JPH10299417A - Hydrogen combustion turbine plant - Google Patents

Hydrogen combustion turbine plant

Info

Publication number
JPH10299417A
JPH10299417A JP9107688A JP10768897A JPH10299417A JP H10299417 A JPH10299417 A JP H10299417A JP 9107688 A JP9107688 A JP 9107688A JP 10768897 A JP10768897 A JP 10768897A JP H10299417 A JPH10299417 A JP H10299417A
Authority
JP
Japan
Prior art keywords
pressure
turbine
steam
pressure turbine
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9107688A
Other languages
Japanese (ja)
Other versions
JP3059115B2 (en
Inventor
Takao Suzuki
隆夫 鈴木
Masafumi Fukuda
雅文 福田
Giichi Dosono
義一 堂園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9107688A priority Critical patent/JP3059115B2/en
Publication of JPH10299417A publication Critical patent/JPH10299417A/en
Application granted granted Critical
Publication of JP3059115B2 publication Critical patent/JP3059115B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively cool structure parts of a turbine, by installing a heat exchanger on the turbine exhaust side of a middle-pressure turbine, and supplying the part of steam which is provided by steaming the supply water in the exchanger to the structure pad of the middle-pressure turbine, in a plant which re-heats the inlet steam of the middle-pressure turbine with a hydrogen combustion device. SOLUTION: Between a high pressure turbine 11 and a low pressure turbine 12, a two-step middle-pressure turbine 13 which consists of a middle high pressure turbine 13a and a middle low pressure turbine 13b is installed, and a high pressure hydrogen combustion device 15 and a low pressure hydrogen combustion device 16 are respectively installed on the inlet side of each middle pressure turbine 13. Here, hydrogen and pure oxygen are burned in equivalent amount, and generated ultra-high temperature steam is supplied to the middle-pressure turbines 13. A high pressure heat exchanger 17 and a low pressure heat exchanger 18 are also respectively installed on the exhaust side of each middle-pressure turbine 13, water supplied from a condensation supplying water system 19 is heated using the exhaust of each middle-pressure turbine 13 as the heating source to generate the steam, and the steam is supplied to the structure parts of the middle-pressure turbine 13 through steam supplying systems 17a, 18a for cooling.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素を燃料とし、
純酸素を酸化剤とする水素燃焼タービンプラントに係
り、特に、多段再熱ランキンサイクルをベースとし、水
素の純酸素燃焼により発生する蒸気をタービンの構成部
品の冷却に利用する水素燃焼タービンプラントに関す
る。
[0001] The present invention relates to the use of hydrogen as a fuel,
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen combustion turbine plant using pure oxygen as an oxidant, and more particularly to a hydrogen combustion turbine plant based on a multi-stage reheat Rankine cycle and utilizing steam generated by pure oxygen combustion of hydrogen for cooling components of a turbine.

【0002】[0002]

【従来の技術】最近の火力発電プラントでは、プラント
の高熱効率化,プラントの起動時間短縮化が高く評価さ
れ、ガスタービンに、蒸気タービンプラントおよび排熱
回収ボイラを組み合せたコンバインドサイクル発電プラ
ントが実用機として数多く運転されている。
2. Description of the Related Art In recent thermal power plants, high thermal efficiency of the plant and shortening of the start-up time of the plant are highly evaluated, and a combined cycle power plant in which a steam turbine plant and an exhaust heat recovery boiler are combined with a gas turbine is practically used. Many machines are in operation.

【0003】しかし、このコンバインドサイクル発電プ
ラントにおいては、ガスタービンプラントの燃料に、液
化天然ガスや石油(灯油)等の天然資源を使用している
が、何分にもガスタービンプラントの燃料が時間当り数
百トンと多量に消費することを考えると、天然資源の埋
蔵量に限界があり、自ずと代替燃料が必要になってきて
いる。また、天然資源は、クリーンなエネルギと言えど
も、NOx,CO等の有害廃棄物を皆無にすることがで
きず、高出力化が求められている今日、その燃料消費を
考えると、有害廃棄物の極めて少ない代替燃料が必要で
ある。また、各家庭を含めた民生部門での電力消費が依
然として延びている今日、この需要に応えるために、ガ
スタービンプラントよりも高い出力が出せる代替原動機
が必要である。
[0003] In this combined cycle power plant, however, natural resources such as liquefied natural gas and petroleum (kerosene) are used as fuel for the gas turbine plant. Considering the large consumption of several hundred tons per hour, the reserves of natural resources are limited and alternative fuels are naturally needed. Also, natural resources are clean energy, but harmful wastes such as NOx and CO cannot be completely eliminated, and high output is demanded today. Very few alternative fuels are needed. In addition, today's electricity consumption in the consumer sector, including households, is still growing, and to meet this demand, alternative prime movers that can produce higher power than gas turbine plants are needed.

【0004】このような社会的ニーズ・シーズに対し、
最近、燃料に水素を用い、また酸化剤に純酸素を用い、
水素の純酸素燃焼により生成される廃棄物をクリーン化
させ、さらに発生する蒸気を超高温化させ、この超高温
蒸気をタービン駆動蒸気にする水素燃焼タービンプラン
トに、蒸気発生器(排熱回収ボイラとしての熱交換器)
を組み合せたコンバインドサイクル発電プラントが公表
され(特開平7−293207号公報)、商業ベースへ
の実現性を高い期待をもって見守られている。
[0004] Such social needs seeds,
Recently, using hydrogen as fuel and pure oxygen as oxidizer,
A steam generator (exhaust heat recovery boiler) is installed in a hydrogen combustion turbine plant that cleans the waste generated by the pure oxygen combustion of hydrogen, raises the generated steam to ultra-high temperature, and turns this ultra-high temperature steam into turbine-driven steam. Heat exchanger)
A combined cycle power plant combining the above has been published (Japanese Patent Application Laid-Open No. 7-293207), and its commercial viability has been watched with high expectation.

