JPH10309088A - Thermoelectric converter - Google Patents

Thermoelectric converter

Info

Publication number
JPH10309088A
JPH10309088A JP11246897A JP11246897A JPH10309088A JP H10309088 A JPH10309088 A JP H10309088A JP 11246897 A JP11246897 A JP 11246897A JP 11246897 A JP11246897 A JP 11246897A JP H10309088 A JPH10309088 A JP H10309088A
Authority
JP
Japan
Prior art keywords
temperature
temperature side
thermoelectric conversion
heat medium
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11246897A
Other languages
Japanese (ja)
Inventor
Yoshikazu Sakakibara
嘉一 榊原
Sadaji Obata
貞二 小畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP11246897A priority Critical patent/JPH10309088A/en
Publication of JPH10309088A publication Critical patent/JPH10309088A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric converter in which the breakage of a thermoelectric transducer and the decline of a conversion efficiency hardly occur, even if the temperature of a high temperature side heat source which is the supply source of a thermal energy is changed. SOLUTION: In a thermoelectric converter, which has a high temperature side heat source 1 which is the supply source of a thermal energy, and a thermoelectric transducer 3 which converts the thermal energy supplied from the high temperature side heat source 1 into electric energy and outputs it, a heat medium flowing space 2 through which heat medium is made to flow is provided between the high temperature side heat source 1 and the high temperature side part 3a of the thermoelectric transducer 3 and, further, a temperature control mechanism 4 which controls the flow rate of the heat medium flowing through the heat medium flowing space to control the temperature of the high temperature side part 3a of the thermoelectric transducer 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱エネルギーの供
給源となる高温側熱源と、その高温側熱源から供給され
る熱エネルギーを電気エネルギーに変換して出力する熱
電変換素子とを備える熱電変換装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric converter having a high-temperature heat source serving as a heat energy supply source, and a thermoelectric conversion element for converting the heat energy supplied from the high-temperature heat source into electric energy and outputting the electric energy. Related to the device.

【0002】[0002]

【従来の技術】従来、この種の熱電変換装置の利用法と
しては、エンジン、ボイラー、ゴミ焼却装置等から排出
される排ガスより廃熱を回収する目的で使用することが
考えられてきたが、その使用方法としては、排ガス管表
面等の高温側熱源と熱電変換素子の高温側部とを直接又
は適当な接着剤等により固着する方法が考えられた。そ
して、従来は、熱電変換素子の変換効率が不十分であっ
たため、ほとんど実用には至っていなかったが、近年、
熱電変換素子の技術水準が急速に向上し、熱電効率も2
0%に近づくまでになり、その見直しが行われている。
2. Description of the Related Art Conventionally, as a method of using this kind of thermoelectric converter, it has been considered to use it for the purpose of recovering waste heat from exhaust gas discharged from an engine, a boiler, a garbage incinerator or the like. As a method of using it, a method of fixing a high-temperature side heat source such as an exhaust gas pipe surface and a high-temperature side portion of the thermoelectric conversion element directly or by using an appropriate adhesive has been considered. Conventionally, the conversion efficiency of the thermoelectric conversion element was insufficient, so that it was hardly practically used.
The technical level of thermoelectric conversion elements has improved rapidly,
By the time it approaches 0%, it is being reviewed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、熱電変
換素子には、その材料組成等に応じた最適動作温度があ
り、例えば、Bi2 Te3 系では65℃、PbTe系で
は460℃であるのに対して、エンジンやゴミ焼却装置
の排ガス温度は、大きく温度変動するため、その変動に
より変換効率が低下するという問題があった。また、か
かる排ガス温度は、500℃を超えることも多く、高温
のために熱電変換素子が破損するという場合が生じた。
However, the thermoelectric conversion element has an optimum operating temperature according to the material composition and the like. For example, the temperature is 65 ° C. for Bi 2 Te 3 system and 460 ° C. for PbTe system. On the other hand, the exhaust gas temperature of an engine or a refuse incinerator greatly fluctuates, and there is a problem that the conversion efficiency decreases due to the fluctuation. Further, the temperature of the exhaust gas often exceeds 500 ° C., and the high temperature may cause the thermoelectric conversion element to be damaged.

