JPH10298246A - Polymer matrix for forming gel-like solid electrolyte, solid electrolyte, and battery - Google Patents

Polymer matrix for forming gel-like solid electrolyte, solid electrolyte, and battery

Info

Publication number
JPH10298246A
JPH10298246A JP9122860A JP12286097A JPH10298246A JP H10298246 A JPH10298246 A JP H10298246A JP 9122860 A JP9122860 A JP 9122860A JP 12286097 A JP12286097 A JP 12286097A JP H10298246 A JPH10298246 A JP H10298246A
Authority
JP
Japan
Prior art keywords
solid electrolyte
electrolyte
polymer matrix
polyvinylidene fluoride
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9122860A
Other languages
Japanese (ja)
Other versions
JP3942232B2 (en
Inventor
Takumi Kuzuo
巧 葛尾
Aisaku Nagai
愛作 永井
Takayuki Katto
卓之 甲藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP12286097A priority Critical patent/JP3942232B2/en
Publication of JPH10298246A publication Critical patent/JPH10298246A/en
Application granted granted Critical
Publication of JP3942232B2 publication Critical patent/JP3942232B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a gel-like solid electrolyte improved in ionic conductivity by impregnating a polymer matrix comprising a sulfonated polyvinylidene fluoride resin with a nonaq. electrolyte soln. SOLUTION: A sulfonated polyvinylidene fluoride resin obtd. by reacting a polyvinylidene fluoride resin comprising a vinylidene fluoride homo- or copolymer with chlorosulfonic acid, etc., is dissolved in a solvent (e.g. tetrahydrofuran) to give a soln.(A). Separately. 3-30 pts.wt. electrolyte selected from among LiPF3 , LiClO4 , LiCF3 SO3 , LiBr, etc., is dissolved in 100 pts.wt. nonaq. solvent (e.g. propylene carbonate) to give a nonaq. electrolyte soln. (B). Soln. A and soln. B are homogeneously mixed, and the resultant mixture is cast on a glass plate and cooled to form a gel, giving a solid polyelectrolyte sheet. The sheet is sandwiched between a positive and a negative electrode to give a nonaq. battery.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水系電池、特に
リチウムイオン電池、を形成するに適したゲル状固体電
解質形成用の高分子マトリクス、該高分子マトリクスに
より形成したゲル状固体電解質ならびに該固体電解質を
含む非水系電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer matrix for forming a gel solid electrolyte suitable for forming a non-aqueous battery, particularly a lithium ion battery, a gel solid electrolyte formed by the polymer matrix, and a polymer electrolyte. The present invention relates to a non-aqueous battery including a solid electrolyte.

【0002】[0002]

【従来の技術】容積あるいは重量当りのエネルギー密度
が大で、電池容量も大きく、繰り返し充放電性の良い二
次電池として汎用されるリチウムイオン電池は、一般に
リチウム複合酸化物を正極活物質とし、導電性炭素質材
料を負極とし、これら両極間に微多孔性膜からなるセパ
レータを配置し、これら要素をリチウム塩を含む非水電
解液に浸漬した形態となっており、非水電解液を含むこ
れら要素は、必要個所に電気絶縁性のパッキングを配置
して、金属缶などの導電性密閉容器中に封入された構造
を有する。
2. Description of the Related Art Lithium ion batteries, which have a large energy density per volume or weight, a large battery capacity, and are widely used as secondary batteries having good repetitive charge / discharge characteristics, generally use a lithium composite oxide as a positive electrode active material. A conductive carbonaceous material is used as a negative electrode, a separator made of a microporous film is arranged between these two electrodes, and these elements are immersed in a non-aqueous electrolyte containing a lithium salt. These elements have a structure in which an electrically insulating packing is arranged at a necessary place and sealed in a conductive closed container such as a metal can.

【0003】このような現在汎用されているリチウムイ
オン電池は、特性的には優れるものの、電池内部におい
ては比較的束縛の少ない状態で存在する非水電解液の外
部への漏洩を確実に防止するための容器構造が複雑化
し、またそれでも落下あるいは異常内圧の上昇等の非常
時には、非水電解液の外部への漏洩が避け難いという問
題点がある。
[0003] Such lithium-ion batteries that are widely used at present have excellent characteristics, but reliably prevent the non-aqueous electrolyte existing inside the battery with relatively few constraints from leaking to the outside. However, there is a problem that the leakage of the non-aqueous electrolyte to the outside is unavoidable in an emergency such as a fall or an abnormal increase in the internal pressure.