【0005】この水素燃焼タービンプラントは、図3に
示すように、高圧タービン1と低圧タービン2との間
に、中高圧タービン3aと中低圧タービン3bを組み合
せた中圧タービン3を備え、中高圧タービン3a、中低
圧タービン3bのそれぞれに高圧水素燃焼器4a、低圧
水素燃焼器4bから発生する超高温蒸気(水蒸気)を供
給させるようになっている。
As shown in FIG. 3, this hydrogen combustion turbine plant includes a medium-pressure turbine 3 in which a medium-high-pressure turbine 3a and a medium-low-pressure turbine 3b are combined between a high-pressure turbine 1 and a low-pressure turbine 2, Ultra-high-temperature steam (steam) generated from the high-pressure hydrogen combustor 4a and the low-pressure hydrogen combustor 4b is supplied to each of the turbine 3a and the medium- and low-pressure turbines 3b.

【0006】また、中圧タービン3の中高圧タービン3
aおよび中低圧タービン3bの出口側には、蒸気発生器
としての第1熱交換器(排熱回収ボイラ)5a、第2熱
交換器(排熱回収ボイラ)5bをそれぞれ備えている。
[0006] The medium-pressure turbine 3
The first heat exchanger (exhaust heat recovery boiler) 5a and the second heat exchanger (exhaust heat recovery boiler) 5b as steam generators are provided at the outlet side of the turbine a and the low- and middle-pressure turbine 3b, respectively.

【0007】第1熱交換器5a、第2熱交換器5bは、
ともに蒸気タービンプラント6の給水系6aからの給水
が供給されており、中高圧タービン3aの排気蒸気およ
び中低圧タービン3bの排気蒸気のそれぞれを加熱源に
して、図4に示すように、給水を高温化させている。
The first heat exchanger 5a and the second heat exchanger 5b
In both cases, feedwater from a feedwater system 6a of the steam turbine plant 6 is supplied, and as shown in FIG. 4, the feedwater is supplied by using the exhaust steam of the medium-high pressure turbine 3a and the exhaust steam of the medium-low pressure turbine 3b as heating sources. High temperature.

【0008】また、第1熱交換器5aは、図3に示すよ
うに、蒸気を過熱器7で再び高温化させ、その高温蒸気
を第2熱交換器5bから供給される高温蒸気に合流さ
せ、高圧タービン1に駆動蒸気として供給する一方、低
圧水素燃焼器4bにも供給し、再び超高温化させて中低
圧タービン3bに供給している。また、第2熱交換器5
bは、蒸気を高温化させ、駆動蒸気として低圧タービン
2に供給している。
As shown in FIG. 3, the first heat exchanger 5a raises the temperature of the steam again by the superheater 7, and merges the high-temperature steam with the high-temperature steam supplied from the second heat exchanger 5b. , And is also supplied to the low-pressure hydrogen combustor 4b while being heated to an ultra-high temperature again and supplied to the medium- and low-pressure turbine 3b. In addition, the second heat exchanger 5
b raises the temperature of the steam and supplies it to the low-pressure turbine 2 as driving steam.

【0009】このように、最近、開示された水素燃焼タ
ービンプラントは、高低圧水素燃焼器4a,4bを備
え、水素の純酸素燃焼により1700℃以上の超高温蒸
気を発生させることができるようになっており、この超
高温化に伴って48万KW以上の電気出力が出せ、民生
部門の電力需要に応えようとしている。なお、48万K
W以上の電気出力は、この種の単機容量として世界最大
級である。
As described above, the recently disclosed hydrogen combustion turbine plant is provided with the high and low pressure hydrogen combustors 4a and 4b so that ultrahigh temperature steam of 1700 ° C. or more can be generated by the pure oxygen combustion of hydrogen. With this ultra-high temperature, electric power of more than 480,000 KW can be output, and it is trying to meet the electric power demand of the consumer sector. 480,000K
An electric output of W or more is one of the largest in the world as this type of single unit capacity.

【0010】[0010]

【発明が解決しようとする課題】特開平7−29320
7号公報に開示された水素燃焼タービンプラントは、タ
ービン駆動蒸気が1700℃以上の超高温になっている
ため、従来の構成機器の一つ一つを見直すと、解決すべ
き課題が数多く含まれており、その一つにタービン構成
部品、例えばタービン静翼、タービン動翼の効果的な冷
却化と、これに関連する冷却蒸気の供給・回収がある。
SUMMARY OF THE INVENTION Japanese Patent Application Laid-Open No. 7-29320
In the hydrogen combustion turbine plant disclosed in Japanese Patent Publication No. 7, since the turbine driving steam is at an extremely high temperature of 1700 ° C. or more, a review of each of the conventional components includes many problems to be solved. One of them is effective cooling of turbine components such as turbine vanes and turbine blades, and supply and recovery of cooling steam related thereto.

【0011】従来、タービン静翼、タービン動翼等のタ
ービン構成部品は、耐熱材料の開発と冷却技術の進歩に
より高温、例えば1300℃の燃焼ガス温度でも充分に
対処できるようになっているが、何分にも未だ未経験の
超高温のタービン駆動蒸気を冷却用蒸気として使用する
ものであってみれば、翼内を過不足なく冷却できるかど
うか、一抹の不安がある。
Conventionally, turbine components such as turbine vanes and turbine blades can sufficiently cope with high temperatures, for example, a combustion gas temperature of 1300 ° C. due to the development of heat-resistant materials and advances in cooling technology. If ultra-high-temperature turbine-driven steam, which has not yet been experienced for many minutes, is used as cooling steam, there is some uncertainty as to whether the inside of the blade can be cooled without excess or shortage.

