JPH10308167A - Electron emission device, and display device using the same - Google Patents

Electron emission device, and display device using the same

Info

Publication number
JPH10308167A
JPH10308167A JP13412597A JP13412597A JPH10308167A JP H10308167 A JPH10308167 A JP H10308167A JP 13412597 A JP13412597 A JP 13412597A JP 13412597 A JP13412597 A JP 13412597A JP H10308167 A JPH10308167 A JP H10308167A
Authority
JP
Japan
Prior art keywords
electron
layer
electrode
insulator layer
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13412597A
Other languages
Japanese (ja)
Inventor
Nobuyasu Negishi
伸安 根岸
Kiyohide Ogasawara
清秀 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP13412597A priority Critical patent/JPH10308167A/en
Priority to US09/032,111 priority patent/US6130503A/en
Priority to EP98301594A priority patent/EP0863533B1/en
Priority to DE1998609819 priority patent/DE69809819T2/en
Publication of JPH10308167A publication Critical patent/JPH10308167A/en
Priority to US09/520,213 priority patent/US6166487A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an electron emission device excellent in electron emission efficiency. SOLUTION: In an electron emission device which comprises an electron donating layer 12 consisting of the metal or the semi-conductor, an insulation layer 13 formed on the electron donating layer 12, and a metallic thin film electrode 15 which is faced to the vacuum space formed on the insulation layer 13, and emits the electron by applying the electric field between the electron donating layer 12 and the metallic thin film electrode 15, the insulation layer 13 mainly consists of silicon oxide, contains SiOx in which (x) is 0.5-2 when the atomic ratio is expressed as (x) for the whole layer, and is >=50 nm in film thickness.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子放出素子及び
これを用いた電子放出表示装置に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to an electron-emitting device and an electron-emitting display device using the same.

【0002】[0002]

【従来の技術】従来から電界電子放出表示装置のFED
(field emission display)が、陰極の加熱を必要としな
い冷陰極の電子放出源のアレイを備えた平面形発光ディ
スプレイとして知られている。例えば、spindt型冷陰極
を用いたFEDの発光原理は、冷陰極アレイが異なるも
ののCRT(cathode ray tube)と同様に、陰極から離間
したゲート電極により電子を真空中に引出し、透明陽極
に塗布された蛍光体に衝突させて、発光させるものであ
る。
2. Description of the Related Art Conventionally, an FED of a field emission display device has been used.
(field emission display) is known as a planar light emitting display with an array of cold cathode electron emission sources that does not require heating of the cathode. For example, the light emission principle of an FED using a spindt-type cold cathode is that, similar to a CRT (cathode ray tube), although the cold cathode array is different, electrons are drawn out into vacuum by a gate electrode separated from the cathode and applied to a transparent anode. The phosphor is caused to emit light by colliding with the phosphor.

【0003】しかしながら、この電界放出源は、微細な
spindt型冷陰極の製造工程が複雑で、その工程数が多い
ので、製造歩留まりが低いといった問題がある。また、
面電子源として金属-絶縁-金属(MIM)構造の電子放
出素子もある。MIM構造の電子放出素子には、基板上
に下部Al層、膜厚10nm程度のAl2O3絶縁体層、膜厚1
0nm程度の上部Au層を順に形成した構造のものがある。
これを真空中で対向電極の下に配置して下部Al層と上部
Au層の間に電圧を印加するとともに対向電極に加速電圧
を印加すると、電子の一部が上部Au層を飛び出し対向電
極に達する。しかしながら、この素子を表示装置として
使用するにはまだ放出電子量が不足している。これを改
善するために、従来のAl2O3絶縁体層のさらなる数nm程
度膜厚への薄膜化や、極薄膜のAl2O3絶縁体層の膜質及
びAl2O3絶縁体層と上部Au層の界面を、より均一化する
ことが必要であると考えられている。
However, this field emission source has a
The production process of the spindt-type cold cathode is complicated, and the number of processes is large, so that there is a problem that the production yield is low. Also,
There is also an electron-emitting device having a metal-insulation-metal (MIM) structure as a surface electron source. In the electron emission device having the MIM structure, a lower Al layer, an Al 2 O 3 insulator layer having a thickness of about 10 nm,
There is a structure in which an upper Au layer of about 0 nm is sequentially formed.
This is placed under the counter electrode in a vacuum and the lower Al layer and the upper
When a voltage is applied between the Au layers and an acceleration voltage is applied to the counter electrode, some of the electrons jump out of the upper Au layer and reach the counter electrode. However, the amount of emitted electrons is still insufficient to use this device as a display device. In order to improve this, the conventional Al 2 O 3 insulator layer is further reduced to a thickness of about several nm, and the film quality of the ultra-thin Al 2 O 3 insulator layer and the Al 2 O 3 insulator layer It is considered that it is necessary to make the interface of the upper Au layer more uniform.

【0004】例えば、絶縁体層のさらなる薄膜化及び均
一化のために陽極酸化法を用いて、化成電流を制御する
ことにより電子放出特性を向上させる試みがなされてい
る(特開平7-65710号公報)。しかしながら、M
IM構造の電子放出素子でも、まだ放出電流は1x10
-6A/cm2程度で、放出電流比は1x10-3程度である。
For example, an attempt has been made to improve the electron emission characteristics by controlling the formation current by using an anodic oxidation method in order to make the insulator layer thinner and more uniform (Japanese Patent Laid-Open No. 7-65710). Gazette). However, M
Even in the electron emission device having the IM structure, the emission current is still 1 × 10
-6 A / cm 2 and the emission current ratio is about 1 × 10 -3 .

【0005】[0005]

【発明が解決しようとする課題】本発明は、以上の事情
に鑑みてなされたものであり、電子放出効率の高い電子
放出素子及びこれを用いた電子放出表示装置を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide an electron-emitting device having a high electron-emitting efficiency and an electron-emitting display device using the same. .