【0004】これに対し、汎用リチウムイオン電池の透
液性のセパレータの位置に、内部により確実な形態で非
水電解液を含浸保持した高分子マトリクスからなるゲル
状の固体電解質を配置し、密閉容器の必要性をなくし、
あるいは軽減したタイプのリチウムイオン電池(ゲル状
リチウムイオン電池)も提案されている(米国特許第
5,296,318号明細書、特開平9−22727号
公報等)。
On the other hand, a gel solid electrolyte composed of a polymer matrix impregnated and held with a non-aqueous electrolyte in a more reliable form is disposed at the position of a liquid-permeable separator of a general-purpose lithium-ion battery, and is sealed. Eliminate the need for containers,
Alternatively, a reduced type of lithium ion battery (gelled lithium ion battery) has also been proposed (US Pat. No. 5,296,318, JP-A-9-22727, etc.).

【0005】上記ゲル状固体電解質形成用の高分子マト
リクスとしては、従来、フッ素系樹脂が多く用いられ、
特に結晶性と非晶性とのバランスの良いビニリデンフロ
ライドとヘキサフルオロプロピレンとの共重合体が特に
好ましい例として挙げられている。
[0005] As the polymer matrix for forming the gel-like solid electrolyte, fluorine-based resins have been widely used.
Particularly preferred is a copolymer of vinylidene fluoride and hexafluoropropylene having a good balance between crystallinity and amorphousness.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、汎用リ
チウムイオン電池に比べて、このようにして開発された
ゲル状固体電解質を用いるリチウムイオン電池は、未だ
充分な特性を発揮するものとはいい難い。その主要な要
因は、電解質の特性を直接的に支配するイオン伝導度に
関して、開発されたゲル状固体電解質が従来の非水電解
液に比べて小さいという点にある。
However, as compared with a general-purpose lithium ion battery, the lithium ion battery using the gel solid electrolyte developed in this way is still not sufficiently satisfactory. The main factor is that the developed gel-like solid electrolyte is smaller than the conventional non-aqueous electrolyte in terms of ionic conductivity which directly governs the properties of the electrolyte.

【0007】本発明の主要な目的は、イオン伝導度をは
じめとする諸特性の改善されたゲル状固体電解質を提供
すること、特にそれを高分子マトリクスの改良により達
成することにある。
A main object of the present invention is to provide a gelled solid electrolyte having improved properties such as ionic conductivity, and more particularly to achieve the same by improving a polymer matrix.

【0008】本発明の別の目的は、上記固体電解質を含
む特性の改善された非水系電池を提供することにある。
Another object of the present invention is to provide a non-aqueous battery containing the solid electrolyte and having improved characteristics.

【0009】[0009]

【課題を解決するための手段】本発明者らの研究によれ
ば、上述の目的の達成のためには、スルホン化したポリ
フッ化ビニリデン系樹脂をゲル状固体電解質の高分子マ
トリクスとして用いることが極めて有効であることが見
出された。
According to the study of the present inventors, in order to achieve the above object, a sulfonated polyvinylidene fluoride resin is used as a polymer matrix of a gel solid electrolyte. It has been found to be very effective.

【0010】すなわち、本発明は、その第1の観点にお
いて、スルホン化したポリフッ化ビニリデン系樹脂から
なる固体電解質形成用高分子マトリクスを提供するもの
である。導入されたスルホン酸基は、更にリチウム塩化
することも望ましい。
[0010] That is, the first aspect of the present invention provides a polymer matrix for forming a solid electrolyte, comprising a sulfonated polyvinylidene fluoride resin. It is desirable that the introduced sulfonic acid group is further subjected to lithium salification.