【0012】また、翼内に供給する冷却用蒸気の供給源
を何処に求めるか、あるいは翼内冷却後の冷却用蒸気を
何処に回収させるかは、冷却用蒸気の消費に伴うプラン
ト熱清算の考察およびタービン駆動蒸気が超高温である
こととのバランス等主要な検討項目であり、その供給源
および回収源の選定を誤れば、冷却用蒸気の無駄なエネ
ルギ消費、ひいてはプラント熱効率の低下に繋るおそれ
がある。
Further, where to find the supply source of the cooling steam to be supplied to the blade or where to collect the cooling steam after cooling the blade is determined by the plant heat liquidation accompanying the consumption of the cooling steam. This is a major study item such as the balance between consideration and the fact that turbine-driven steam is at an extremely high temperature.Incorrect selection of the supply source and recovery source leads to wasteful energy consumption of cooling steam and, consequently, a reduction in plant thermal efficiency. May be affected.

【0013】本発明は、このような検討結果からなされ
たもので、効果的なタービン構成部品の冷却と、適正な
冷却用蒸気の供給源の選定およびその回収の検討を充分
に行った水素燃焼タービンプラントを提供することを目
的とする。
The present invention has been made based on the above-described study results. Hydrogen combustion which has been sufficiently studied for effective cooling of turbine component parts, selection of an appropriate cooling steam supply source and its recovery. It is intended to provide a turbine plant.

【0014】[0014]

【課題を解決するための手段】本発明に係る水素燃焼タ
ービンプラントは、上述した課題を解決するために、請
求項1に記載したように、高圧タービンと低圧タービン
との間に少なくとも2段以上の中圧タービンを設け、各
中圧タービンの入口蒸気を、水素と純酸素とを当量燃焼
させる水素燃焼器により再加熱する水素燃焼タービンプ
ラントにおいて、上記中圧タービンの少なくとも一方に
はタービン排気側に熱交換器を設け、この熱交換器は復
水給水系から案内される給水を蒸気化させ、この蒸気の
一部を上記中圧タービンの構成部品に冷却用として供給
する冷却用蒸気供給系を備えたものである。
In order to solve the above-mentioned problems, a hydrogen combustion turbine plant according to the present invention has at least two or more stages between a high-pressure turbine and a low-pressure turbine. In a hydrogen combustion turbine plant in which intermediate pressure turbines are provided and the inlet steam of each intermediate pressure turbine is reheated by a hydrogen combustor that burns hydrogen and pure oxygen in an equivalent amount, at least one of the intermediate pressure turbines has a turbine exhaust side. And a cooling steam supply system that supplies a part of the steam to the components of the medium pressure turbine for cooling. It is provided with.

【0015】本発明に係る水素燃焼タービンプラント
は、上述した課題を解決するために、請求項2に記載し
たように、中圧タービンは、少なくとも中高圧タービン
と中低圧タービンとを備え、上記中高圧タービンおよび
中低圧タービンへの入口蒸気をそれぞれ過熱する高圧水
素燃焼器および低圧水素燃焼器を設け、中高圧タービン
からのタービン排気側に高圧タービン駆動用蒸気を発生
させる高圧熱交換器を設ける一方、中低圧タービンから
のタービン排気側に、上記高圧熱交換器からの高圧ター
ビン駆動蒸気に合流させる低圧熱交換器を設け、上記高
圧熱交換器および低圧熱交換器のそれぞれで発生させる
蒸気の一部を上記中高圧タービンの構成部品および中低
圧タービンの構成部品のそれぞれに冷却用として供給す
る冷却用高圧蒸気供給系と冷却用低圧蒸気供給系とをそ
れぞれ備えたものである。
According to a second aspect of the present invention, there is provided a hydrogen combustion turbine plant comprising at least an intermediate high pressure turbine and an intermediate low pressure turbine. A high-pressure hydrogen combustor and a low-pressure hydrogen combustor that superheat the inlet steam to the high-pressure turbine and the medium- and low-pressure turbine, respectively; and a high-pressure heat exchanger that generates high-pressure turbine driving steam on the turbine exhaust side from the medium- and high-pressure turbine. A low-pressure heat exchanger that merges with the high-pressure turbine driving steam from the high-pressure heat exchanger on the turbine exhaust side from the medium- and low-pressure turbine, and includes one of the high-pressure heat exchanger and the low-pressure heat exchanger. The high-pressure steam supply for cooling supplies the cooling part to each of the components of the medium-to-high pressure turbine and the components of the medium-to-low pressure turbine. System and the cooling low pressure steam supply system and the those having respectively.

【0016】本発明に係る水素燃焼タービンプラント
は、上述した課題を解決するために、請求項3に記載し
たように、中高圧タービンの構成部品および中低圧ター
ビンの構成部品に供給される冷却用の蒸気は、各構成部
品冷却後、上記中高圧タービンの駆動蒸気および中低圧
タービンの駆動蒸気のそれぞれに合流させるか、上記高
圧熱交換器および低圧熱交換器のそれぞれに回収させる
かいずれかを選択したものである。
According to a third aspect of the present invention, there is provided a hydrogen-fired turbine plant for cooling which is supplied to components of a medium-to-high pressure turbine and components of a medium-to-low pressure turbine. After cooling each component, either the driving steam for the medium-to-high pressure turbine and the driving steam for the medium-to-low pressure turbine are combined, or the steam is recovered in each of the high-pressure heat exchanger and the low-pressure heat exchanger. It is the one you have chosen.

【0017】[0017]

【発明の実施の形態】以下、本発明に係る水素燃焼ター
ビンプラントの一実施形態を図面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a hydrogen combustion turbine plant according to the present invention will be described below with reference to the drawings.

【0018】図1は、エネルギ供給プラントとして本発
明に係る水素燃焼タービンプラントを発電プラントに適
用した系統図を示す。
FIG. 1 shows a system diagram in which a hydrogen combustion turbine plant according to the present invention is applied to a power plant as an energy supply plant.