【0006】[0006]

【課題を解決するための手段】本発明の電子放出素子
は、金属又は半導体からなる電子供給層、前記電子供給
層上に形成された絶縁体層及び前記絶縁体層上に形成さ
れ真空空間に面する金属薄膜電極からなり、前記電子供
給層及び前記金属薄膜電極間に電界を印加し電子を放出
する電子放出素子であって、前記絶縁体層は、酸化珪素
を主成分とし、層全体では原子比xと表したときxが
0.5〜2になるようなSiOxを含み50nm以上の膜
厚を有することを特徴とする。
According to the present invention, there is provided an electron-emitting device comprising an electron supply layer made of a metal or a semiconductor, an insulator layer formed on the electron supply layer, and a vacuum space formed on the insulator layer. An electron-emitting device comprising a metal thin film electrode facing, applying an electric field between the electron supply layer and the metal thin film electrode to emit electrons, wherein the insulator layer is mainly composed of silicon oxide, and the entire layer is It is characterized by containing SiO x such that x becomes 0.5 to 2 when expressed as an atomic ratio x and having a film thickness of 50 nm or more.

【0007】本発明の電子放出素子は、絶縁体層は厚い
膜厚を有するのでスルーホールが発生しにくいので製造
歩留まりが向上する。素子の放出電流は1x10-6A/cm
2をこえ1x10-3A/cm2程度であり、放出電流比は1x
10-1が得られるので、表示素子とした場合、高輝度が
得られ、駆動電流の消費及び発熱を抑制でき、さらに駆
動回路への負担を低減できる。
In the electron-emitting device of the present invention, since the insulator layer has a large thickness, a through-hole is hardly generated, so that the production yield is improved. The emission current of the device is 1 × 10 -6 A / cm
Over 2 × 1 -3 A / cm 2 and emission current ratio is 1 ×
Since 10 -1 is obtained, when a display element is used, high luminance can be obtained, consumption of driving current and heat generation can be suppressed, and the load on the driving circuit can be reduced.

【0008】さらに、本発明の電子放出素子は、画素バ
ルブの発光源、電子顕微鏡の電子放出源、真空マイクロ
エレクトロニクス素子などの高速素子に応用でき、さら
に面状又は点状の電子放出ダイオードとして、赤外線又
は可視光又は紫外線の電磁波を放出する発光ダイオード
又はレーザダイオードとして動作可能である。また、本
発明の電子放出素子は、金属又は半導体からなる電子供
給層、前記電子供給層上に形成された絶縁体層及び前記
絶縁体層上に形成され真空空間に面する金属薄膜電極か
らなり、前記電子供給層及び前記金属薄膜電極間に電界
を印加し電子を放出する電子放出素子であって、前記絶
縁体層は、酸化珪素を主成分とし、層全体では原子比x
と表したときその屈折率が1.3〜3.0になるような
SiOxを含み50nm以上の膜厚を有することを特徴と
する。
Further, the electron-emitting device of the present invention can be applied to a light-emitting source of a pixel bulb, an electron-emitting source of an electron microscope, and a high-speed device such as a vacuum microelectronic device. It can operate as a light emitting diode or a laser diode that emits infrared, visible, or ultraviolet electromagnetic waves. The electron-emitting device according to the present invention includes an electron supply layer made of a metal or a semiconductor, an insulator layer formed on the electron supply layer, and a metal thin film electrode formed on the insulator layer and facing a vacuum space. An electron-emitting device that applies an electric field between the electron supply layer and the metal thin-film electrode to emit electrons, wherein the insulator layer contains silicon oxide as a main component, and an atomic ratio x in the entire layer.
It is characterized by having a film thickness of 50 nm or more including SiO x whose refractive index becomes 1.3 to 3.0 when expressed as follows.

【0009】また、本発明の電子放出表示装置は、真空
空間を挾み対向する一対の第1及び第2基板と、前記第
1基板内面に設けられた複数の電子放出素子と、前記第
2基板内面に設けられたコレクタ電極と、前記コレクタ
電極上に形成された蛍光体層と、からなる電子放出表示
装置であって、前記電子放出素子の各々は、前記第1基
板側に形成された金属又は半導体からなる電子供給層、
前記電子供給層上に形成された絶縁体層及び前記絶縁体
層上に形成され前記真空空間に面する金属薄膜電極から
なり、前記絶縁体層は、50nm以上の膜厚を有しかつ酸
化珪素を主成分とし、層全体では原子比xと表したとき
xが0.5〜2になるようなSiOxを含むことを特徴
とする。
Further, the present invention provides an electron emission display device comprising: a pair of first and second substrates facing each other across a vacuum space; a plurality of electron emission elements provided on an inner surface of the first substrate; An electron emission display device comprising: a collector electrode provided on an inner surface of a substrate; and a phosphor layer formed on the collector electrode, wherein each of the electron emission elements is formed on the first substrate side. An electron supply layer made of metal or semiconductor,
An insulator layer formed on the electron supply layer and a metal thin film electrode formed on the insulator layer and facing the vacuum space, wherein the insulator layer has a thickness of 50 nm or more and is made of silicon oxide. As a main component, and the entire layer contains SiO x such that x becomes 0.5 to 2 when expressed as an atomic ratio x.