【0011】また本発明のゲル状固体電解質は、上記高
分子マトリクスと、該高分子マトリクスに含浸された非
水電解液とからなるものであり、更に本発明の非水系電
池は、シート状固体電解質を正極と負極との間に挾持し
てなり、該シート状固体電解質が上記ゲル状固体電解質
からなるものである。
The gel-like solid electrolyte of the present invention comprises the above-mentioned polymer matrix and a non-aqueous electrolyte impregnated in the polymer matrix. An electrolyte is sandwiched between a positive electrode and a negative electrode, and the sheet-like solid electrolyte is made of the above-mentioned gel-like solid electrolyte.

【0012】本発明のスルホン化されたポリフッ化ビニ
リデン系樹脂からなる高分子マトリクス中に非水電解液
を含浸させてなる高分子マトリクスは、従来のフッ素系
樹脂からなる高分子マトリクス中に非水電解液を含浸さ
せてなる高分子マトリクスに比べて著しく改善されたイ
オン伝導度を示す(後記実施例、比較例参照)。この理
由は、必ずしも明らかではないが、従来の高分子マトリ
クス材料であるフッ素系樹脂が、共有結合性の強い結合
のみから本質的に形成されていたのに対し、ポリフッ化
ビニリデン系樹脂中に導入されたスルホン酸基が大きな
イオン解離性を示し、リチウムイオン伝導におけるホッ
ピング障壁を低くするためと考えられる。
The polymer matrix of the present invention obtained by impregnating a non-aqueous electrolyte into a polymer matrix comprising a sulfonated polyvinylidene fluoride resin is prepared by adding a non-aqueous electrolyte to a conventional polymer matrix comprising a fluorine resin. It shows significantly improved ionic conductivity as compared to a polymer matrix impregnated with an electrolyte (see Examples and Comparative Examples described later). Although the reason for this is not necessarily clear, the fluoropolymer, which is a conventional polymer matrix material, was essentially formed only from strong covalent bonds, but was introduced into polyvinylidene fluoride resin. It is considered that the sulfonic acid group shows a large ion dissociation property and lowers a hopping barrier in lithium ion conduction.

【0013】[0013]

【発明の実施の形態】本発明の固体電解質形成用高分子
マトリクスは、フッ化ビニリデンの単独重合体またはフ
ッ化ビニリデンとフッ化ビニル、トリフルオロエチレ
ン、クロロトリフルオロエチレン、テトラフルオロエチ
レン、ヘキサフルオロプロピレン、フルオロアルキルビ
ニルエーテル等の含フッ素モノマーあるいはエチレン、
クロロエチレン、アクリル酸メチル、モノメチルマレー
ト等の非フッ素系モノマー等のフッ化ビニリデンと共重
合可能なモノマーとの共重合体(フッ化ビニリデン重合
単位が好ましくは30モル%以上)からなるポリフッ化
ビニリデン系樹脂をスルホン化することにより得られる
ものである。原料としてのポリフッ化ビニリデン系樹脂
は、高分子マトリクスとしての使用に鑑み、比較的高分
子量であることが好ましく、より具体的には、固有粘度
(本書においては、樹脂4gを1リットルのN,N−ジ
メチルホルムアミドに溶解させた溶液の30℃における
対数粘度、を意味する)が、0.5〜10.0、特に
0.8〜7.0の範囲内のものが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The polymer matrix for forming a solid electrolyte according to the present invention comprises a homopolymer of vinylidene fluoride or vinylidene fluoride and vinyl fluoride, trifluoroethylene, chlorotrifluoroethylene, tetrafluoroethylene, hexafluoroethylene. Propylene, a fluorine-containing monomer such as fluoroalkyl vinyl ether or ethylene,
Polyfluorinated polymer comprising a copolymer of vinylidene fluoride and a monomer copolymerizable with vinylidene fluoride such as non-fluorinated monomer such as chloroethylene, methyl acrylate and monomethylmalate (vinylidene fluoride polymerized unit is preferably 30 mol% or more) It is obtained by sulfonating a vinylidene resin. The polyvinylidene fluoride-based resin as a raw material is preferably relatively high in molecular weight in view of use as a polymer matrix, and more specifically, has an intrinsic viscosity (in the present specification, 4 g of resin is converted to 1 liter of N, Logarithmic viscosity at 30 ° C. of a solution dissolved in N-dimethylformamide) is in the range of 0.5 to 10.0, particularly preferably 0.8 to 7.0.