【0019】この水素燃焼タービンプラント10は、高
圧タービン11と低圧タービン12との間に中高圧ター
ビン13aと中低圧タービン13bからなる2段の中圧
タービン13が設けられる。
This hydrogen combustion turbine plant 10 is provided with a two-stage intermediate pressure turbine 13 consisting of an intermediate high pressure turbine 13a and an intermediate low pressure turbine 13b between a high pressure turbine 11 and a low pressure turbine 12.

【0020】中圧タービン13を構成する中高圧タービ
ン13aおよび中低圧タービン13bのタービン入口側
に高圧水素燃焼器15および低圧水素燃焼器16がそれ
ぞれ設置される。各水素燃焼器15,16は水素と純酸
素とを当量燃焼させ、例えば1600℃程度あるいはそ
れ以上の超高温蒸気を中高圧タービン13aあるいは中
低圧タービン13bに供給するようになっている。
A high-pressure hydrogen combustor 15 and a low-pressure hydrogen combustor 16 are installed on the turbine inlet side of the medium- and high-pressure turbines 13a and 13b constituting the medium-pressure turbine 13, respectively. Each of the hydrogen combustors 15 and 16 combusts hydrogen and pure oxygen in an equivalent amount, and supplies ultra-high-temperature steam of, for example, about 1600 ° C. or more to the medium-high pressure turbine 13a or the medium-low pressure turbine 13b.

【0021】また、中高圧タービン13aおよび中低圧
タービン13bのタービン排気側に、高温のタービン排
気の排熱を熱回収する高圧熱交換器17および低圧熱交
換器18がそれぞれ設置される。
A high-pressure heat exchanger 17 and a low-pressure heat exchanger 18 for recovering the exhaust heat of the high-temperature turbine exhaust are provided on the turbine exhaust side of the intermediate-high pressure turbine 13a and the intermediate-low pressure turbine 13b, respectively.

【0022】高圧熱交換器17は、中高圧タービン13
aの排気を加熱源として復水給水系19からの給水を加
熱して蒸気を発生させ、その蒸気を中高圧タービン13
aの構成部品、例えばタービン静翼、タービン動翼等に
冷却用として供給する冷却用高圧蒸気供給系17aを備
えている。
The high-pressure heat exchanger 17 includes a medium-to-high pressure turbine 13
The steam from the condensate water supply system 19 is heated by using the exhaust gas a as a heat source to generate steam, and the steam is
A cooling high-pressure steam supply system 17a is provided for cooling components such as turbine stationary blades and turbine blades.

【0023】また、低圧熱交換器18は、中低圧タービ
ン13bの排気を加熱源として復水給水系19からの給
水を加熱して蒸気を発生させ、その蒸気を中低圧タービ
ン13bの構成部品、例えばタービン静翼、タービン動
翼等に冷却用として供給する冷却用低圧蒸気供給系18
aを備えている。
The low-pressure heat exchanger 18 heats water supplied from the condensate water supply system 19 using the exhaust gas of the medium-low pressure turbine 13b as a heating source to generate steam, and uses the steam as a component of the medium-low pressure turbine 13b. For example, a low-pressure steam supply system 18 for cooling supplied to a turbine stationary blade, a turbine moving blade, etc.
a.

【0024】この水素燃焼タービンプラント10は、発
電プラントとして機能し、高圧タービン11、各中圧タ
ービン13および低圧タービン12を駆動させることに
より、各タービン11,12,13が仕事をし、発電機
20を回転駆動させ、電気出力を得るようにするととも
に、中圧タービン13を構成する中高圧タービン13a
および中低圧タービン13bのそれぞれの構成部品の冷
却化に対処できるようになっている。
The hydrogen combustion turbine plant 10 functions as a power plant, and drives the high-pressure turbine 11, each medium-pressure turbine 13 and the low-pressure turbine 12 so that the turbines 11, 12, and 13 work and the generator 20 is rotated to obtain an electric output, and a medium-pressure turbine 13 a
It is possible to cope with the cooling of each component of the medium and low pressure turbine 13b.

【0025】また、低圧タービン12で仕事をし、膨張
した蒸気は、続いて復水器21に案内され、ここで冷却
され、凝縮作用を受けて復水となる。この復水は復水ポ
ンプ22により復水給水系19に案内される。一部の復
水は必要に応じて系外に排出される。
The steam that has worked in the low-pressure turbine 12 and expanded is subsequently guided to a condenser 21 where it is cooled and condensed to be condensed. This condensate is guided to the condensate water supply system 19 by the condensate pump 22. Some condensate is discharged out of the system as needed.

【0026】一方、復水給水系19には多段式の低圧給
水加熱器23、脱気器24、中圧給水加熱器25および
高圧給水加熱器26が順次設置される。復水給水系19
を通る復水(給水)は低圧給水加熱器23、中圧給水加
熱器25および高圧給水加熱器26で、それぞれ順次加
熱され、段階的に温度上昇する。給水の加熱蒸気は低圧
タービン12や中圧タービン13からのタービン抽気で
ある。一方、復水給水系19を通る復水や給水は復水ポ
ンプ22および多段の給水ポンプ28,29によりポン
プアップされ、加圧される。
On the other hand, in the condensate water supply system 19, a multi-stage low-pressure water heater 23, a deaerator 24, a medium-pressure water heater 25, and a high-pressure water heater 26 are sequentially installed. Condensate water supply system 19
The condensate (water supply) passing through is heated by the low-pressure feedwater heater 23, the medium-pressure feedwater heater 25, and the high-pressure feedwater heater 26, respectively, in order, and the temperature rises stepwise. The heating steam of the feedwater is turbine bleed air from the low-pressure turbine 12 and the medium-pressure turbine 13. On the other hand, the condensed water and water supplied through the condensed water supply system 19 are pumped up by the condensate pump 22 and the multi-stage water supply pumps 28 and 29 and pressurized.