【0010】さらにまた、本発明の電子放出表示装置
は、真空空間を挾み対向する一対の素子基板及び透明基
板と、前記素子基板に設けられそれぞれ平行に伸長する
複数のオーミック電極と、各々が前記オーミック電極上
に形成された金属又は半導体からなる電子供給層、前記
電子供給層上に形成された50nm以上の膜厚を有しかつ
酸化珪素を主成分とし、層全体では原子比xと表したと
きxが0.5〜2になるようなSiOxを含む絶縁体
層、及び前記絶縁体層上に形成され前記真空空間に面す
る金属薄膜電極からなる複数の電子放出素子と、隣接す
る前記金属薄膜電極を電気的に接続しその一部上に、前
記オーミック電極に垂直に伸長して架設され、それぞれ
が平行に伸長する複数のバス電極と、前記透明基板に設
けられそれぞれ平行に伸長しかつ前記金属薄膜電極から
の放出電子を捕獲する複数のコレクタ電極と、前記コレ
クタ電極上に形成された蛍光体層からなることを特徴と
する。
Further, in the electron emission display device of the present invention, a pair of element substrates and a transparent substrate facing each other across a vacuum space, and a plurality of ohmic electrodes provided on the element substrate and extending in parallel with each other, are provided. An electron supply layer formed of a metal or a semiconductor formed on the ohmic electrode, having a thickness of 50 nm or more formed on the electron supply layer, containing silicon oxide as a main component, and forming an atomic ratio x on the whole layer. A plurality of electron-emitting devices formed of an insulating layer containing SiO x such that x becomes 0.5 to 2 when formed, and a metal thin film electrode formed on the insulating layer and facing the vacuum space, A plurality of bus electrodes which are electrically connected to the metal thin film electrodes and extend on the part thereof and extend vertically to the ohmic electrodes, and extend in parallel with each other; and a plurality of bus electrodes provided on the transparent substrate and extending in parallel with each other. It is characterized by comprising a plurality of collector electrodes that are long and capture electrons emitted from the metal thin film electrode, and a phosphor layer formed on the collector electrode.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施例を図面を参
照しつつ説明する。図1に示すように、電子放出素子
は、オーミック電極11を備えた基板10上に順に形成
された、金属又は半導体からなる電子供給層12、絶縁
体層13及び真空空間に面する金属薄膜電極15からな
り、電子供給層及び金属薄膜電極間に電界を印加し電子
を放出する電子放出素子である。絶縁体層13は誘電体
からなり50nm以上の極めて厚い膜厚を有するものであ
る。電子放出素子は、表面の薄膜電極を正電位Vdにし
裏面オーミック電極を接地電位としたダイオードであ
る。オーミック電極11と薄膜電極15との間に電圧V
dを印加し電子供給層12に電子を注入すると、ダイオ
ード電流Idが流れ、絶縁体層13は高抵抗であるの
で、印加電界の大部分は絶縁体層にかかる。電子は、金
属薄膜電極15側に向けて絶縁体層13内を移動する。
金属薄膜電極付近に達した電子は、そこで強電界により
一部は金属薄膜電極をトンネルし、外部の真空中に放出
される。このトンネル効果によって薄膜電極15から放
出された電子e(放出電流Ie)は、対向したコレクタ
電極(透明電極)2に印加された高電圧Vcによって加
速され、コレクタ電極に集められる。コレクタ電極に蛍
光体が塗布されていれば対応する可視光を発光させる。
Embodiments of the present invention will be described below with reference to the drawings. As shown in FIG. 1, the electron-emitting device includes an electron supply layer 12 made of a metal or a semiconductor, an insulator layer 13, and a metal thin film electrode facing a vacuum space, which are sequentially formed on a substrate 10 provided with an ohmic electrode 11. 15 is an electron-emitting device that emits electrons by applying an electric field between the electron supply layer and the metal thin film electrode. The insulator layer 13 is made of a dielectric and has an extremely thick film thickness of 50 nm or more. The electron-emitting device is a diode in which the thin film electrode on the front surface has a positive potential Vd and the back ohmic electrode has a ground potential. Voltage V between ohmic electrode 11 and thin film electrode 15
When d is applied and electrons are injected into the electron supply layer 12, a diode current Id flows and the insulating layer 13 has a high resistance, so that most of the applied electric field is applied to the insulating layer. The electrons move in the insulator layer 13 toward the metal thin film electrode 15 side.
Some of the electrons that have reached the vicinity of the metal thin-film electrode tunnel through the metal thin-film electrode due to the strong electric field, and are emitted into an external vacuum. The electrons e (emission current Ie) emitted from the thin film electrode 15 due to the tunnel effect are accelerated by the high voltage Vc applied to the opposing collector electrode (transparent electrode) 2 and collected at the collector electrode. If a phosphor is applied to the collector electrode, the corresponding visible light is emitted.

【0012】電子放出素子の電子供給層の材料としては
Siが特に有効であるが、ゲルマニウム(Ge)、炭化シリ
コン(SiC)、ヒ化ガリウム(GaAs)、リン化インジウム(In
P)、セレン化カドミウム(CdSe)など、IV族、III−V
族、II−VI族などの単体半導体及び化合物半導体が、用
いられ得る。又は、電子供給層の材料としてAl, Au, A
g, Cuなどの金属でも有効であるが、Sc, Ti, V, Cr, M
n, Fe, Co, Ni, Zn, Ga, Y, Zr, Nb, Mo, Tc, Ru, Rh,
Pd, Cd, Ln, Sn, Ta, W, Re, Os, Ir, Pt, Tl, Pb, La,
Ce, Pr, Nd, Pm, Sm, Eu, Gd,Tb, Dy, Ho, Er, Tm, Y
b, Luも用いられ得る。
Si is particularly effective as a material for the electron supply layer of the electron-emitting device, but germanium (Ge), silicon carbide (SiC), gallium arsenide (GaAs), and indium phosphide (In
P), cadmium selenide (CdSe), etc., Group IV, III-V
Single semiconductors and compound semiconductors of group II, group VI, etc. can be used. Alternatively, Al, Au, A
Effective for metals such as g and Cu, but Sc, Ti, V, Cr, M
n, Fe, Co, Ni, Zn, Ga, Y, Zr, Nb, Mo, Tc, Ru, Rh,
Pd, Cd, Ln, Sn, Ta, W, Re, Os, Ir, Pt, Tl, Pb, La,
Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Y
b, Lu can also be used.

【0013】電子放出側の金属薄膜電極材料としてはP
t, Au, W, Ru, Irなどの金属が有効であるが、Al, Sc,
Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Y, Zr, Nb,
Mo,Tc, Rh, Pd, Ag, Cd, Ln, Sn, Ta, Re, Os, Tl, Pb,
La, Ce, Pr, Nd, Pm, Sm,Eu, Gd, Tb, Dy, Ho, Er, T
m, Yb, Luも用いられ得る。素子基板10の材質はガラ
スの他に、Al23,Si34、BN等のセラミックス
でも良い。
The material of the metal thin film electrode on the electron emission side is P
Metals such as t, Au, W, Ru, Ir are effective, but Al, Sc,
Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Y, Zr, Nb,
Mo, Tc, Rh, Pd, Ag, Cd, Ln, Sn, Ta, Re, Os, Tl, Pb,
La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, T
m, Yb, Lu can also be used. The material of the element substrate 10 may be ceramics such as Al 2 O 3 , Si 3 N 4 , BN, etc. other than glass.