【0014】ポリフッ化ビニリデン系樹脂のスルホン化
は、溶媒中に溶解または分散させた状態で既知のスルホ
ン化剤と反応させることにより行うことができる。スル
ホン化剤としては、例えばクロロスルホン酸、発煙硫
酸、あるいは三酸化イオウ−トリエチルホスフェート錯
体などを用いることができる。
The sulfonation of the polyvinylidene fluoride resin can be carried out by reacting with a known sulfonating agent in a state of being dissolved or dispersed in a solvent. As the sulfonating agent, for example, chlorosulfonic acid, fuming sulfuric acid, a sulfur trioxide-triethyl phosphate complex, or the like can be used.

【0015】溶媒を用いる場合は、スルホン化剤と反応
しにくい溶媒であることが望ましい。このような溶媒と
して、例えばクロロホルム、ジクロロメタン、1,2−
ジクロロエタン、1,1,2,2−テトラクロロエタン
などの溶媒が適当である。
When a solvent is used, it is desirable that the solvent does not easily react with the sulfonating agent. Examples of such a solvent include chloroform, dichloromethane, 1,2-
Solvents such as dichloroethane, 1,1,2,2-tetrachloroethane are suitable.

【0016】溶媒中に分散させて、スルホン化する場
合、原料ポリフッ化ビニリデン系樹脂としては、好まし
くは乳化重合あるいは懸濁重合により形成した重量平均
粒径が0.5〜1000μm程度の粉体状であることが
好ましい。なお必要に応じて、膜状に成形後にスルホン
化処理を施すことも可能である。
When sulfonated by dispersing in a solvent, the starting polyvinylidene fluoride resin is preferably a powdery resin having a weight average particle diameter of about 0.5 to 1000 μm formed by emulsion polymerization or suspension polymerization. It is preferred that If necessary, sulfonation treatment may be performed after forming the film.

【0017】スルホン化は例えば10〜150℃の温度
で行うことができる。反応時間は、導入するスルホン酸
基の量に応じて適宜調整することができる。工業的には
数時間から10時間以内が好ましい。スルホン酸基導入
の確認はFTーIRにて行うことが可能である。すなわ
ちスルホン化されたポリフッ化ビニリデン系樹脂を、溶
解可能な溶媒(例えばN−メチル−2−ピロリドン)に
溶解したものをガラス板上にキャストし、130℃、2
時間真空乾燥して得られる膜のFT−IRを測定するこ
とによって、未変性のものと比べて1180cm-1吸収
の出現および976、795、764、615cm-1
収の消失で確認される。
The sulfonation can be carried out, for example, at a temperature of from 10 to 150 ° C. The reaction time can be appropriately adjusted according to the amount of the sulfonic acid group to be introduced. Industrially, it is preferably from several hours to less than 10 hours. Confirmation of sulfonic acid group introduction can be performed by FT-IR. That is, a solution obtained by dissolving a sulfonated polyvinylidene fluoride-based resin in a soluble solvent (for example, N-methyl-2-pyrrolidone) is cast on a glass plate, and heated at 130 ° C.
By measuring FT-IR of the film obtained by the time vacuum drying, it is confirmed in the disappearance of appearance and 976,795,764,615Cm -1 absorption of 1180 cm -1 absorption as compared with that of unmodified.

【0018】スルホン化されたポリフッ化ビニリデン系
樹脂は、イオン交換水でよく洗浄後、必要に応じて塩基
性リチウム塩を含む水溶液中でイオン交換させ、スルホ
ン酸リチウム塩として使用することも可能である。以
後、スルホン化物およびスルホン酸リチウム塩化物を、
包括的に変性ポリフッ化ビニリデン系樹脂と称する。
The sulfonated polyvinylidene fluoride resin can be used as a lithium sulfonate after washing well with ion-exchanged water and, if necessary, ion-exchanging in an aqueous solution containing a basic lithium salt. is there. Thereafter, the sulfonate and lithium sulfonate chloride are
It is generically referred to as a modified polyvinylidene fluoride resin.