【0004】従って、本発明の目的は、熱エネルギーの
供給源となる高温側熱源の温度が変化しても、熱電変換
素子の破損や変換効率の低下が起こりにくい熱電変換装
置を提供することにある。
Accordingly, an object of the present invention is to provide a thermoelectric conversion device in which damage to a thermoelectric conversion element and reduction in conversion efficiency are unlikely to occur even when the temperature of a high-temperature heat source serving as a heat energy supply source changes. is there.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
の本発明の特徴構成は、熱エネルギーの供給源となる高
温側熱源と、その高温側熱源から供給される熱エネルギ
ーを電気エネルギーに変換して出力する熱電変換素子と
を備える熱電変換装置において、前記高温側熱源と前記
熱電変換素子の高温側部との間に、熱媒体を流通させ得
る熱媒体流通空間を設けると共に、その熱媒体流通空間
に流通する熱媒体の流量を調整して前記熱電変換素子の
高温側部の温度調整を行う温度制御機構を設けてあるこ
とにある。ここで、熱媒体とは、広く熱を伝達する媒体
を指し、空気等の気体や、各種液体等の流体が含まれ
る。
SUMMARY OF THE INVENTION In order to achieve the above object, a feature of the present invention is to provide a high-temperature side heat source serving as a heat energy supply source, and to convert heat energy supplied from the high-temperature side heat source into electric energy. And a thermoelectric conversion element that outputs a thermoelectric conversion element, and a heat medium circulation space through which a heat medium can flow is provided between the high-temperature side heat source and the high-temperature side portion of the thermoelectric conversion element. A temperature control mechanism for adjusting the flow rate of the heat medium flowing through the flow space to adjust the temperature of the high-temperature side portion of the thermoelectric conversion element is provided. Here, the heat medium refers to a medium that widely transmits heat, and includes a gas such as air and a fluid such as various liquids.

【0006】上記構成において、前記高温側熱源がエン
ジンの排ガスの流通管であり、前記熱媒体流通空間が前
記エンジンの吸気ガスの流通管に連通接続して外気を吸
入・流通させる筒状体の内側空間として形成され、前記
温度制御機構が、前記熱電変換素子の高温側部近傍に設
けた温度検知手段の出力に基づいて、前記筒状体に設け
た流量調整弁により熱媒体の流量を調整するものである
ことが、後述の作用効果から好ましい。
In the above configuration, the high-temperature side heat source is an exhaust gas flow pipe of the engine, and the heat medium flow space is connected to a flow pipe of the intake gas of the engine to form a cylindrical body for sucking and flowing outside air. The temperature control mechanism is formed as an inner space, and the flow rate of the heat medium is adjusted by a flow rate adjustment valve provided in the cylindrical body based on an output of a temperature detection means provided near a high temperature side portion of the thermoelectric conversion element. It is preferable from the viewpoint of the operation and effect described later.

【0007】また、前記高温側熱源が焼却炉の排ガスの
流通管であり、前記熱媒体流通空間が前記焼却炉に供給
される燃焼用空気の供給路にバイパス路として設けられ
た筒状体の内側空間として形成され、前記温度制御機構
が、前記熱電変換素子の高温側部近傍に設けた温度検知
手段の出力に基づいて、前記筒状体に設けた流量調整弁
により熱媒体の流量を調整するものであることが、後述
の作用効果から好ましい。
The high-temperature side heat source is a flow pipe of exhaust gas from an incinerator, and the heat medium flow space is a cylindrical body provided as a bypass in a supply path of combustion air supplied to the incinerator. The temperature control mechanism is formed as an inner space, and the flow rate of the heat medium is adjusted by a flow rate adjustment valve provided in the cylindrical body based on an output of a temperature detection means provided near a high temperature side portion of the thermoelectric conversion element. It is preferable from the viewpoint of the operation and effect described later.

【0008】〔作用効果〕そして、本発明の特徴構成に
よると、前記高温側熱源と前記熱電変換素子の高温側部
との間に、熱媒体を流通させ得る熱媒体流通空間を設け
てあるので、その熱媒体流通空間に熱媒体を流通させつ
つ、その流量を調整することができる。そして、かかる
流量調整を温度制御機構で行うことによって、熱媒体に
伝熱した熱量を前記熱電変換素子の高温側部に伝熱する
際に、その伝熱量を調整することができるため、前記高
温側部の温度調整を行うことができる。その結果、熱エ
ネルギーの供給源となる高温側熱源の温度が変化して
も、熱電変換素子の破損や変換効率の低下が起こりにく
い熱電変換装置を提供することができた。
[Operation and Effect] According to the characteristic structure of the present invention, a heat medium flow space through which a heat medium can flow is provided between the high temperature side heat source and the high temperature side of the thermoelectric conversion element. The flow rate can be adjusted while the heat medium flows through the heat medium flow space. By performing such flow rate adjustment by the temperature control mechanism, when the amount of heat transferred to the heat medium is transferred to the high-temperature side of the thermoelectric conversion element, the amount of heat transfer can be adjusted. Side temperature adjustments can be made. As a result, even if the temperature of the high-temperature side heat source, which is a heat energy supply source, changes, a thermoelectric conversion device in which breakage of the thermoelectric conversion element and reduction in conversion efficiency are unlikely to be provided can be provided.