【0027】なお、この復水給水系19では復水(給
水)を低圧、中圧および高圧の給水加熱器で多段に加熱
する例を示したが、給水を多段加熱する際、中圧給水加
熱器25やこの加熱器に給水を送り込む給水ポンプ28
は必ずしも必要としない。
In the condensate water supply system 19, the condensate (water supply) is heated in multiple stages by low, medium and high pressure feed water heaters. Water pump 28 for feeding water to the heater 25 or this heater
Is not necessarily required.

【0028】復水給水系19の各給水加熱器23,2
5,26で多段加熱された高温(例えば350℃程度)
で高圧(例えば350ata 〜500ata )の給水は、排
熱回収ボイラ17に送られ、この排熱回収ボイラ17に
て中高圧タービン13aで膨張したタービン排気(例え
ば圧力19ata、温度1250℃程度)と熱交換し、よ
り高温・高圧の高圧タービン駆動用蒸気が生成される。
この蒸気は高圧タービン11の入口側に戻され、2段再
熱ランキンサイクルが構成される。従来の水素燃焼ター
ビンプラントで用いられた過熱器は不要となる。
Each feed water heater 23, 2 of the condensate feed water system 19
High temperature (for example, about 350 ° C) heated in multiple stages at 5, 26
The high-pressure (for example, 350 to 500 at) feed water is sent to an exhaust heat recovery boiler 17, where the exhaust gas is expanded by a medium-to-high pressure turbine 13a to generate turbine exhaust (for example, a pressure of 19 at a temperature of about 1250 ° C.) and heat. In exchange, higher-temperature, high-pressure steam for driving the high-pressure turbine is generated.
This steam is returned to the inlet side of the high-pressure turbine 11 to form a two-stage reheat Rankine cycle. The superheater used in the conventional hydrogen combustion turbine plant becomes unnecessary.

【0029】次に、水素燃焼タービンプラントの作用を
説明する。
Next, the operation of the hydrogen combustion turbine plant will be described.

【0030】この水素燃焼タービンプラント10は、図
2で示すT−S線図に基づいて運転される。復水給水系
19を通る給水は、給水加熱器23,25,26により
多段加熱され、高温高圧(例えば350℃、370ata
程度)となり、この給水は続いて高圧熱交換器17で中
高圧タービン13aからのタービン排気により過熱さ
れ、過熱蒸気となる。その際、過熱途中の一部の蒸気
は、冷却用の蒸気として冷却用高圧蒸気供給系17を介
して中高圧タービン13aの構成部品に供給され、その
構成部品を冷却後、中高圧タービン13aの駆動蒸気に
合流させるか、あるいは再び高圧熱交換器17に戻され
るかのいずれかが選択される。この選択は、計画時の熱
清算から決定される。高圧熱交換器17を出た加熱蒸気
は、例えば650℃、850ata 程度の高圧タービン駆
動用蒸気となって高圧タービン11に供給され、この高
圧タービン11を駆動する。
The hydrogen combustion turbine plant 10 is operated based on the TS diagram shown in FIG. The feedwater passing through the condensate feedwater system 19 is heated in multiple stages by feedwater heaters 23, 25, 26, and has a high temperature and high pressure (for example, 350 ° C., 370 at
The feedwater is subsequently superheated in the high-pressure heat exchanger 17 by the turbine exhaust from the medium-to-high-pressure turbine 13a to become superheated steam. At this time, a part of the steam during the superheating is supplied to the components of the medium and high pressure turbine 13a through the high pressure steam supply system for cooling 17 as cooling steam, and after cooling the components, the steam of the medium and high pressure turbine 13a is cooled. Either merging with the driving steam or returning again to the high-pressure heat exchanger 17 is selected. This choice is determined from the heat clearing at the time of planning. The heated steam exiting the high-pressure heat exchanger 17 is supplied to the high-pressure turbine 11 as high-pressure turbine driving steam at, for example, 650 ° C. and about 850 at, and drives the high-pressure turbine 11.

【0031】高圧タービン11で膨張し、仕事をしたタ
ービン排気は、例えば385℃、75ata程度の排気蒸
気となって高圧水素燃焼器15に供給される。このター
ビン排気は高圧水素燃焼器15で水素と純酸素との当量
燃焼により温度上昇し、例えば1600℃〜1700℃
程度、70ata程度の超高温蒸気となって中圧タービン
13の中高圧タービン13aに導かれ、この中高圧ター
ビン13aを超高温蒸気で駆動させる。
The turbine exhaust expanded and worked by the high-pressure turbine 11 is supplied to the high-pressure hydrogen combustor 15 as exhaust steam of, for example, 385 ° C. and about 75 ata. The temperature of this turbine exhaust rises due to the equivalent combustion of hydrogen and pure oxygen in the high-pressure hydrogen combustor 15, for example, 1600 ° C. to 1700 ° C.
Ultra high temperature steam of about 70 ata is guided to the medium pressure turbine 13a of the medium pressure turbine 13, and this medium high pressure turbine 13a is driven by the ultra high temperature steam.

【0032】中高圧タービン13aで膨張し、仕事をし
た蒸気は、例えば1250°、19ata 程度のタービン
排気となって高圧熱交換器17に案内され、ここで上述
復水給水系19からの給水を加熱して中高圧タービン1
3aの構成部品の冷却用としての蒸気を生成する。給水
の加熱により温度降下したタービン排気は、例えば60
0°程度の蒸気となって低圧水素燃焼器16に案内さ
れ、ここで水素と純酸素の当量燃焼により、例えば17
ata ,1700°以上に再加熱され、過熱蒸気として中
低圧タービン13bに供給され、中低圧タービン13b
を駆動させる。
The steam that has expanded and worked in the medium-to-high pressure turbine 13a becomes turbine exhaust of, for example, about 1250 ° and 19 at, and is guided to the high pressure heat exchanger 17, where the water supplied from the condensate water supply system 19 is supplied. Heated and high pressure turbine 1
Generate steam for cooling the components of 3a. Turbine exhaust whose temperature has dropped due to heating of the feedwater is, for example, 60
The steam is guided to the low-pressure hydrogen combustor 16 in the form of steam of about 0 °.
ata, reheated to 1700 ° or more, supplied as superheated steam to the medium / low pressure turbine 13b,
Drive.