【0014】またこれらの製法としては、スパッタリン
グ法が特に有効であるが、真空蒸着法、CVD(chemic
al vapor deposition)法、レーザアブレイション法、
MBE(molecular beam epitaxy)法、イオンビームス
パッタリング法でも有効である。 (実施例)具体的に、電子放出素子を作製し特性を調べ
た。
As a method for producing these, a sputtering method is particularly effective, but a vacuum evaporation method, a CVD (chemic) method.
al vapor deposition) method, laser ablation method,
The MBE (molecular beam epitaxy) method and the ion beam sputtering method are also effective. (Example) Specifically, an electron-emitting device was manufactured and its characteristics were examined.

【0015】Alオーミック電極をスパッタリング法に
より膜厚300nmで形成したガラス基板の電極表面
に、シリコン(Si)の電子供給層をスパッタリング法
により膜厚5000nmで形成した。かかるSi基板を
多数用意した。次に、スパッタリング法により、かかる
Si基板の電子供給層上に膜厚を0〜500nmに変化
させてSiO2の絶縁体層を成膜し、かかるSiO2絶縁
体基板を多数用意した。SiO2絶縁体層は、スパッタ
リング法をとおして、Ar,Kr,Xeあるいはそれら
の混合ガス、又はこれらの希ガスを主成分としO2
2,H2などを混入した混合ガスを用いてガス圧0.1
〜100mTorr好ましくは0.1〜20mTorr、成膜レー
ト0.1〜1000nm/min好ましくは0.5〜100nm
/minのスパッタ条件で成膜されている。絶縁体層の誘電
体材料としては酸化珪素SiOx(xは原子比を示す)
を用いて成膜したが、測定の結果、絶縁体層中に1 atm
%以下のAl, Fe, Cr, Ni, B, Sb, P, As, Arなどの不
純物があったことが確認された。スパッタリング装置の
ターゲットやスパッタ条件を適宜変えることにより、絶
縁体層の単層又は多層、アモルファス又は結晶相、粒
径、原子比は制御され得る。
An electron supply layer of silicon (Si) was formed to a thickness of 5000 nm by sputtering on the electrode surface of a glass substrate on which an Al ohmic electrode was formed to a thickness of 300 nm by sputtering. Many such Si substrates were prepared. Next, an insulating layer of SiO 2 was formed on the electron supply layer of the Si substrate by a sputtering method while changing the film thickness to 0 to 500 nm, and a large number of such SiO 2 insulating substrates were prepared. The SiO 2 insulator layer is made of Ar, Kr, Xe or a mixed gas thereof, or a rare gas of these gases as a main component, O 2 ,
Gas pressure of 0.1 using mixed gas containing N 2 , H 2, etc.
~ 100 mTorr, preferably 0.1-20 mTorr, deposition rate 0.1-1000 nm / min, preferably 0.5-100 nm
The film is formed under sputtering conditions of / min. Silicon oxide SiO x (x indicates an atomic ratio) as a dielectric material of the insulator layer
However, as a result of the measurement, 1 atm
It was confirmed that impurities such as Al, Fe, Cr, Ni, B, Sb, P, As, Ar, etc. were present in a proportion of up to%. By appropriately changing the target of the sputtering apparatus and the sputtering conditions, the single-layer or multilayer insulating layer, the amorphous or crystalline phase, the particle size, and the atomic ratio can be controlled.

【0016】最後に、各基板の多結晶又はアモルファス
SiO2層の表面上にPt薄膜電極を膜厚10nmでス
パッタ成膜し、素子基板を多数作成した。一方、透明ガ
ラス基板の内面にITOコレクタ電極が形成されたもの
や、各コレクタ電極上に、R,G,Bに対応する蛍光体
からなる蛍光体層を常法により形成した透明基板を作成
した。
Finally, a Pt thin film electrode was sputter-deposited to a thickness of 10 nm on the surface of the polycrystalline or amorphous SiO 2 layer of each substrate to form a number of element substrates. On the other hand, a transparent glass substrate in which an ITO collector electrode was formed on the inner surface, and a transparent substrate in which a phosphor layer made of a phosphor corresponding to R, G, and B was formed on each collector electrode by an ordinary method were prepared. .

【0017】これら素子基板及び透明基板を、薄膜電極
及びコレクタ電極が向かい合うように平行に10mm離
間してスペーサにより保持し、間隙を10-7Torr又は1
-5Paの真空になし、電子放出素子を組立て、作製し
た。その後、多数の得られた素子について各SiO2
膜厚に対応したダイオード電流Id及び放出電流Ieを
測定した。
[0017] The element substrate and the transparent substrate, in parallel to 10mm spaced so as to face a thin film electrode and the collector electrode is held by a spacer, a gap 10 -7 Torr or 1
An electron-emitting device was assembled and produced under a vacuum of 0 -5 Pa. Thereafter, the diode current Id and the emission current Ie corresponding to each SiO 2 layer thickness were measured for a large number of the obtained devices.

【0018】図2並びに図3は、作製した電子放出素子
にVdを0〜200Vで印加したときのSiO2層膜厚
に対する、放出電流Ieの関係並びに電子放出効率(I
e/Id)の関係を示す。図2並びに図3から明らかな
ように、膜厚50nmから飽和するが、SiO2層膜厚
300nm〜400nmの素子で最大放出電流1x10
-3A/cm2、最大電子放出効率1x10-1程度が得られ
た。
FIG. 2 and FIG. 3 show the relationship between the emission current Ie and the electron emission efficiency (I) with respect to the thickness of the SiO 2 layer when Vd is applied to the manufactured electron-emitting device at 0 to 200 V.
e / Id). As is clear from FIGS. 2 and 3, the saturation current starts at 50 nm, but the maximum emission current is 1 × 10 5 for the device having a SiO 2 layer thickness of 300 nm to 400 nm.
-3 A / cm 2 and a maximum electron emission efficiency of about 1 × 10 −1 were obtained.