【0009】また、前記高温側熱源がエンジンの排ガス
の流通管であり、前記熱媒体流通空間が前記エンジンの
吸気ガスの流通管に連通接続して外気を吸入・流通させ
る筒状体の内側空間として形成され、前記温度制御機構
が、前記熱電変換素子の高温側部近傍に設けた温度検知
手段の出力に基づいて、前記筒状体に設けた流量調整弁
により熱媒体の流量を調整するものである場合、次のよ
うな作用効果が更に期待できる。つまり、熱媒体流通空
間がエンジンの吸気ガスの流通管に連通接続して外気を
吸入・流通させる筒状体の内側空間として形成される
と、吸気ガスの流通管が負圧になるため、筒状体に外気
が吸入・流通するので、前記筒状体に流量調整弁を設け
るだけで、流体の駆動手段を用いなくても熱媒体の流量
を調整することができる。そして、熱電変換素子の高温
側部近傍に設けた温度検知手段の出力に基づいて、熱媒
体の流量を調整することによって、高温側部の温度を直
接検知してより確実な温度制御が行える。
Further, the high-temperature side heat source is a flow pipe of exhaust gas of the engine, and the heat medium flow space is connected to a flow pipe of intake gas of the engine, and is an inner space of a cylindrical body for sucking and flowing outside air. Wherein the temperature control mechanism adjusts the flow rate of the heat medium by a flow rate control valve provided on the cylindrical body based on an output of a temperature detection means provided near a high temperature side portion of the thermoelectric conversion element. In the case of, the following operation and effect can be further expected. In other words, if the heat medium circulation space is formed as an inner space of a cylindrical body that is connected to the intake gas circulation pipe of the engine and sucks and circulates outside air, the intake gas circulation pipe becomes negative pressure. Since outside air is sucked and circulated through the cylindrical body, the flow rate of the heat medium can be adjusted without using a fluid driving means only by providing a flow control valve on the cylindrical body. Then, by adjusting the flow rate of the heat medium based on the output of the temperature detecting means provided in the vicinity of the high temperature side of the thermoelectric conversion element, the temperature of the high temperature side can be directly detected to perform more reliable temperature control.

【0010】一方、前記高温側熱源が焼却炉の排ガスの
流通管であり、前記熱媒体流通空間が前記焼却炉に供給
される燃焼用空気の供給路にバイパス路として設けられ
た筒状体の内側空間として形成され、前記温度制御機構
が、前記熱電変換素子の高温側部近傍に設けた温度検知
手段の出力に基づいて、前記筒状体に設けた流量調整弁
により熱媒体の流量を調整するものである場合、次のよ
うな作用効果が更に期待できる。つまり、熱媒体流通空
間が前記焼却炉に供給される燃焼用空気の供給路にバイ
パス路として設けられた筒状体の内側空間として形成さ
れると、バイパス路にも燃焼用空気が流通するので、筒
状体に流量調整弁を設けるだけで、流体の駆動手段を用
いなくても熱媒体の流量を調整することができる。ま
た、複数系統の流路が形成されるので、一方の流路での
流量が変化しても、総流量の変化が小さくですむ。そし
て、熱電変換素子の高温側部近傍に設けた温度検知手段
の出力に基づいて、熱媒体の流量を調整することによっ
て、高温側部の温度を直接検知してより確実な温度制御
が行える。
On the other hand, the high-temperature side heat source is a flow pipe of exhaust gas from an incinerator, and the heat medium flow space is a cylindrical body provided as a bypass in a supply path of combustion air supplied to the incinerator. The temperature control mechanism is formed as an inner space, and the flow rate of the heat medium is adjusted by a flow rate adjustment valve provided in the cylindrical body based on an output of a temperature detection means provided near a high temperature side portion of the thermoelectric conversion element. In such a case, the following operation and effect can be further expected. In other words, if the heat medium circulation space is formed as a space inside the cylindrical body provided as a bypass in the supply path of the combustion air supplied to the incinerator, the combustion air also flows through the bypass. In addition, the flow rate of the heat medium can be adjusted without using the fluid driving means only by providing the flow rate adjusting valve on the cylindrical body. Further, since a plurality of flow paths are formed, even if the flow rate in one flow path changes, the change in the total flow rate is small. Then, by adjusting the flow rate of the heat medium based on the output of the temperature detecting means provided in the vicinity of the high temperature side of the thermoelectric conversion element, the temperature of the high temperature side can be directly detected to perform more reliable temperature control.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。本発明の熱電変換装置は、図1〜
図3に示すように、熱エネルギーの供給源となる高温側
熱源1と、その高温側熱源1から供給される熱エネルギ
ーを電気エネルギーに変換して出力する熱電変換素子3
とを備える熱電変換装置であって、高温側熱源1と熱電
変換素子3の高温側部3aとの間に、熱媒体を流通させ
得る熱媒体流通空間2を設けると共に、その熱媒体流通
空間2に流通する熱媒体の流量を調整して熱電変換素子
の高温側部3aの温度調整を行う温度制御機構4を設け
てあるものである。以下、高温側熱源1がエンジンの排
ガスの流通管である場合(第1実施形態)と、高温側熱
源1が焼却炉の排ガスの流通管である場合(第2実施形
態)とを例示しつつ説明する。
Embodiments of the present invention will be described below with reference to the drawings. The thermoelectric conversion device of the present invention is shown in FIGS.
As shown in FIG. 3, a high-temperature side heat source 1 serving as a heat energy supply source, and a thermoelectric conversion element 3 for converting the heat energy supplied from the high-temperature side heat source 1 into electric energy and outputting the electric energy
A heat medium flow space 2 through which a heat medium can flow, between the high temperature side heat source 1 and the high temperature side 3a of the thermoelectric conversion element 3; And a temperature control mechanism 4 for adjusting the flow rate of the heat medium flowing through the thermoelectric conversion element to adjust the temperature of the high-temperature side portion 3a. Hereinafter, a case where the high-temperature side heat source 1 is a flow pipe of exhaust gas of an engine (first embodiment) and a case where the high-temperature side heat source 1 is a flow pipe of exhaust gas of an incinerator (second embodiment) will be described. explain.