【0033】中低圧タービン13bで仕事をしたタービ
ン排気は、例えば1.1ata 、1000°程度になって
低圧熱交換器18に案内され、ここで復水給水系19か
らの給水を加熱させる。タービン排気により加熱される
復水給水系19からの給水に基づく蒸気は、その一部を
冷却用低圧蒸気供給系18aを介して中低圧タービン1
3bの構成部品を冷却し、冷却後、中低圧タービン13
bの駆動蒸気に合流させるか、あるいは再び低圧熱交換
器18に戻されるかのいずれかが選択される。この選択
は、計画時の熱清算により決定される。
The turbine exhaust that has worked in the medium- and low-pressure turbine 13b is guided to the low-pressure heat exchanger 18 at, for example, about 1.1 ata and about 1000 °, where the water supplied from the condensate water supply system 19 is heated. A part of the steam based on the water supplied from the condensate water supply system 19 heated by the turbine exhaust is passed through the low-pressure steam supply system 18a for cooling.
3b, and after cooling, the medium and low pressure turbine 13
b is combined with the driving steam of b or returned to the low-pressure heat exchanger 18 again. This choice is determined by the heat clearing at the time of planning.

【0034】中低圧タービン13bのタービン排気によ
り過熱された復水給水系19からの給水に基づく過熱蒸
気は、上述高圧熱交換器17からの過熱蒸気と合流し、
その合流過熱蒸気で高圧タービン11を駆動させる。
The superheated steam based on the water supply from the condensate water supply system 19, which has been superheated by the turbine exhaust of the middle and low pressure turbine 13b, merges with the superheated steam from the high pressure heat exchanger 17 described above.
The high-pressure turbine 11 is driven by the combined superheated steam.

【0035】また、復水給水系19からの給水の加熱に
より昇温降下した中低圧タービン13bからのタービン
排気は、低圧タービン12に案内され、ここで再び膨張
仕事をさせる。各タービン11,12,13の駆動によ
り発電機20が回転駆動され、電気出力が得られる。低
圧タービン12で仕事をした蒸気は、温度が100°以
下、例えば58℃でほぼ大気圧となって復水器21に案
内され、この復水器21で冷却され、復水となる。
The turbine exhaust from the medium- and low-pressure turbine 13b whose temperature has been lowered by heating the feedwater from the condensate water supply system 19 is guided to the low-pressure turbine 12, where the work is expanded again. The generators 20 are rotationally driven by the driving of the turbines 11, 12, and 13, and an electric output is obtained. The steam that has worked in the low-pressure turbine 12 has a temperature of 100 ° C. or less, for example, 58 ° C., and becomes almost atmospheric pressure, is guided to the condenser 21, is cooled by the condenser 21, and is condensed.

【0036】この復水は、復水給水系19の各給水加熱
器23,25,26を通る間に多段に加熱されるととも
に、復水ポンプ22、給水ポンプ28,29で加圧さ
れ、高温(350℃程度)高圧(370ata 程度)とな
って高圧熱交換器17、低圧熱交換器18のそれぞれに
案内される。
This condensate is heated in multiple stages while passing through the feed water heaters 23, 25 and 26 of the condensate water supply system 19, and is pressurized by the condensate pump 22, and the feed water pumps 28 and 29, and It becomes high pressure (about 350 ° C.) (about 370 ata) and is guided to each of the high-pressure heat exchanger 17 and the low-pressure heat exchanger 18.

【0037】表1は、本実施形態に係る水素燃焼タービ
ンプラントと、ガスタービンプラントに蒸気タービンプ
ラントを組み合せ、ガスタービン燃焼器の燃料に、例え
ばLNG等の気体燃料を使用する従来のコンバインドサ
イクル発電プラントとを比較したものである。
Table 1 shows a conventional combined cycle power generation using a hydrogen combustion turbine plant according to the present embodiment, a gas turbine plant combined with a steam turbine plant, and using gaseous fuel such as LNG as fuel for the gas turbine combustor. It is a comparison with a plant.

【0038】[0038]

【表1】 [Table 1]

【0039】本実施形態は、中高圧タービン13aの出
口側に高圧熱交換器17を設ける一方、中低圧タービン
13bの出口側に低圧熱交換器18を設け、復水給水系
19からの給水を高圧熱交換器17および低圧熱交換器
18のそれぞれに案内し、ここで生成される蒸気の一部
を各タービン13a,13bの構成部品の冷却用として
案内し、その構成部品を冷却後、各タービン13a,1
3bの駆動蒸気に合流させるか、あるいは各熱交換器1
7,18に戻すかのいずれかを選択しているので、各タ
ービン13a,13bの駆動蒸気の超高温化が図られ、
また冷却用の蒸気の適正な温度の選定化と相俟って効果
的な熱回収化が図られる。
In the present embodiment, a high-pressure heat exchanger 17 is provided at the outlet side of the medium-to-high pressure turbine 13a, while a low-pressure heat exchanger 18 is provided at the outlet side of the medium-to-low pressure turbine 13b to supply water from the condensate water supply system 19. The steam is guided to each of the high-pressure heat exchanger 17 and the low-pressure heat exchanger 18, and a part of the steam generated here is guided for cooling the components of the turbines 13a and 13b. Turbine 13a, 1
3b or the heat exchanger 1
7 or 18, the drive steam for each of the turbines 13a and 13b is heated to an extremely high temperature.
Further, effective heat recovery can be achieved in combination with selection of an appropriate temperature of the cooling steam.