【0019】この結果より、200V以下の電界を加え
ることにより、1x10-6A/cm2以上の放出電流、1x
10-3以上の電子放出効率が、膜厚50nm以上好まし
くは、100〜400nmのSiO2誘電体層を有する
素子から得られることが判明した。また、蛍光体を塗布
したコレクタ電極及び薄膜電極の間に約4kVの電圧を
印加した状態では、SiO2層膜厚50nm以上の素子
で薄膜電極に対応する形の均一な蛍光パターンが観測さ
れた。このことは、多結晶又はアモルファスSiO 2
からの電子放出が均一であり、直線性の高いことを示
し、電子放出ダイオードとして、赤外線又は可視光又は
紫外線の電磁波を放出する発光ダイオード又はレーザダ
イオードとして動作可能であることを示している。
From these results, it was found that an electric field of 200 V or less was applied.
1x10-6A / cmTwoAbove emission current, 1x
10-3The above electron emission efficiency is preferably 50 nm or more.
Or 100-400 nm SiOTwoHaving a dielectric layer
It has been found that it can be obtained from the device. Also, apply phosphor
Voltage of about 4 kV between the collector electrode and the thin film electrode
In the applied state, SiOTwoDevices with a layer thickness of 50 nm or more
Observed a uniform fluorescent pattern corresponding to the thin-film electrode
Was. This means that polycrystalline or amorphous SiO Twolayer
Shows that the electron emission from the
And, as an electron-emitting diode, infrared or visible light or
Light emitting diode or laser diode that emits ultraviolet electromagnetic waves
Indicates that it can operate as an ion.

【0020】次に、スパッタリング法のスパッタ条件を
変化させて膜厚400nmの絶縁体層がSiO2に到る
までの原子比xを変化させた電子放出素子について、そ
の原子比xに対するダイオード電流Id及び放出電流I
eを測定した。図4並びに図5は酸素Oの原子比xに対
する、放出電流Ieの関係並びに電子放出効率(Ie/
Id)の関係を示す。かかる結果より、1x10-6A/cm
2以上の放出電流、1x10-3以上の電子放出効率が、
酸素Oの原子比xで0.5〜2の範囲のSiOx層を有
する素子から得られることが判明した。
Next, for an electron-emitting device in which the sputtering conditions of the sputtering method are changed to change the atomic ratio x until the insulating layer having a thickness of 400 nm reaches SiO 2 , the diode current Id with respect to the atomic ratio x is changed. And emission current I
e was measured. 4 and 5 show the relationship between the emission current Ie and the electron emission efficiency (Ie /
Id). From these results, 1 × 10 −6 A / cm
2 or more emission current, 1 × 10 -3 or more electron emission efficiency,
It has been found that the device can be obtained from a device having a SiO x layer having an atomic ratio x of oxygen O in the range of 0.5 to 2.

【0021】さらに、スパッタ条件を変化させてその原
子比xを変化させた膜厚400nmのSiOx層の屈折
率を測定し、屈折率に対するダイオード電流Id及び放
出電流Ieを測定した。図6並びに図7は所定波長にお
けるSiOx層の屈折率に対する、放出電流Ieの関係
並びに電子放出効率(Ie/Id)の関係を示す。かか
る結果より、1x10-6A/cm2以上の放出電流、1x1
-3以上の電子放出効率が、1.3〜3.0の屈折率を
有するSiOx層を備えた電子放出素子から得られるこ
とが判明した。
Further, the refractive index of a 400 nm-thick SiO x layer in which the atomic ratio x was changed by changing the sputtering conditions was measured, and the diode current Id and emission current Ie with respect to the refractive index were measured. 6 and 7 show the relationship between the emission current Ie and the relationship between the electron emission efficiency (Ie / Id) and the refractive index of the SiO x layer at a predetermined wavelength. From these results, emission current of 1 × 10 −6 A / cm 2 or more, 1 × 1
It has been found that an electron emission efficiency of 0 -3 or more can be obtained from an electron emission element provided with a SiO x layer having a refractive index of 1.3 to 3.0.

【0022】スパッタリングで成膜した絶縁体層の表面
をSEMで観察したところ、CVDで成膜したものと比
べ20nm程度の粒塊からなることを特徴としているこ
とが判った。50nm以上の膜厚を有しながらトンネル
電流が流れるといった特異な現象はこの特徴に起因する
と考えられる。すなわち、SiO2は本来絶縁体である
が、粒塊あるいは、その近傍に発生しやすい結晶欠陥や
不純物などによりポテンシャルの低いバンドが多数現れ
る。電子はこのポテンシャルの低いバンドを介し次々に
トンネリングし、結果として50nm以上の膜厚をもト
ンネルするのであると推定される。(図9参照) 図8に実施例の電子放出表示装置を示す。実施例は、一
対の透明基板1及び素子基板10からなり、基板は真空
空間4を挾み互いに対向している。図示する電子放出表
示装置おいて、表示面である透明な前面板1すなわち透
明基板の内面(背面板10と対向する面)には、例えば
インジウム錫酸化物(いわゆるITO)、酸化錫(Sn
O)、酸化亜鉛(ZnO)などからなる透明なコレクタ
電極2の複数が互いに平行に形成されている。また、コ
レクタ電極2は一体的に形成されていてもよい。放出電
子を捕獲する透明コレクタ電極群は、カラーディスプレ
イパネルとするために赤、緑、青のR,G,B色信号に
応じて3本1組となっており、それぞれに電圧が印加さ
れる。よって、3本のコレクタ電極2の上には、R,
G,Bに対応する蛍光体からなる蛍光体層3R,3G,
3Bが真空空間4に面するように、それぞれ形成されて
いる。
When the surface of the insulator layer formed by sputtering was observed by SEM, it was found that the insulator layer was characterized by being composed of agglomerates of about 20 nm as compared with those formed by CVD. It is considered that a peculiar phenomenon that a tunnel current flows while having a film thickness of 50 nm or more is caused by this feature. That is, although SiO 2 is originally an insulator, a large number of low potential bands appear due to crystal defects or impurities which are likely to be generated at or near the granular mass. It is presumed that electrons tunnel one after another through the band with a low potential, and as a result, tunnel even a film thickness of 50 nm or more. (See FIG. 9) FIG. 8 shows an electron emission display device of the example. The embodiment comprises a pair of a transparent substrate 1 and an element substrate 10, and the substrates face each other with a vacuum space 4 interposed therebetween. In the illustrated electron emission display device, for example, indium tin oxide (so-called ITO), tin oxide (Sn) is provided on the transparent front plate 1 as the display surface, that is, on the inner surface of the transparent substrate (the surface facing the back plate 10).
O), a plurality of transparent collector electrodes 2 made of zinc oxide (ZnO) or the like are formed in parallel with each other. Further, collector electrode 2 may be formed integrally. The group of transparent collector electrodes for capturing emitted electrons is a set of three in accordance with red, green, and blue R, G, and B color signals in order to form a color display panel, and a voltage is applied to each of them. . Therefore, R, R,
Phosphor layers 3R, 3G, which are made of phosphors corresponding to G and B,
3B are formed so as to face the vacuum space 4.