【0012】〔第1実施形態〕本発明の第1実施形態
は、図1及び図2に示すように、高温側熱源1がエンジ
ンの排ガスの流通管であり、熱媒体流通空間2がエンジ
ンの吸気ガスの流通管6に連通接続して外気を吸入・流
通させる筒状体5の内側空間として形成され、温度制御
機構4が、熱電変換素子3の高温側部3a近傍に設けた
温度検知手段4cの出力に基づいて、筒状体5に設けた
流量調整弁4bにより熱媒体の流量を調整するものであ
るが、具体的には下記のようになる。
[First Embodiment] In a first embodiment of the present invention, as shown in FIGS. 1 and 2, a high-temperature heat source 1 is an exhaust gas flow pipe of an engine, and a heat medium flow space 2 is an engine exhaust space. Temperature detecting means formed as an inner space of a cylindrical body 5 which is connected to an intake gas flow pipe 6 and inhales and circulates outside air, and wherein a temperature control mechanism 4 is provided near a high temperature side 3a of the thermoelectric conversion element 3. The flow rate of the heat medium is adjusted by the flow rate adjustment valve 4b provided on the tubular body 5 based on the output of 4c, and is specifically as follows.

【0013】高温側熱源1をなす排ガスの流通管は、エ
ンジンと排気口との間のいずれに位置する部分でもよ
く、排気マニホールドや消音器等も含まれる。また、図
2には、断面形状が円形のものが示されているが、かか
る形状に限定されるものではない。なお、かかる流通管
の表面温度は、その位置によって異なると共に、エンジ
ンの回転数等に応じて変化するが、500℃を超える場
合も生じうる。
The exhaust gas flow pipe forming the high-temperature side heat source 1 may be located anywhere between the engine and the exhaust port, and includes an exhaust manifold, a silencer, and the like. FIG. 2 shows a cross-section having a circular shape, but is not limited to such a shape. The surface temperature of the flow pipe varies depending on its position and changes according to the number of revolutions of the engine and the like, but may exceed 500 ° C.

【0014】熱電変換素子3は、上記高温側熱源1から
供給される熱エネルギーを電気エネルギーに変換して出
力するものであり、高温側熱源1の温度に対応して種々
のものが使用可能である。熱電変換素子3としては、B
2 Te3 系、PbTe系などが変換効率の高いものと
して知られており、また、傾斜機能化により変換効率を
より高めたものなど、各種市販品が使用可能である。熱
電変換素子3は、一般的に高温側部3aと低温側部3b
とを備え、その中間部には電極、半導体、伝熱材料、絶
縁材料等を有している。低温側部3bは通常、強制冷
却、自然冷却等による冷却が行われる。
The thermoelectric conversion element 3 converts the heat energy supplied from the high-temperature side heat source 1 into electric energy and outputs it. Various types of thermoelectric conversion elements can be used according to the temperature of the high-temperature side heat source 1. is there. As the thermoelectric conversion element 3, B
i 2 Te 3 system, PbTe system and the like are known as having high conversion efficiency, and various commercial products such as those having a higher conversion efficiency by functionalizing with a gradient can be used. The thermoelectric conversion element 3 generally includes a high temperature side 3a and a low temperature side 3b.
And an electrode, a semiconductor, a heat transfer material, an insulating material, and the like in an intermediate portion thereof. The low temperature side 3b is normally cooled by forced cooling, natural cooling, or the like.