【0040】したがって、表1からも認められるよう
に、本実施形態では、従来に較べプラント熱高率を大幅
に向上させることができる。
Accordingly, as can be seen from Table 1, in the present embodiment, the heat rate of the plant can be greatly improved as compared with the conventional case.

【0041】[0041]

【発明の効果】以上の説明の通り、本発明に係る水素燃
焼タービンプラントは、高圧タービンと低圧タービンと
の間に設けた少なくとも二段以上の中圧タービンの排気
側に熱交換器を少なくとも一つ以上を設置し、各熱交換
器に復水給水系の給水を案内し、各タービンの排気を加
熱源として、その給水から蒸気を生成せしめ、その蒸気
の一部を各タービンの構成部品の冷却用に供し、冷却後
の蒸気を各タービンの駆動蒸気に合流させるか、再び各
熱交換器に戻すかの選択を行なったので、各タービンの
構成部品の冷却化に伴う各タービンの駆動蒸気の超高温
化、冷却用の蒸気の効果的な熱回収化を図ることがで
き、従来に較べプラント熱効率の大幅な向上を図ること
ができる。
As described above, in the hydrogen combustion turbine plant according to the present invention, at least one heat exchanger is provided on the exhaust side of at least two or more stages of the intermediate pressure turbine provided between the high pressure turbine and the low pressure turbine. More than one turbine, guide the condensate water supply to each heat exchanger, use the exhaust gas from each turbine as a heat source, generate steam from the water supply, and use a portion of the steam for the components of each turbine. Since the choice was made between cooling steam and merging the steam after cooling with the driving steam of each turbine or returning the steam to each heat exchanger again, the driving steam of each turbine accompanying the cooling of the components of each turbine was selected. It is possible to achieve an extremely high temperature and effective heat recovery of the cooling steam, and it is possible to greatly improve the thermal efficiency of the plant as compared with the related art.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る水素燃焼タービンプラントの実施
形態を示す概略系統図。
FIG. 1 is a schematic system diagram showing an embodiment of a hydrogen combustion turbine plant according to the present invention.

【図2】図1に示された水素燃焼タービンプラントに相
当するT−S線図。
FIG. 2 is a TS diagram corresponding to the hydrogen combustion turbine plant shown in FIG.

【図3】従来の水素燃焼タービンプラントの実施形態を
示す概略系統図。
FIG. 3 is a schematic system diagram showing an embodiment of a conventional hydrogen combustion turbine plant.

【図4】図3に示された水素燃焼タービンプラントに相
当するT−S線図。
FIG. 4 is a TS diagram corresponding to the hydrogen combustion turbine plant shown in FIG. 3;

【符号の説明】[Explanation of symbols]

1 高圧タービン 2 低圧タービン 3 中圧タービン 3a 中高圧タービン 3b 中低圧タービン 4a 高圧水素燃焼器 4b 低圧水素燃焼器 5a 第1熱交換器 5b 第2熱交換器 6 蒸気タービンプラント 6a 給水系 10 水素燃焼タービンプラント 11 高圧タービン 12 低圧タービン 13 中圧タービン 13a 中高圧タービン 13b 中低圧タービン 15 高圧水素燃焼器 16 低圧水素燃焼器 17 高圧熱交換器 17a 冷却用高圧蒸気供給源 18 低圧熱交換器 18a 冷却用低圧蒸気供給源 19 復水給水系 20 発電機 21 復水器 22 復水ポンプ 23 低圧給水加熱器 24 脱気器 25 中圧給水加熱器 26 高圧給水加熱器 28,29 給水ポンプ Reference Signs List 1 high-pressure turbine 2 low-pressure turbine 3 medium-pressure turbine 3a medium-high-pressure turbine 3b medium-low-pressure turbine 4a high-pressure hydrogen combustor 4b low-pressure hydrogen combustor 5a first heat exchanger 5b second heat exchanger 6 steam turbine plant 6a water supply system 10 hydrogen combustion Turbine plant 11 High pressure turbine 12 Low pressure turbine 13 Medium pressure turbine 13a Medium high pressure turbine 13b Medium low pressure turbine 15 High pressure hydrogen combustor 16 Low pressure hydrogen combustor 17 High pressure heat exchanger 17a High pressure steam supply source 18 for cooling 18 Low pressure heat exchanger 18a For cooling Low-pressure steam supply source 19 Condensate feedwater system 20 Generator 21 Condenser 22 Condensate pump 23 Low-pressure feedwater heater 24 Deaerator 25 Medium-pressure feedwater heater 26 High-pressure feedwater heater 28, 29 Feedwater pump