【0019】前記変性ポリフッ化ビニリデン系樹脂は、
単独もしくは他の高分子マトリクス形成用樹脂との混合
物として使用することが可能である。特にスルホン酸基
の導入量が増えるに従い、電解液への溶解性が増大する
傾向にあるために全マトリクス樹脂の50重量%以下の
範囲で他の樹脂を混合したポリマーブレンドあるいはポ
リマーアロイを形成することも好ましい。このような他
の樹脂の例としては、未変性のポリフッ化ビニリデン系
樹脂に加えて、ポリエチレンオキサイド、ポリアクリロ
ニトリル、ポリメチルメタクリレートなどの従来から高
分子固体電解質として用いられている重合体やそのオリ
ゴマー等が挙げられる。
The modified polyvinylidene fluoride resin includes:
It can be used alone or as a mixture with another resin for forming a polymer matrix. In particular, as the amount of sulfonic acid groups introduced increases, the solubility in the electrolytic solution tends to increase, so that a polymer blend or polymer alloy in which other resins are mixed in the range of 50% by weight or less of the total matrix resin is formed. It is also preferred. Examples of such other resins include, in addition to unmodified polyvinylidene fluoride resin, polymers and oligomers thereof conventionally used as a solid polymer electrolyte such as polyethylene oxide, polyacrylonitrile, and polymethyl methacrylate. And the like.

【0020】上記高分子マトリクスとともに本発明の固
体電解質を形成する非水電解液としては、例えばリチウ
ム塩などの電解質を、非水系溶媒(有機溶媒)100重
量部に対し、5〜30重量部の割合で溶解したものを用
いることができる。
As the non-aqueous electrolyte which forms the solid electrolyte of the present invention together with the above-mentioned polymer matrix, for example, an electrolyte such as a lithium salt is used in an amount of 5 to 30 parts by weight based on 100 parts by weight of the non-aqueous solvent (organic solvent). What was melt | dissolved in the ratio can be used.

【0021】ここで電解質としては、LiPF6 、Li
AsF6 、LiClO4 、LiBF4 、LiCH3 SO
3 、LiCF3 SO3 、LiN(CF3 OSO2 2
LiCl、LiBr、LiC(CF3 OSO2 3 、L
iN(CF3 SO2 2 、LiC(CF3 SO2 3
がある。また、電解質の有機溶媒としてはプロピレンカ
ーボネート、エチレンカーボネート、1,2−ジメトキ
シエタン、1,2−ジエトキシエタン、ジメチルカーボ
ネート、メチルエチルカーボネート、γ−ブチロラクト
ン、プロピオン酸メチル、プロピオン酸エチル、および
これらの混合溶媒などが用いられるが、必ずしもこれら
に限定されるものではない。
The electrolyte used herein is LiPF 6 , LiPF
AsF 6 , LiClO 4 , LiBF 4 , LiCH 3 SO
3 , LiCF 3 SO 3 , LiN (CF 3 OSO 2 ) 2 ,
LiCl, LiBr, LiC (CF 3 OSO 2 ) 3 , L
There are iN (CF 3 SO 2 ) 2 and LiC (CF 3 SO 2 ) 3 . Further, as the organic solvent of the electrolyte, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, dimethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, methyl propionate, methyl propionate, and these However, the present invention is not limited to these.

【0022】本発明の固体電解質は、上記変性ポリフッ
化ビニリデン系樹脂(あるいは他の樹脂との混合物)
と、非水電解液とから、例えば以下のようにして形成さ
れる。まず、前記のように電解質を有機溶媒に溶解して
非水電解液を形成する。次に変性ポリフッ化ビニリデン
系樹脂を、有機溶媒に溶解した溶液を調製し、別記非水
電解液と均一に混合する。更に前記の揮発性の有機溶媒
を揮発させる工程を経てフィルム状の高分子固体電解質
を得る。このとき用いる揮発性の有機溶媒としては、比
較的低い温度で高い蒸気圧を有し揮発しやすく且つ変性
フッ化ビニリデン系重合体をよく溶解するものが好まし
く、テトラヒドロフラン、メチルテトラヒドロフラン、
アセトン、メチルエチルケトン、1,3−ジオキソラ
ン、シクロヘキサノンが用いられるが、必ずしもこれら
に限定されるものではない。
The solid electrolyte of the present invention comprises the above modified polyvinylidene fluoride resin (or a mixture with another resin).
And a non-aqueous electrolyte solution, for example, as follows. First, a non-aqueous electrolyte is formed by dissolving an electrolyte in an organic solvent as described above. Next, a solution in which the modified polyvinylidene fluoride-based resin is dissolved in an organic solvent is prepared, and uniformly mixed with a nonaqueous electrolyte separately described. Further, a film-like polymer solid electrolyte is obtained through the step of volatilizing the volatile organic solvent. As the volatile organic solvent used at this time, those which have a high vapor pressure at a relatively low temperature, are easily volatilized, and well dissolve the modified vinylidene fluoride polymer are preferable, and tetrahydrofuran, methyltetrahydrofuran,
Acetone, methyl ethyl ketone, 1,3-dioxolan, and cyclohexanone are used, but are not necessarily limited thereto.