【0015】本実施形態では、前記高温側熱源1と前記
熱電変換素子3の高温側部3aとの間に、熱媒体を流通
させ得る熱媒体流通空間2を設けるべく、エンジンの吸
気ガスの流通管6に連通接続し、熱電変換素子3の付設
部より上流側から外気を吸入して、熱電変換素子3の付
設部を経由して、吸気ガスの流通管6に流通させる筒状
体5を設けてある。この筒状体5は、それ自身を筒状と
してその外壁面を排ガスの流通管の表面に固着してもよ
いが、排ガスの流通管の表面や熱電変換素子3の高温側
部3a表面を利用して筒状体5を形成してもよい(例え
ば図2参照)。なお、筒状体5の材質自身の熱伝導によ
り、高温側熱源1から熱電変換素子3の高温側部3aへ
伝熱することにより、熱電変換素子3の高温側部3aが
部分的に高温になる場合が生じうるため、筒状体5を形
成するにあたり、材質自身の熱伝導が生じる部分は、熱
伝導度の小さい材料を用いることが望ましい。また、熱
電変換素子3が付設される筒状体5は、内部に流動調節
板等を設けたり、内部断面の線流速が均一化するような
形状にして、筒状体5の内部断面における温度分布が均
一になるようにしてもよい。
In this embodiment, the flow of the intake gas of the engine is provided between the high-temperature side heat source 1 and the high-temperature side 3a of the thermoelectric conversion element 3 so as to provide a heat medium flow space 2 through which a heat medium can flow. The tubular body 5 is connected to the pipe 6, sucks outside air from the upstream side of the attachment part of the thermoelectric conversion element 3, and circulates through the attachment part of the thermoelectric conversion element 3 to the intake pipe 6. It is provided. The tubular body 5 may be formed into a tubular shape and its outer wall surface may be fixed to the surface of the exhaust gas flow pipe, but the surface of the exhaust gas flow pipe or the surface of the high-temperature side 3a of the thermoelectric conversion element 3 may be used. Thus, the tubular body 5 may be formed (for example, see FIG. 2). The high-temperature side portion 3a of the thermoelectric conversion element 3 is partially heated to a high temperature by transferring heat from the high-temperature side heat source 1 to the high-temperature side portion 3a of the thermoelectric conversion element 3 by the heat conduction of the material of the tubular body 5 itself. When the tubular body 5 is formed, it is desirable to use a material having low thermal conductivity for a portion where the material itself conducts heat. Further, the cylindrical body 5 to which the thermoelectric conversion element 3 is attached is provided with a flow control plate or the like, or is formed in such a shape that the linear flow velocity in the internal cross section becomes uniform, and the temperature in the internal cross section of the cylindrical body 5 is increased. The distribution may be uniform.

【0016】前記筒状体5には、外気の流量を調整する
ための流量調整弁4bが設けられているが、外部から流
量制御が行えるものであればいずれの形式でもよい。ま
た、流量調整弁4bを設ける位置も、熱電変換素子3が
付設される部分の下流側に限定されるものではない。な
お、熱電変換素子3が付設される部分の両端部の2か所
に流量調整弁4bを設けることにより、流量がゼロ時
に、外気の流入もしくは逆流により熱が拡散するのを防
止することができるようにしてもよい。
The cylindrical body 5 is provided with a flow rate adjusting valve 4b for adjusting the flow rate of the outside air, but any type may be used as long as the flow rate can be controlled from the outside. Further, the position where the flow rate adjusting valve 4b is provided is not limited to the downstream side of the portion where the thermoelectric conversion element 3 is provided. By providing the flow control valves 4b at two locations at both ends of the portion where the thermoelectric conversion element 3 is attached, it is possible to prevent heat from diffusing due to inflow or backflow of outside air when the flow rate is zero. You may do so.

【0017】また、前記熱電変換素子3の高温側部3a
の近傍には、温度検知手段4cが設けてあるが、各種温
度計測器のプローブ、熱電対等が配置される。図1に示
すように高温側部3aの下流側端部に設けると、最も温
度の高い位置に設けられることになるので、熱電変換素
子3の破損防止のためには好ましい位置と言えるが、よ
り上流側に設けてもよい。一方、高温側部3aを温度を
最適動作温度にする制御する場合、複数位置に温度検知
手段4cを設けてその平均値に基づいて制御したり、高
温側部3aの温度を均一にすべく、高温側部3aとの接
触面に熱伝導度の高い材料を用いたりすればよい。
The high temperature side 3a of the thermoelectric conversion element 3
Is provided with a temperature detecting means 4c, but probes, thermocouples and the like of various temperature measuring devices are arranged. If it is provided at the downstream end of the high-temperature side portion 3a as shown in FIG. 1, it will be provided at the highest temperature position. It may be provided on the upstream side. On the other hand, when the temperature of the high temperature side 3a is controlled to the optimum operating temperature, the temperature detection means 4c is provided at a plurality of positions to control the temperature based on the average value, or to make the temperature of the high temperature side 3a uniform. A material having high thermal conductivity may be used for the contact surface with the high temperature side 3a.

【0018】温度制御機構4は、前記温度検知手段4c
の出力に基づいて、前記筒状体5に設けた流量調整弁4
bにより熱媒体の流量を調整する制御部4aを有する。
制御部4aによる制御は、最適動作温度を目標温度と
し、フィードバックにより偏差を得て、2位置制御、比
例制御、積分制御、微分制御やそれらを組み合わせた制
御により、操作量を出力して流量調整すればよい。な
お、最適動作温度未満の検知温度では、流量調整弁4b
を全閉にするのが熱効収支上望ましく、また、急激な温
度上昇による破損を考慮すると、それを回避するための
微分制御を採用するのが望ましい。
The temperature control mechanism 4 is provided with the temperature detecting means 4c.
The flow control valve 4 provided in the cylindrical body 5 based on the output of
The control unit 4a for adjusting the flow rate of the heat medium by b.
The control unit 4a controls the flow rate by controlling the optimal operating temperature as a target temperature, obtaining a deviation by feedback, outputting an operation amount by two-position control, proportional control, integral control, differential control, or a combination thereof. do it. At a detection temperature lower than the optimum operating temperature, the flow control valve 4b
Is desirably fully closed from the viewpoint of thermal effect, and in consideration of breakage due to a rapid rise in temperature, it is desirable to employ differential control to avoid such damage.

【0019】前記筒状体5は、エンジンの吸気ガスの流
通管6に連通接続されるが、その位置はいずれでもよ
い。なお、エアフィルタより下流側に連通接続する場合
など、筒状体5の吸入側には適当なフィルタを設けるの
が好ましい。
The cylindrical body 5 is connected to a flow pipe 6 for the intake gas of the engine, and may be in any position. In addition, it is preferable to provide an appropriate filter on the suction side of the tubular body 5 in a case where it is connected to the downstream side of the air filter.

【0020】〔第2実施形態〕本発明の第2実施形態
は、図3に示すように、高温側熱源1が焼却炉の排ガス
の流通管であり、熱媒体流通空間2が焼却炉に供給され
る燃焼用空気の供給路7にバイパス路7aとして設けら
れた筒状体5の内側空間として形成され、温度制御機構
4が、熱電変換素子3の高温側部3a近傍に設けた温度
検知手段4cの出力に基づいて、筒状体5に設けた流量
調整弁4bにより熱媒体の流量を調整するものである
が、第1実施形態と異なる点について説明すると以下の
ようになる。
[Second Embodiment] In a second embodiment of the present invention, as shown in FIG. 3, a high-temperature side heat source 1 is a flow pipe of exhaust gas from an incinerator, and a heat medium flow space 2 is supplied to the incinerator. Temperature detecting means which is formed as an inner space of a cylindrical body 5 provided as a bypass path 7 a in a supply path 7 of the combustion air to be heated, and which is provided near a high temperature side 3 a of the thermoelectric conversion element 3 by a temperature control mechanism 4. The flow rate of the heat medium is adjusted by the flow rate adjustment valve 4b provided on the cylindrical body 5 based on the output of the cylinder 4c. Differences from the first embodiment will be described below.

【0021】高温側熱源1をなす焼却炉の排ガスの流通
管は、焼却炉と排ガスを放出する煙突との間のいずれに
位置する部分でもよく、廃熱ボイラ、集塵機、脱硝装置
等内のガス流通部分も含まれる。焼却炉から排出された
排ガスは、廃熱ボイラ等により廃熱の回収を行う場合等
があるが、その場合にはより上流側の位置を高温側熱源
1とすることが、エネルギー的に有利である。なお、か
かる流通管の表面温度は、その位置によって異なると共
に、焼却される物の種類や量により変化するが、500
℃を超える場合も生じうる。
The exhaust gas flow pipe of the incinerator as the high-temperature side heat source 1 may be located at any part between the incinerator and the chimney for discharging the exhaust gas, and the gas in the waste heat boiler, dust collector, denitration device, etc. The distribution part is also included. Exhaust gas discharged from the incinerator may be subjected to recovery of waste heat by a waste heat boiler or the like. is there. The surface temperature of the flow pipe varies depending on the position and varies depending on the type and amount of the incinerated material.
It may also occur when the temperature exceeds ℃.

【0022】焼却炉には通常、送風機等により燃焼用空
気の供給が行われるが、その供給路7にバイパス路7a
として前記筒状体5を設けてある。
Normally, combustion air is supplied to the incinerator by a blower or the like.
The cylindrical body 5 is provided.

【0023】〔別実施形態〕以下、本発明の別の実施の
形態について説明する。
[Another Embodiment] Hereinafter, another embodiment of the present invention will be described.

【0024】(1)先の実施形態では、高温側熱源がエ
ンジンの排ガスの流通管である場合と焼却炉の排ガスの
流通管である場合の例を示したが、本発明の適用は、こ
れらの場合に限られるものではなく、産業用の各種炉や
発電装置など、廃熱回収が可能なものであればいずれも
適用可能である。
(1) In the above embodiment, the case where the high-temperature side heat source is the exhaust gas flow pipe of the engine and the case of the incinerator exhaust gas flow pipe have been described. However, the present invention is not limited to this case, and any apparatus that can recover waste heat, such as various industrial furnaces and power generators, can be used.

【0025】(2)先の実施形態では、熱媒体流通空間
を形成する筒状体に、特に流体駆動装置を設けなくても
熱媒体が流通するものの例を示したが、本発明では、流
体駆動装置を設けてもよく、制御部により流体駆動装置
の送風量等を制御することにより、熱媒体流通空間に流
通する熱媒体の流量を調整してもよい。
(2) In the above embodiment, an example is shown in which the heat medium flows through the cylindrical body forming the heat medium flow space without providing a fluid driving device. A drive device may be provided, and the flow rate of the heat medium flowing in the heat medium flow space may be adjusted by controlling the air blowing amount and the like of the fluid drive device by the control unit.

【0026】(3)先の実施形態では、温度検知手段を
熱電変換素子の高温側部近傍に設けた例を示したが、本
発明では、温度検知手段を高温側熱源に設けたり、熱媒
体流通空間に設けたりしてもよい。
(3) In the above embodiment, an example is shown in which the temperature detecting means is provided near the high temperature side of the thermoelectric conversion element. However, in the present invention, the temperature detecting means is provided in the high temperature side heat source, It may be provided in the circulation space.

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱電変換装置を示す概略構成図FIG. 1 is a schematic configuration diagram showing a thermoelectric converter.

【図2】図1に示すもののA−A断面図FIG. 2 is a sectional view taken along line AA of FIG.

【図3】熱電変換装置を示す概略構成図FIG. 3 is a schematic configuration diagram showing a thermoelectric converter.

【符号の説明】[Explanation of symbols]

1 高温側熱源 2 熱媒体流通空間 3 熱電変換素子 3a 高温側部 4 温度制御機構 4b 流量調整弁 4c 温度検知手段 5 筒状体 6 吸気ガスの流通管 7 燃焼用空気の供給路 7a バイパス路 DESCRIPTION OF SYMBOLS 1 High-temperature side heat source 2 Heat medium circulation space 3 Thermoelectric conversion element 3a High-temperature side part 4 Temperature control mechanism 4b Flow control valve 4c Temperature detection means 5 Cylindrical body 6 Intake gas circulation pipe 7 Combustion air supply path 7a Bypass path

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 熱エネルギーの供給源となる高温側熱源
と、その高温側熱源から供給される熱エネルギーを電気
エネルギーに変換して出力する熱電変換素子とを備える
熱電変換装置であって、 前記高温側熱源と前記熱電変換素子の高温側部との間
に、熱媒体を流通させ得る熱媒体流通空間を設けると共
に、その熱媒体流通空間に流通する熱媒体の流量を調整
して前記熱電変換素子の高温側部の温度調整を行う温度
制御機構を設けてある熱電変換装置。
1. A thermoelectric conversion device comprising: a high-temperature-side heat source serving as a heat energy supply source; and a thermoelectric conversion element that converts heat energy supplied from the high-temperature side heat source into electric energy and outputs the electric energy. Between the high-temperature side heat source and the high-temperature side portion of the thermoelectric conversion element, a heat medium circulation space through which a heat medium can flow is provided, and the flow rate of the heat medium flowing through the heat medium circulation space is adjusted to adjust the thermoelectric conversion. A thermoelectric converter provided with a temperature control mechanism for adjusting the temperature of the high-temperature side of the element.
【請求項2】 前記高温側熱源がエンジンの排ガスの流
通管であり、 前記熱媒体流通空間が前記エンジンの吸気ガスの流通管
に連通接続して外気を吸入・流通させる筒状体の内側空
間として形成され、 前記温度制御機構が、前記熱電変換素子の高温側部近傍
に設けた温度検知手段の出力に基づいて、前記筒状体に
設けた流量調整弁により熱媒体の流量を調整するもので
ある請求項1記載の熱電変換装置。
2. The high-temperature side heat source is a flow pipe of exhaust gas of an engine, and the heat medium flow space is connected to a flow pipe of intake gas of the engine to connect the inside space of a cylindrical body for sucking and flowing outside air. Wherein the temperature control mechanism adjusts the flow rate of the heat medium by a flow rate control valve provided in the cylindrical body based on an output of a temperature detection means provided near a high temperature side of the thermoelectric conversion element. The thermoelectric conversion device according to claim 1, wherein
【請求項3】 前記高温側熱源が焼却炉の排ガスの流通
管であり、 前記熱媒体流通空間が前記焼却炉に供給される燃焼用空
気の供給路にバイパス路として設けられた筒状体の内側
空間として形成され、 前記温度制御機構が、前記熱電変換素子の高温側部近傍
に設けた温度検知手段の出力に基づいて、前記筒状体に
設けた流量調整弁により熱媒体の流量を調整するもので
ある請求項1記載の熱電変換装置。
3. The cylindrical body provided as a bypass in a supply path of combustion air supplied to the incinerator, wherein the high-temperature side heat source is a flow pipe of exhaust gas from an incinerator. The temperature control mechanism is formed as an inner space, and adjusts the flow rate of the heat medium by a flow rate control valve provided in the cylindrical body based on an output of a temperature detection means provided near a high temperature side portion of the thermoelectric conversion element. The thermoelectric conversion device according to claim 1, wherein
JP11246897A 1997-04-30 1997-04-30 Thermoelectric converter Pending JPH10309088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11246897A JPH10309088A (en) 1997-04-30 1997-04-30 Thermoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11246897A JPH10309088A (en) 1997-04-30 1997-04-30 Thermoelectric converter

Publications (1)

Publication Number Publication Date
JPH10309088A true JPH10309088A (en) 1998-11-17

Family

ID=14587406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11246897A Pending JPH10309088A (en) 1997-04-30 1997-04-30 Thermoelectric converter

Country Status (1)

Country Link
JP (1) JPH10309088A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7467513B2 (en) 2003-10-06 2008-12-23 Toyota Jidosha Kabushiki Kaisha Exhaust emission control system
KR100965715B1 (en) 2008-06-30 2010-06-24 한국동서발전(주) Hybrid Power Plant System using Fuel Cell Generation and Thermoelectric Generation
JP4933681B1 (en) * 2011-11-04 2012-05-16 二郎 工藤 Vehicle battery charging system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7467513B2 (en) 2003-10-06 2008-12-23 Toyota Jidosha Kabushiki Kaisha Exhaust emission control system
KR100965715B1 (en) 2008-06-30 2010-06-24 한국동서발전(주) Hybrid Power Plant System using Fuel Cell Generation and Thermoelectric Generation
JP4933681B1 (en) * 2011-11-04 2012-05-16 二郎 工藤 Vehicle battery charging system

Similar Documents

Publication Publication Date Title
WO2001053754A1 (en) Acoustic soot blower, and method of operating the same
JP2004506832A5 (en)
JPH10309088A (en) Thermoelectric converter
KR101057276B1 (en) Boiler exhaust heat recovery type ventilation system
JPS6025704B2 (en) air heating device
CN219913135U (en) High-temperature blocking removing device of air preheater
KR102043025B1 (en) Apparatus for recovering waste heat of exhust gas
JP3863979B2 (en) Catalytic combustion heating device
JPS6319685Y2 (en)
CN207797107U (en) A kind of air preheater
JP3007575B2 (en) Air heater for preventing white smoke
JP2590271Y2 (en) Combustion equipment
KR102175427B1 (en) Apparatus for recovering waste heat
US6595431B1 (en) Exhaust heat trap and redirecting system
CN218459095U (en) Flue gas purification device and fume extractor
JP4286663B2 (en) Thermal fan assembly and method for controlling a fan
KR102285076B1 (en) Apparatus for recovering waste heat
JP3703607B2 (en) Waste heat recovery device
CN207270959U (en) A kind of cooled flue gas dust-extraction unit
SE530960C2 (en) Integrated burner and heat exchanger in a combined heat and power system
JP3073643B2 (en) Heat exchanger in incinerator
JPH10132495A (en) Heat recovering apparatus
JP4649761B2 (en) Solar thermal equipment
JP2014009835A (en) Exhaust gas treatment apparatus
JPH09280657A (en) Heat exchanger