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高圧タービンと低圧タービンとの間に少
なくとも2段以上の中圧タービンを設け、各中圧タービ
ンの入口蒸気を、水素と純酸素とを当量燃焼させる水素
燃焼器により再加熱する水素燃焼タービンプラントにお
いて、上記中圧タービンの少なくとも一方にはタービン
排気側に熱交換器を設け、この熱交換器は復水給水系か
ら案内される給水を蒸気化させ、この蒸気の一部を上記
中圧タービンの構成部品に冷却用として供給する冷却用
蒸気供給系を備えたことを特徴とする水素燃焼タービン
プラント。
At least two stages of intermediate-pressure turbines are provided between a high-pressure turbine and a low-pressure turbine, and inlet steam of each of the intermediate-pressure turbines is reheated by a hydrogen combustor for burning equivalent amounts of hydrogen and pure oxygen. In the hydrogen combustion turbine plant, at least one of the medium-pressure turbines is provided with a heat exchanger on the turbine exhaust side, and the heat exchanger vaporizes feed water guided from a condensate water supply system, and partially converts the steam. A hydrogen combustion turbine plant, comprising: a cooling steam supply system for supplying cooling components to the components of the intermediate pressure turbine.
【請求項2】 中圧タービンは、少なくとも中高圧ター
ビンと中低圧タービンとを備え、上記中高圧タービンお
よび中低圧タービンへの入口蒸気をそれぞれ過熱する高
圧水素燃焼器および低圧水素燃焼器を設け、中高圧ター
ビンからのタービン排気側に高圧タービン駆動用蒸気を
発生させる高圧熱交換器を設ける一方、中低圧タービン
からのタービン排気側に、上記高圧熱交換器からの高圧
タービン駆動蒸気に合流させる低圧熱交換器を設け、上
記高圧熱交換器および低圧熱交換器のそれぞれで発生さ
せる蒸気の一部を上記中高圧タービンの構成部品および
中低圧タービンの構成部品のそれぞれに冷却用として供
給する冷却用高圧蒸気供給系と冷却用低圧蒸気供給系と
をそれぞれ備えたことを特徴とする請求項1記載の水素
燃焼タービンプラント。
2. The medium-pressure turbine includes at least a medium-high-pressure turbine and a medium-low-pressure turbine, and includes a high-pressure hydrogen combustor and a low-pressure hydrogen combustor that superheat inlet steam to the medium-high-pressure turbine and the medium-low-pressure turbine, respectively. A high-pressure heat exchanger that generates high-pressure turbine driving steam is provided on the turbine exhaust side from the medium-high pressure turbine, while a low-pressure A cooling unit for providing a heat exchanger and supplying a part of steam generated in each of the high-pressure heat exchanger and the low-pressure heat exchanger to each of the components of the medium-high pressure turbine and the components of the medium-low pressure turbine for cooling The hydrogen combustion turbine plan according to claim 1, further comprising a high-pressure steam supply system and a low-pressure steam supply system for cooling. G.
【請求項3】 中高圧タービンの構成部品および中低圧
タービンの構成部品に供給される冷却用の蒸気は、各構
成部品冷却後、上記中高圧タービンの駆動蒸気および中
低圧タービンの駆動蒸気のそれぞれに合流させるか、上
記高圧熱交換器および低圧熱交換器のそれぞれに回収さ
せるかいずれかを選択したことを特徴とする請求項2記
載の水素燃焼タービンプラント。
3. The cooling steam supplied to the components of the medium-to-high pressure turbine and the components of the medium-to-low pressure turbine is, after cooling of each component, the driving steam of the medium-to-high pressure turbine and the driving steam of the medium-to-low pressure turbine, respectively. 3. The hydrogen combustion turbine plant according to claim 2, wherein either one of the two is selected, or the high-pressure heat exchanger and the low-pressure heat exchanger are collected.
JP9107688A 1997-04-24 1997-04-24 Hydrogen combustion turbine plant Expired - Fee Related JP3059115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9107688A JP3059115B2 (en) 1997-04-24 1997-04-24 Hydrogen combustion turbine plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9107688A JP3059115B2 (en) 1997-04-24 1997-04-24 Hydrogen combustion turbine plant

Publications (2)

Publication Number Publication Date
JPH10299417A true JPH10299417A (en) 1998-11-10
JP3059115B2 JP3059115B2 (en) 2000-07-04

Family

ID=14465455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9107688A Expired - Fee Related JP3059115B2 (en) 1997-04-24 1997-04-24 Hydrogen combustion turbine plant

Country Status (1)

Country Link
JP (1) JP3059115B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110234847A (en) * 2017-02-03 2019-09-13 川崎重工业株式会社 Hydrogen-oxygen equivalent combustion turbine system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110234847A (en) * 2017-02-03 2019-09-13 川崎重工业株式会社 Hydrogen-oxygen equivalent combustion turbine system

Also Published As

Publication number Publication date
JP3059115B2 (en) 2000-07-04

Similar Documents

Publication Publication Date Title
EP0676532B1 (en) Steam injected gas turbine system with topping steam turbine
JP3681434B2 (en) Cogeneration system and combined cycle power generation system
RU2595192C2 (en) Power plant with built-in pre-heating of fuel gas
US20080127647A1 (en) Solar-Generated Steam Retrofit for Supplementing Natural-Gas Combustion at Combined Cycle Power Plants
US20080092551A1 (en) Method and system integrating combustion turbine with a regenerative solar rankine power plant
RU2009333C1 (en) Combined steam-gas power plant and method of its operation
EP2535533A2 (en) Asymmetrical combined cycle power plant
Ohji et al. Steam turbine cycles and cycle design optimization: the Rankine cycle, thermal power cycles, and IGCC power plants
Srinivas et al. Thermodynamic modeling and optimization of multi-pressure heat recovery steam generator in combined power cycle
Zohuri et al. Gas Turbine Working Principles
Ohji et al. Steam turbine cycles and cycle design optimization: the Rankine cycle, thermal power cycles, and integrated gasification-combined cycle power plants
JPH11173109A (en) Power generation and hot water supply system
Allen et al. Gas turbine cogeneration—principles and practice
US20150027121A1 (en) Method to integrate regenerative rankine cycle into combined cycle applications
JP3017937B2 (en) Hydrogen combustion turbine plant
JP3059115B2 (en) Hydrogen combustion turbine plant
JPH1113488A (en) Full fired heat recovery combined plant using steam cooling type gas turbine
JP2960371B2 (en) Hydrogen combustion turbine plant
CA2983533C (en) Combined cycle power generation
JP4418894B2 (en) Dual pass steam system
JP2003106108A (en) Power generating plant
Shin et al. Performance analysis of a triple pressure HRSG
JP4343610B2 (en) Power generation apparatus and power generation method
TWI841733B (en) Gas turbine combined-cycle power plant, organic rankine cycle (orc) system for operation with gas turbine combined-cycle power plant comprising fuel system, and method of operating gas turbine combined-cycle power plant
JPH11117714A (en) Gas turbine combined plant

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080421

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees