気することにより、拡散層との境
界部分近辺における土壌に酸素を供給することである。
[0015] Next, another soil infiltration treatment method for solving the above-mentioned problem is to bury a water sprinkling pipe in the soil, dispose a diffusion layer having a high porosity around the water sprinkling pipe, and dispose the water sprinkling pipe. In the soil infiltration treatment method, in which the sewage supplied to the sewage is diffused and infiltrated into the surrounding soil via the diffusion layer to perform purification treatment, the ventilation pipe is inserted in the diffusion layer in the length direction, and the ventilation pipe is extended to the outside. By providing an installation part and forcibly ventilating the ventilation pipe with a blower or the like through the extension part, oxygen is supplied to the soil near the boundary with the diffusion layer.

【0016】この土壌浸潤処理方法を実現する土壌浸潤
処理装置の好ましい一形態は、土壌中に散水管が埋設さ
れると共に、この散水管の周囲に孔隙率の高い拡散層が
配設され、散水管に供給した汚水を拡散層を介して周囲
の土壌に拡散浸潤させて浄化処理を行なう汚水の土壌浸
潤処理装置であって、拡散層に通気管が長さ方向で挿通
され、通気管に外部への延設部が設けられ、延設部を介
して通気管に強制的に通気するブロアーなどが設けられ
た構造である。
In a preferred embodiment of the soil infiltration apparatus for realizing the soil infiltration method, a water sprinkling pipe is buried in the soil, and a diffusion layer having a high porosity is provided around the water sprinkling pipe. This is a soil infiltration treatment device that performs purification treatment by diffusing and infiltrating sewage supplied to a water pipe into a surrounding soil through a diffusion layer, wherein a ventilation pipe is inserted in the diffusion layer in a length direction, and externally connected to the ventilation pipe. And a blower that forcibly ventilates the ventilation pipe through the extension.

【0017】また、この土壌浸潤処理方法又は装置にお
いて、拡散層の左右各端部にそれぞれ通気管を長さ方向
で挿通することかできる。
Further, in this soil infiltration method or apparatus, the ventilation pipes can be inserted in the longitudinal direction at the left and right ends of the diffusion layer.

【0018】[0018]

【実験例】前述の目詰まりの発生と酸化還元電位の関係
を解析するについて行なった実験例について以下説明す
る。
[Experimental Example] An experimental example conducted to analyze the relationship between the occurrence of the clogging and the oxidation-reduction potential will be described below.

【0019】実験には図2に示す構造の土壌カラム装置
Sを用いた。この土壌カラム装置Sは、直径15cm、
高さ28cmの透明の管を用いており、その内部には下
端部に4cmで集水用にガラスビーズを充填した他は上
端まで0.92g/cm3 の密度で土壌を充填してい
る。また上から6cmの所から以下それぞれ4cmの間
隔で5本の白金電極Eを埋設し、一定の高さごとに土壌
の酸化還元電位を測定できるようにしている。
In the experiment, a soil column apparatus S having the structure shown in FIG. 2 was used. This soil column device S has a diameter of 15 cm,
A transparent tube having a height of 28 cm is used. The inside of the tube is filled with soil at a density of 0.92 g / cm 3 up to the upper end, except that the lower end is filled with glass beads at 4 cm for collecting water. In addition, five platinum electrodes E are buried at a distance of 4 cm from a position 6 cm from the top, so that the oxidation-reduction potential of the soil can be measured at a certain height.

【0020】汚水の供給は上から14cmの位置で接続
した散水体Wを介して行っている。供給する汚水はDO
(溶存酸素)が0〜1mg/l、3〜4mg/l、7〜
8mg/lと異なる条件のものを用い、これらをそれぞ
れ毎日200mlずつ約4か月間流し、それぞれについ
て、汚水の土壌平均浸透速度、多糖の畜積量及び酸化還
元電位を測定した。
Sewage is supplied via a sprinkler W connected 14 cm from above. Sewage to be supplied is DO
(Dissolved oxygen) 0-1 mg / l, 3-4 mg / l, 7-
Under the condition different from 8 mg / l, 200 ml of these were flowed every day for about 4 months, and the soil average permeation rate of sewage, the storage amount of polysaccharide and the oxidation-reduction potential were measured for each.