【0023】一方、真空空間4を挾み前面板に対向する
ガラスなどからなる背面板10すなわち素子基板内面
(前面板1と対向する面)には、インシュレータ層18
を介してそれぞれ平行に伸長する複数のオーミック電極
11が形成されている。このインシュレータ層18は、
SiO2, SiNx, Al2O3, AlNなどの絶縁体からなり、基板1
0から素子への悪影響(アルカリ成分などの不純物の溶
出や、基板面の凹凸など)を防ぐ働きをなす。オーミッ
ク電極の上に複数の電子放出素子Sが形成され、隣接す
る金属薄膜電極を電気的に接続しその一部上に、オーミ
ック電極に垂直に伸長して架設され、それぞれが平行に
伸長する複数のバス電極16と、が設けられている。電
子放出素子Sはオーミック電極上に順に形成された電子
供給層12、絶縁体層13及び金属薄膜電極15からな
る。金属薄膜電極15は真空空間4に面する。また、金
属薄膜電極15の表面を複数の電子放出領域に区画する
ため、開口を有した第2絶縁体層17が成膜される。こ
の第2絶縁体層17はバス電極16を覆うことで不要な
短絡を防止する。
On the other hand, an insulator layer 18 is provided on the back plate 10 made of glass or the like facing the front plate with the vacuum space 4 interposed therebetween, ie, on the inner surface of the element substrate (the surface facing the front plate 1).
A plurality of ohmic electrodes 11 extending in parallel with each other are formed. This insulator layer 18
The substrate 1 is made of an insulator such as SiO 2 , SiN x , Al 2 O 3 , and AlN.
It functions to prevent adverse effects on the device from 0 (elution of impurities such as alkali components and unevenness of the substrate surface). A plurality of electron-emitting devices S are formed on the ohmic electrode, electrically connect adjacent metal thin-film electrodes, and extend on a part thereof so as to extend perpendicularly to the ohmic electrode and extend in parallel with each other. Bus electrode 16 is provided. The electron-emitting device S includes an electron supply layer 12, an insulator layer 13, and a metal thin-film electrode 15 formed in this order on an ohmic electrode. The metal thin film electrode 15 faces the vacuum space 4. In order to divide the surface of the metal thin film electrode 15 into a plurality of electron emission regions, a second insulator layer 17 having an opening is formed. The second insulator layer 17 covers the bus electrode 16 to prevent unnecessary short circuit.

【0024】オーミック電極11の材料としては、A
u、Pt、Al、W等の一般にICの配線に用いられる
材料で、各素子にほぼ同電流を供給する均一な厚さであ
る。電子供給層12の材質は、シリコン(Si)が挙げ
られるが、本発明の電子供給層はシリコンに限られたも
のではなく他の半導体又は金属であり、アモルファス、
多結晶、単結晶の何れでも良い。
The material of the ohmic electrode 11 is A
Materials such as u, Pt, Al, and W, which are generally used for wiring of ICs, have a uniform thickness to supply substantially the same current to each element. The material of the electron supply layer 12 is, for example, silicon (Si). However, the electron supply layer of the present invention is not limited to silicon, but may be other semiconductors or metals, such as amorphous,
Either polycrystal or single crystal may be used.

【0025】薄膜電極15の材質は、電子放出の原理か
ら仕事関数φが小さい材料で、薄い程良い。電子放出効
率を高くするために、薄膜電極15の材質は周期律表の
I族、II族の金属が良く、たとえばMg、Ba、Ca、
Cs、Rb、Li、Sr等が有効で、更に、それらの合
金であっても良い。また、薄膜電極15の材質は極薄化
の面では、導電性が高く化学的に安定な金属が良く、た
とえばAu、Pt、Lu、Ag,Cuの単体又はこれら
の合金等が望ましい。また、これらの金属に、上記仕事
関数の小さい金属をコート、あるいはドープしても有効
である。
The material of the thin film electrode 15 is a material having a small work function φ from the principle of electron emission. In order to increase the electron emission efficiency, the material of the thin film electrode 15 is preferably a metal of Group I or Group II of the periodic table, for example, Mg, Ba, Ca,
Cs, Rb, Li, Sr and the like are effective, and further, alloys thereof may be used. The material of the thin-film electrode 15 is preferably a metal having high conductivity and being chemically stable in terms of ultra-thinness. For example, a simple substance of Au, Pt, Lu, Ag, Cu, or an alloy thereof is desirable. It is also effective to coat or dope these metals with a metal having a small work function.

【0026】バス電極16の材料としては、Au、P
t、Al等の一般にICの配線に用いられる物で良く、
各素子にほぼ同電位を供給可能ならしめるに足る厚さ
で、0.1〜50μmが適当である。また、この表示装
置の駆動方式としては単純マトリクス方式又はアクティ
ブマトリクス方式が適用できる。
The material of the bus electrode 16 is Au, P
What is generally used for IC wiring, such as t and Al, may be used.
An appropriate thickness is 0.1 to 50 μm, which is sufficient to supply substantially the same potential to each element. Further, as a driving method of the display device, a simple matrix method or an active matrix method can be applied.