【0021】土壌平均浸透速度は図3に示す通りで、注
入汚水のDOが高いほど土壌の平均浸透速度が速く、ま
たそれぞれほぼ60日後までは急激な低下傾向を示す
が、7〜8mg/lの場合には60日後にも比較的高い
値を保っている。このことは、土壌構造に変化が起こら
ず、物質の蓄積と分解の過程が均衡する状態を維持して
おり、土壌孔隙が多糖などで閉塞する現象は現れなかっ
たことを示している。
The average permeation rate of the soil is as shown in FIG. 3. The higher the DO of the injected sewage, the higher the average permeation rate of the soil, and each of them shows a sharp decreasing tendency until almost 60 days later, but 7 to 8 mg / l. In this case, the value is relatively high even after 60 days. This indicates that the structure of the soil did not change and the accumulation and decomposition processes of the substance were kept in a balanced state, and that the pores of the soil were not blocked by the polysaccharide or the like.

【0022】また、多糖の蓄積量とDOの関係を各白金
電極Eの埋設位置を中心にして4cmの厚みのブロック
(上から順に第1〜第5ブロック)とし、この各ブロッ
クごとに見ると図4に示す通りで、最も多糖の蓄積量の
多い第3ブロックにおいては、DO0〜1mg/lと7
〜8mg/lとの比が80:1であった。
The relationship between the accumulated amount of polysaccharide and DO is defined as a block having a thickness of 4 cm (first to fifth blocks in order from the top) centering on the position where each platinum electrode E is buried. As shown in FIG. 4, in the third block having the largest amount of accumulated polysaccharide, DO 0 to 1 mg / l and 7
The ratio to 88 mg / l was 80: 1.

【0023】さらに、多糖の蓄積量と酸化還元電位の関
係を示すと図5のようになり、両者に高い負の相関性が
見られ、特に100mV前後が大きな変化点になってい
ることが分かる。つまり、100mVを境に相関曲線の
傾きが大きく変わっており、100mV以下では蓄積量
が急激な増大を示すが、100mV以上については比較
的変化が少なく、特に150mVを越えると実用的には
差がない範囲の変化であることも分かる。
FIG. 5 shows the relationship between the amount of accumulated polysaccharide and the oxidation-reduction potential. As shown in FIG. 5, there is a high negative correlation between the two, and it can be seen that the large change point is around 100 mV. . In other words, the slope of the correlation curve greatly changes at the boundary of 100 mV, and the amount of accumulation shows a sharp increase at 100 mV or less, but the change is relatively small at 100 mV or more, and there is a practical difference especially at 150 mV or more. It can also be seen that there is no change in the range.

【0024】[0024]

【実施例】以下、本発明の実施例を家庭のし尿排水の処
理用として1m当たり日量100リットルの処理の条件
で設計した装置例に沿って説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to an example of an apparatus designed for treating household wastewater at a daily rate of 100 liters per meter.

【0025】本実施例における土壌浸潤処理装置は、図
1に示すように、深さ約1m、幅約2mで掘ったトレン
チ溝1内に形成される。その具体的な構造は、トレンチ
溝1の底から順に砂利層2、下部土壌層3、ろ材層4、
浸潤部5、上部土壌層6を積層してなっており、トレン
チ溝1の内側には防水シート7を張りめぐらしてある。
As shown in FIG. 1, the soil infiltration apparatus in this embodiment is formed in a trench 1 dug at a depth of about 1 m and a width of about 2 m. The specific structure is as follows: gravel layer 2, lower soil layer 3, filter medium layer 4,
The infiltration part 5 and the upper soil layer 6 are laminated, and a waterproof sheet 7 is stretched inside the trench 1.

【0026】砂利層2は、砂利と礫状のゼオライトの混
合物を10cm程度の厚さに充填して形成され、その中
央部には浄化済水を集めて取り出すための集水管8が埋
設されている。
The gravel layer 2 is formed by filling a mixture of gravel and gravel-like zeolite to a thickness of about 10 cm, and a central portion is provided with a water collecting pipe 8 for collecting and extracting purified water. I have.

【0027】上下の各土壌層3、6は、浄化処理の主役
となる部分で通気性と毛管浸潤性を適度にバランスさせ
るように調整した土壌でそれぞれ40cm及び30cm
の厚さに形成されている。土壌層に用いる土壌として
は、予め調整したものを用いることができる場合には、
例えば粘土含量12〜15%、シルト含量20〜45
%、砂含量3〜65%のクレーローム(clay−lo
am)に相当し、孔隙率が50〜70%、有効孔隙率が
15〜20%である土壌を用いるのが好ましい。また、
現場で調整する場合には、トレンチ溝1を形成するため
に掘り出した土壌に例えば小野田エー・エル・シー株式
会社から商品名「芝健」として販売されているような土
壌改良材を約2kg/m3 程度添加するのが好ましい。
この土壌改良材は、ケイ酸質土壌活性肥料で、その組成
は、窒素0.8%、リン酸1.0%、カリ1.3%、石
灰8.0%、苦土0.6%、ケイ酸17.2%、酸化鉄
0.4%、そしてC/N比が16である。
Each of the upper and lower soil layers 3 and 6 is made of a soil which is adjusted so as to have a proper balance between air permeability and capillary infiltration in a portion which is a main part of the purification treatment.
It is formed in the thickness of. If the soil used for the soil layer can be prepared in advance,
For example, a clay content of 12 to 15% and a silt content of 20 to 45
%, Sand content of 3-65% clay-lo
It is preferable to use soil having a porosity of 50 to 70% and an effective porosity of 15 to 20%. Also,
In the case of on-site adjustment, the soil excavated to form the trench 1 is made of, for example, about 2 kg / soil improvement material such as that sold by Onoda ALC Co., Ltd. under the trade name “Shibaken”. It is preferable to add about m 3 .
This soil conditioner is a siliceous soil activated fertilizer, the composition of which is 0.8% nitrogen, 1.0% phosphoric acid, 1.3% potassium, 8.0% lime, 0.6% magnesia, Silicic acid 17.2%, iron oxide 0.4%, and C / N ratio is 16.

【0028】ろ材層4は、トバモライトを主成分とする
粒状の多孔質ケイ酸カルシウム水和物(小野田エー・エ
ル・シー株式会社の商品名「TBX」)を充填して約5
cmの厚みで形成されている。この多孔質ケイ酸カルシ
ウム水和物は、SiO2 ;54.7%、CaO;25.
2%、Al23 ;2.7%、Fe23 ;1.5%、
MgO;0.3%の組成を持ち、粒径は5〜8mmであ
る。
The filter medium layer 4 is filled with a granular porous calcium silicate hydrate mainly composed of tobermorite (trade name “TBX” of Onoda ALC Co., Ltd.) and is filled with the filter medium layer 4 for about 5 hours.
cm. This porous calcium silicate hydrate has a composition of SiO 2 ; 54.7%, CaO;
2%, Al 2 O 3 ; 2.7%, Fe 2 O 3 ; 1.5%,
MgO; having a composition of 0.3% and a particle size of 5 to 8 mm.

【0029】浸潤部5は、ろ材層4の中央部を二分する
状態で下部土壌層3の一部を盛り上げて形成した土台部
3dに支持させて配設した散水管5pと、約10cmの
厚さで散水管5pの上部を半円形に覆いつつ左右にトレ
ンチ溝1の幅の1/4程度まで伸びるように配設した拡
散層用の浸潤マット5mにより形成されている。浸潤マ
ット5mは、ポリエステル糸で織った布を袋状にしその
中に前記多孔質ケイ酸カルシウム水和物やキトサン処理
した木炭、及びモミガラクン炭を所定の割合で混合した
ものを充填して形成されている。また、浸潤マット5m
の各側端部には長さ方向で通気管9が通されている。こ
の通気管9には、ポリエチレン繊維の織物による管(太
陽工業株式会社の製品名「MAXエコドレーン」)を用
いている。
The infiltration part 5 is provided with a sprinkling pipe 5p supported and supported on a base part 3d formed by raising a part of the lower soil layer 3 in a state where the central part of the filter medium layer 4 is bisected, and a thickness of about 10 cm. The water sprinkling pipe 5p is formed by a diffusion layer infiltration mat 5m disposed so as to extend to the left and right to about 1/4 of the width of the trench groove 1 while covering the upper part in a semicircle. The infiltration mat 5 m is formed by filling a cloth woven from polyester yarn into a bag and mixing the porous calcium silicate hydrate, the charcoal treated with chitosan, and the firgalacton charcoal in a predetermined ratio. ing. In addition, infiltration mat 5m
A ventilation pipe 9 is passed through each side end in the longitudinal direction. As the vent pipe 9, a pipe made of polyethylene fiber fabric (product name "MAX Eco Drain" of Taiyo Kogyo Co., Ltd.) is used.

【0030】以上の土壌浸潤処理装置による浄化処理は
以下のようにしてなされる。散水管5pに汚水を供給す
ると、この汚水は、散水管5pから浸潤マット5mに流
れ出す。ここで、この汚水の供給に伴って過剰な空気が
散水管5pや浸潤マット5mから押し出されることにな
るが、この空気は浸潤マット5mの通気管9を介して外
部に排気される。浸潤マット5mに流れ出した汚水は、
さらに浸潤マット5mから上下各土壌層3、6、特に上
部土壌層6に向けて毛管浸潤で拡散し、そこで浄化作用
を受けて浄化され、最終的には砂利層2から集水管8に
集まって来る。
The purification treatment by the above soil infiltration treatment device is performed as follows. When the sewage is supplied to the sprinkler pipe 5p, the sewage flows out from the sprinkler pipe 5p to the infiltration mat 5m. Here, excess air is pushed out from the sprinkling pipe 5p and the infiltration mat 5m with the supply of the sewage, but this air is exhausted to the outside through the ventilation pipe 9 of the infiltration mat 5m. The sewage flowing into the infiltration mat 5m
Further, from the infiltration mat 5 m, it is diffused by capillary infiltration toward the upper and lower soil layers 3 and 6, especially the upper soil layer 6, where it is purified by a purifying action, and finally collected from the gravel layer 2 to the collecting pipe 8. come.

【0031】このような処理過程にあって、汚水の濃度
が最も高い部位、つまり浸潤マット5mと上部土壌層6
との境界部分近辺における上部土壌層6中において特に
微生物の繁殖量が多くなり、酸素が過度に消費されて当
該部位が嫌気化してくる。そこで、継続的に、あるいは
例えば半年〜1年程度の間隔をおいて一定期間当該部位
の酸化還元電位をEh計Kなどで計測して監視し、その
値が100mV以下となるようであったら150〜30
0mV程度に回復させる範囲で曝気処理を行なう。この
曝気処理は、浸潤マット5mの通気管9に外部への延設
部9zを介して例えばブロアーBなどにより強制的に通
気させることにより行なう。
In such a treatment process, the site where the concentration of sewage is highest, that is, the infiltration mat 5 m and the upper soil layer 6
Especially in the upper soil layer 6 in the vicinity of the boundary with, the propagation amount of microorganisms is particularly large, and oxygen is excessively consumed, and the site becomes anaerobic. Therefore, the oxidation-reduction potential of the site is measured continuously or for a certain period of time at intervals of, for example, about six months to one year by using an Eh meter K and monitored. ~ 30
The aeration process is performed within a range of recovering to about 0 mV. This aeration treatment is performed by forcibly ventilating the ventilation pipe 9 of the infiltration mat 5m with a blower B or the like through the extension part 9z to the outside.

【0032】[0032]

【発明の効果】本発明に係る土壌浸潤処理方法及び土壌
浸潤処理装置は、以上説明したように、目詰まり形成の
メカニズムについての知見に基づき、拡散層に挿通した
通気管に外部への延設部を介してブロアーなどにより強
制的に通気することにより、拡散層との境界部分近辺に
おける土壌に曝気処理して目詰まりを防止するようにし
ているので、土壌浸潤処理の利点を殺ぐことなく装置の
耐用期間を長くさせることができる。
As described above, the soil infiltration treatment method and the soil infiltration treatment device according to the present invention extend to the outside through the ventilation pipe inserted through the diffusion layer based on the knowledge of the mechanism of clogging. By forcibly ventilating with a blower etc. through the part, the soil near the boundary with the diffusion layer is aerated to prevent clogging, so that the advantage of soil infiltration treatment is not killed The service life of the device can be extended.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に用いる土壌浸潤処理装置の
断面図である。
FIG. 1 is a sectional view of a soil infiltration treatment apparatus used in one embodiment of the present invention.

【図2】本発明に際して行なった実験に用いた土壌カラ
ム装置の構成図である。
FIG. 2 is a configuration diagram of a soil column device used in an experiment performed in the present invention.

【図3】汚水の土壌平均浸透速度についてのグラフ図で
ある。
FIG. 3 is a graph showing the average permeation rate of soil in soil.

【図4】多糖の蓄積量と汚水中の溶存酸素量との関係を
示すグラフ図である。
FIG. 4 is a graph showing the relationship between the accumulated amount of polysaccharide and the amount of dissolved oxygen in wastewater.

【図5】土壌における多糖の蓄積量と酸化還元電位との
関係を示すグラフ図である。
FIG. 5 is a graph showing the relationship between the amount of polysaccharide accumulated in soil and the oxidation-reduction potential.

【符号の説明】[Explanation of symbols]

1 トレンチ溝 2 砂利層 3 下部土壌層 4 ろ材層 5 浸潤部 5p 散水管 5m 浸潤マット(拡散層) 6 上部土壌層 7 防水シート 8 集水管 9 通気管 9z 延設部 B ブロアー K Eh計 W 散水体 DESCRIPTION OF SYMBOLS 1 Trench groove 2 Gravel layer 3 Lower soil layer 4 Filter material layer 5 Infiltration part 5p Sprinkling pipe 5m Infiltration mat (diffusion layer) 6 Upper soil layer 7 Waterproof sheet 8 Water collecting pipe 9 Ventilation pipe 9z Extension part B Blower K Eh meter W Sprinkling body

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小島 豊 大阪府大阪市淀川区木川東4−8−4太陽 工業株式会社内 (72)発明者 羽田野 一幸 愛知県尾張旭市下井町下井2035番地小野田 エー・エル・シー株式会社材料研究所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yutaka Kojima Inside Taiyo Kogyo Co., Ltd. 4-8-4 Kigawa Higashi, Yodogawa-ku, Osaka-shi・ Lc Materials Research Laboratory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 土壌中に散水管を埋設すると共に、この
散水管の周囲に孔隙率の高い拡散層を配設し、散水管に
供給した汚水を拡散層を介して周囲の土壌に拡散浸潤さ
せて浄化処理を行なう汚水の土壌浸潤処理方法におい
て、 拡散層に通気管を長さ方向で挿通させ、通気管に外部へ
の延設部を設け、延設部を介して通気管にブロアーなど
により強制的に通気することにより、拡散層との境界部
分近辺における土壌に酸素を供給することを特徴とする
汚水の土壌浸潤処理方法。
1. A water sprinkling pipe is buried in soil, and a diffusion layer having a high porosity is provided around the water sprinkling pipe, and sewage supplied to the water sprinkling pipe is diffused and infiltrated into the surrounding soil through the diffusion layer. In the method of soil infiltration treatment of sewage water for purifying wastewater, a ventilation pipe is inserted in the diffusion layer in the length direction, an extension is provided to the outside of the ventilation pipe, and a blower or the like is provided to the ventilation pipe through the extension. And supplying oxygen to the soil in the vicinity of the boundary with the diffusion layer by forcibly ventilating the soil.
【請求項2】 土壌中に散水管が埋設されると共に、こ
の散水管の周囲に孔隙率の高い拡散層が配設され、散水
管に供給した汚水を拡散層を介して周囲の土壌に拡散浸
潤させて浄化処理を行なう汚水の土壌浸潤処理装置であ
って、 拡散層に通気管が長さ方向で挿通され、通気管に外部へ
の延設部が設けられ、延設部を介して通気管に強制的に
通気するブロアーなどが設けられたことを特徴とする汚
水の土壌浸潤処理装置。
2. A water sprinkling pipe is buried in the soil, and a diffusion layer having a high porosity is provided around the water sprinkling pipe to diffuse sewage supplied to the water sprinkling pipe to the surrounding soil through the diffusion layer. A soil infiltration treatment device for infiltrating and purifying sewage water, wherein a ventilation pipe is inserted in the diffusion layer in the length direction, and an extension is provided to the outside of the ventilation pipe, and the ventilation pipe is passed through the extension. A soil infiltration treatment device for sewage, which is provided with a blower for forcibly ventilating the trachea.
【請求項3】 拡散層の左右各端部にそれぞれ通気管を
長さ方向で挿通した請求項1記載の汚水の土壌浸潤処理
方法又は請求項2記載の汚水の土壌浸潤処理装置。
3. The method for treating soil infiltration of sewage according to claim 1, wherein a ventilation pipe is inserted in each of the left and right ends of the diffusion layer in the longitudinal direction.
JP18155198A 1998-06-11 1998-06-11 Soil infiltration treatment method and soil infiltration treatment device Expired - Lifetime JP3281315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18155198A JP3281315B2 (en) 1998-06-11 1998-06-11 Soil infiltration treatment method and soil infiltration treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18155198A JP3281315B2 (en) 1998-06-11 1998-06-11 Soil infiltration treatment method and soil infiltration treatment device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6025949A Division JP2837799B2 (en) 1994-01-31 1994-01-31 Soil infiltration treatment method and soil infiltration treatment device

Publications (2)

Publication Number Publication Date
JPH10309591A true JPH10309591A (en) 1998-11-24
JP3281315B2 JP3281315B2 (en) 2002-05-13

Family

ID=16102771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18155198A Expired - Lifetime JP3281315B2 (en) 1998-06-11 1998-06-11 Soil infiltration treatment method and soil infiltration treatment device

Country Status (1)

Country Link
JP (1) JP3281315B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102690027A (en) * 2012-06-19 2012-09-26 安树青 Ecological infiltration treatment method
CN103938580A (en) * 2014-03-21 2014-07-23 南大(常熟)研究院有限公司 In-situ purification island structure and construction method of in-situ purification island structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102690027A (en) * 2012-06-19 2012-09-26 安树青 Ecological infiltration treatment method
CN103938580A (en) * 2014-03-21 2014-07-23 南大(常熟)研究院有限公司 In-situ purification island structure and construction method of in-situ purification island structure
CN103938580B (en) * 2014-03-21 2015-08-26 南大(常熟)研究院有限公司 Purified in situ island structure and construction process thereof
WO2015139485A1 (en) * 2014-03-21 2015-09-24 南大(常熟)研究院有限公司 In-situ purification island structure and method for constructing same

Also Published As

Publication number Publication date
JP3281315B2 (en) 2002-05-13

Similar Documents

Publication Publication Date Title
CN107892441B (en) Metal mine water resource recycles middle pollutant catabolic gene device and control method
CN100482601C (en) Ventilating and baffling artificial wetland simulator
CN104828946B (en) A kind of intensified anti-nitrated living things catalysis filler subsurface wastewater infiltration system
CN101987760A (en) Horizontal underflow constructed wetland capable of strengthening denitrification at low temperature
CN103641270A (en) High-load subsurface infiltration and sewage treatment combination system
CN206511998U (en) Multifunctional all river regulation ROV
CN105565511A (en) Black and odorous river channel repair technology for reducing odor dissipation and gas distribution device
CN107188379A (en) A kind of domestic sewage of villages and small towns rural area landscape type total system
CN101704585B (en) Progressively reduced aeration subsurface constructed wetland
CN103449611A (en) Horizontal subsurface flow artificial wetland treatment device with controllable oxygen supply
CN207047066U (en) A kind of domestic sewage of villages and small towns rural area landscape type total system
CN104326574B (en) The horizontal subsurface flow wetland system of strengthening micropollutant water denitrogenation in winter
JP3281315B2 (en) Soil infiltration treatment method and soil infiltration treatment device
CN206395938U (en) The solar energy aeration Vertical Flow Constructed Wetland Systems of strengthened denitrification
JP2837799B2 (en) Soil infiltration treatment method and soil infiltration treatment device
CN204752315U (en) Reinforce biological catalysis filler underground infiltration system of denitrification
CN106830533A (en) A kind of groove revetment type cities and towns inland river(Lake, storehouse, the pool)Water body purification system
CN204237622U (en) A kind of horizontal subsurface flow wetland system strengthening micropollutant water denitrogenation in winter
CN211198771U (en) Ozone micro-nano aeration biological contact oxidation water body purification device
CN105692905B (en) A kind of land disposal method and device of ecotype landscape water body
CN209226766U (en) A kind of wetland ventilating system and wet land system
JPS61212386A (en) Method and apparatus for purifying sewage
CN208667381U (en) A kind of hilly country rural domestic sewage treatment system
CN109970133A (en) The porous ecological assemblage device and its technique of sewage plant level-one A Tailwater Depth processing
CN205442977U (en) Domestic sewage filtration combination processing system

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080222

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100222

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100222

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110222

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20120222

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20120222

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20120222

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20140222

EXPY Cancellation because of completion of term