【0027】なお、上記実施例においては、Si及びS
iOxが絶縁体層中に分散しているものであるが、絶縁
体層をSiの層及びSiOxの層の交互に積層された多
層から構成しても良い。
In the above embodiment, Si and S
Although iO x is dispersed in the insulator layer, the insulator layer may be composed of a multilayer in which Si layers and SiO x layers are alternately stacked.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明による電子放出素子の概略断面図であ
る。
FIG. 1 is a schematic sectional view of an electron-emitting device according to the present invention.

【図2】 本発明による電子放出素子における電子放出
電流のSiO2層膜厚依存性を示すグラフである。
FIG. 2 is a graph showing the dependence of the electron emission current on the thickness of the SiO 2 layer in the electron-emitting device according to the present invention.

【図3】 本発明による電子放出素子における電子放出
効率のSiO2層膜厚依存性を示すグラフである。
FIG. 3 is a graph showing the dependence of electron emission efficiency on the thickness of a SiO 2 layer in an electron-emitting device according to the present invention.

【図4】 本発明による電子放出素子における電子放出
電流のSiOx層原子比x依存性を示すグラフである。
FIG. 4 is a graph showing the dependence of the electron emission current on the atomic ratio x of the SiO x layer in the electron emission device according to the present invention.

【図5】 本発明による電子放出素子における電子放出
効率のSiOx層原子比x依存性を示すグラフである。
FIG. 5 is a graph showing the dependence of the electron emission efficiency on the atomic ratio x of the SiO x layer in the electron emission device according to the present invention.

【図6】 本発明による電子放出素子における電子放出
電流のSiOx層屈折率依存性を示すグラフである。
FIG. 6 is a graph showing the dependence of the electron emission current on the refractive index of the SiO x layer in the electron emission device according to the present invention.

【図7】 本発明による電子放出素子における電子放出
効率のSiOx層屈折率依存性を示すグラフである。
FIG. 7 is a graph showing the dependence of the electron emission efficiency on the refractive index of the SiO x layer in the electron emission device according to the present invention.

【図8】 本発明による実施例の電子放出表示装置を示
す概略斜視図である。
FIG. 8 is a schematic perspective view showing an electron emission display device according to an example of the present invention.

【図9】 本発明による電子放出素子のバンド構造を示
す図である。
FIG. 9 is a view showing a band structure of an electron-emitting device according to the present invention.

【符号の説明】[Explanation of symbols]

1 透明基板 2 コレクタ電極 3R,3G,3B 蛍光体層 4 真空空間 10 素子基板 11 オーミック電極 12 電子供給層 13 絶縁体層 15 金属薄膜電極 16 バス電極 17 第2絶縁体層 18 インシュレータ層 DESCRIPTION OF SYMBOLS 1 Transparent substrate 2 Collector electrode 3R, 3G, 3B Phosphor layer 4 Vacuum space 10 Element substrate 11 Ohmic electrode 12 Electron supply layer 13 Insulator layer 15 Metal thin film electrode 16 Bus electrode 17 Second insulator layer 18 Insulator layer

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 金属又は半導体からなる電子供給層、前
記電子供給層上に形成された絶縁体層及び前記絶縁体層
上に形成され真空空間に面する金属薄膜電極からなり、
前記電子供給層及び前記金属薄膜電極間に電界を印加し
電子を放出する電子放出素子であって、前記絶縁体層
は、酸化珪素を主成分とし、層全体では原子比xと表し
たときxが0.5〜2になるようなSiOxを含み50n
m以上の膜厚を有することを特徴とする電子放出素子。
1. An electron supply layer comprising a metal or a semiconductor, an insulator layer formed on the electron supply layer, and a metal thin film electrode formed on the insulator layer and facing a vacuum space,
An electron-emitting device that applies an electric field between the electron supply layer and the metal thin-film electrode to emit electrons, wherein the insulator layer contains silicon oxide as a main component, and when expressed as an atomic ratio x in the entire layer, x Is 50n including SiO x such that is 0.5 to 2.
An electron-emitting device having a thickness of at least m.
【請求項2】 金属又は半導体からなる電子供給層、前
記電子供給層上に形成された絶縁体層及び前記絶縁体層
上に形成され真空空間に面する金属薄膜電極からなり、
前記電子供給層及び前記金属薄膜電極間に電界を印加し
電子を放出する電子放出素子であって、前記絶縁体層
は、酸化珪素を主成分とし、層全体では原子比xと表し
たときその屈折率が1.3〜3.0になるようなSiO
xを含み50nm以上の膜厚を有することを特徴とする電
子放出素子。
2. An electron supply layer comprising a metal or a semiconductor, an insulator layer formed on the electron supply layer, and a metal thin film electrode formed on the insulator layer and facing a vacuum space,
An electron-emitting device that applies an electric field between the electron supply layer and the metal thin-film electrode to emit electrons, wherein the insulator layer contains silicon oxide as a main component, and when expressed as an atomic ratio x in the entire layer, SiO having a refractive index of 1.3 to 3.0
An electron-emitting device having a thickness of 50 nm or more including x .
【請求項3】 真空空間を挾み対向する一対の第1及び
第2基板と、前記第1基板内面に設けられた複数の電子
放出素子と、前記第2基板内面に設けられたコレクタ電
極と、前記コレクタ電極上に形成された蛍光体層と、か
らなる電子放出表示装置であって、前記電子放出素子の
各々は、前記第1基板側に形成された金属又は半導体か
らなる電子供給層、前記電子供給層上に形成された絶縁
体層及び前記絶縁体層上に形成され前記真空空間に面す
る金属薄膜電極からなり、前記絶縁体層は、50nm以上
の膜厚を有しかつ酸化珪素を主成分とし、層全体では原
子比xと表したときxが0.5〜2になるようなSiO
xを含むことを特徴とする電子放出表示装置。
3. A pair of first and second substrates facing each other across a vacuum space, a plurality of electron-emitting devices provided on an inner surface of the first substrate, and a collector electrode provided on an inner surface of the second substrate. And a phosphor layer formed on the collector electrode, wherein each of the electron-emitting devices is an electron supply layer made of metal or semiconductor formed on the first substrate side, An insulator layer formed on the electron supply layer and a metal thin film electrode formed on the insulator layer and facing the vacuum space, wherein the insulator layer has a thickness of 50 nm or more and is made of silicon oxide. And the atomic ratio x in the entire layer is such that x is 0.5 to 2.
An electron emission display device comprising x .
【請求項4】 真空空間を挾み対向する一対の素子基板
及び透明基板と、 前記素子基板に設けられそれぞれ平行に伸長する複数の
オーミック電極と、 各々が前記オーミック電極上に形成された金属又は半導
体からなる電子供給層、前記電子供給層上に形成された
50nm以上の膜厚を有しかつ酸化珪素を主成分とし、層
全体では原子比xと表したときxが0.5〜2になるよ
うなSiOxを含む絶縁体層、及び前記絶縁体層上に形
成され前記真空空間に面する金属薄膜電極からなる複数
の電子放出素子と、 隣接する前記金属薄膜電極を電気的に接続しその一部上
に、前記オーミック電極に垂直に伸長して架設され、そ
れぞれが平行に伸長する複数のバス電極と、 前記透明基板に設けられそれぞれ平行に伸長しかつ前記
金属薄膜電極からの放出電子を捕獲する複数のコレクタ
電極と、前記コレクタ電極上に形成された蛍光体層から
なることを特徴とする電子放出表示装置。
4. A pair of opposing element substrates and a transparent substrate sandwiching a vacuum space, a plurality of ohmic electrodes provided on the element substrate and extending in parallel with each other, and a metal or a metal formed on the ohmic electrodes, respectively. An electron supply layer made of a semiconductor, having a thickness of 50 nm or more and formed on the electron supply layer, containing silicon oxide as a main component, and having an atomic ratio x of 0.5 to 2 in the entire layer. insulator layer comprising SiO x such that, and the formed on the insulator layer and a plurality of electron-emitting devices comprising a thin-film metal electrode facing the vacuum space, the thin-film metal electrode adjacent electrically connected A plurality of bus electrodes extending vertically on the part of the ohmic electrode and extending in parallel with each other, and a plurality of bus electrodes respectively provided on the transparent substrate and extending in parallel and emitted from the metal thin film electrode. A plurality of collector electrodes which trap the electron emission display device characterized by comprising a fluorescent layer formed on the collector electrode.
【請求項5】 前記金属薄膜電極の表面を複数の電子放
出領域に画定する第2絶縁体層を有することを特徴とす
る請求項4記載の電子放出表示装置。
5. The electron emission display according to claim 4, further comprising a second insulator layer defining a surface of the metal thin film electrode in a plurality of electron emission regions.
【請求項6】 前記第2絶縁体層は前記バス電極を覆う
ことを特徴とする請求項5記載の電子放出表示装置。
6. The electron emission display according to claim 5, wherein the second insulator layer covers the bus electrode.
JP13412597A 1997-03-04 1997-05-23 Electron emission device, and display device using the same Pending JPH10308167A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP13412597A JPH10308167A (en) 1997-03-04 1997-05-23 Electron emission device, and display device using the same
US09/032,111 US6130503A (en) 1997-03-04 1998-02-27 Electron emission device and display using the same
EP98301594A EP0863533B1 (en) 1997-03-04 1998-03-04 Electron emission device and display device using the same
DE1998609819 DE69809819T2 (en) 1997-03-04 1998-03-04 Electron emission device and display device using the same
US09/520,213 US6166487A (en) 1997-03-04 2000-03-07 Electron emission device and display device using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-49455 1997-03-04
JP4945597 1997-03-04
JP13412597A JPH10308167A (en) 1997-03-04 1997-05-23 Electron emission device, and display device using the same

Publications (1)

Publication Number Publication Date
JPH10308167A true JPH10308167A (en) 1998-11-17

Family

ID=26389851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13412597A Pending JPH10308167A (en) 1997-03-04 1997-05-23 Electron emission device, and display device using the same

Country Status (1)

Country Link
JP (1) JPH10308167A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100862655B1 (en) 2003-08-12 2008-10-10 삼성에스디아이 주식회사 Field emission display having carbon nanotube emitter and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100862655B1 (en) 2003-08-12 2008-10-10 삼성에스디아이 주식회사 Field emission display having carbon nanotube emitter and method of manufacturing the same

Similar Documents

Publication Publication Date Title
Leskelä Rare earths in electroluminescent and field emission display phosphors
US5882779A (en) Semiconductor nanocrystal display materials and display apparatus employing same
JP3281533B2 (en) Cold electron emission display device and semiconductor cold electron emission element
JPH10308165A (en) Electron emission element and display device using the same
CN100373520C (en) Electron emitting device and method of manufacturing the same and display apparatus using the same
JPH10308166A (en) Electron emission element and display device using the same
JP3547588B2 (en) Electron emitting element and display device using the same
US6180963B1 (en) Light emitting diode
JPH1167065A (en) Electron emitting element and display device using the same
JPH1167062A (en) Electron emitting element and display device using the same
JPH1167063A (en) Electron emitting element and display device using the same
JPH10308164A (en) Electron emission element and display device using the same
JP3196644B2 (en) Method for manufacturing optoelectronic material, and applied element and apparatus using the optoelectronic material
US20080265747A1 (en) Phosphor, light-emitting member, and image display apparatus
JPH10308167A (en) Electron emission device, and display device using the same
US20020125495A1 (en) Thin film alternating current electroluminescent displays
JP2002232010A (en) Display and its manufacturing method
WO2000074098A1 (en) Thin-film electron source, display and device
US7750548B2 (en) Image display device
Komoda et al. 39.3: Development of a Low Temperature Process of Ballistic Electron Surface‐Emitting Display (BSD) on a Glass Substrate
JPH1167066A (en) Electron emitting element and display device using the same
JP2000173775A (en) Ultraviolet emission electroluminescent element and its manufacture
JP4224225B2 (en) Display element, display device, and display device manufacturing method
JP3335161B2 (en) Field emission electron source
JP3537634B2 (en) Method of manufacturing electron-emitting device and method of manufacturing electron-emitting display device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040714

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040805

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040903