【0023】また、電解質を溶解する有機溶媒としてよ
く用いられるプロピレンカーボネートなどはその有機溶
媒そのものが変性ポリフッ化ビニリデン系樹脂の溶媒と
して用いることが可能であるので、揮発性の有機溶媒を
用いることなく高分子固体電解質を構成することも可能
である。この場合は、予め電解質を有機溶媒で溶解した
溶液の中に電解質を加えてさらに溶解することも可能で
あるし、電解質と変性ポリフッ化ビニリデン系樹脂を同
時に有機溶媒で溶解することも可能である。電解質と重
合体とを溶解させた溶液を室温に冷やしてゲル化させフ
ィルム状の高分子固体電解質からなる膜構造物を得る。
Also, propylene carbonate, which is often used as an organic solvent for dissolving the electrolyte, can be used as a solvent for the modified polyvinylidene fluoride resin because the organic solvent itself can be used as a solvent for the modified polyvinylidene fluoride resin. It is also possible to constitute a polymer solid electrolyte. In this case, it is possible to further dissolve the electrolyte by adding the electrolyte to a solution in which the electrolyte is dissolved in an organic solvent in advance, or it is also possible to simultaneously dissolve the electrolyte and the modified polyvinylidene fluoride resin in the organic solvent. . The solution in which the electrolyte and the polymer are dissolved is cooled to room temperature and gelled to obtain a film structure of a polymer solid electrolyte.

【0024】また特開平9−22727号に記載されて
いるように、前記変性ポリフッ化ビニリデン系樹脂を、
前記のようなポリフッ化ビニリデン系樹脂に対する溶解
能を示す揮発性有機溶媒および必要に応じ更に該有機溶
媒と混和性を有するが該ポリフッ化ビニリデン系樹脂に
対して溶解性を有さない水、アルコール等の溶媒との混
合液を形成し、該混合液からこれら揮発性溶媒を蒸発さ
せて、ポリフッ化ビニリデン系樹脂の微細な開放気孔を
含むシート状マトリクスを一旦形成し、必要に応じて後
述のようにして架橋した後、これを別途形成した非水電
解液に浸漬して非水電解液を含浸させることにより形成
することもできる。
As described in JP-A-9-22727, the modified polyvinylidene fluoride resin is
A volatile organic solvent having a solubility in polyvinylidene fluoride-based resin as described above, and water or alcohol which is further miscible with the organic solvent as required, but has no solubility in the polyvinylidene fluoride-based resin. Form a mixture with a solvent such as, and by evaporating these volatile solvents from the mixture, once formed a sheet-like matrix containing fine open pores of polyvinylidene fluoride resin, if necessary, as described below After cross-linking as described above, it can also be formed by immersing this in a separately formed non-aqueous electrolyte to impregnate the non-aqueous electrolyte.

【0025】本発明の非水系電池の基本構造は、図1に
断面図を示すように、上記のようにして一般的にはシー
ト状に形成された固体電解質1を一対の正極2(2a:
集電基体、2b:正極合剤層)および負極3(3a:集
電基体、3b:負極合剤層)間に挾持された形態で配置
することにより得られる。
The basic structure of the nonaqueous battery according to the present invention is, as shown in a sectional view in FIG. 1, a solid electrolyte 1 generally formed in a sheet shape as described above and a pair of positive electrodes 2 (2a:
It is obtained by disposing it in a form sandwiched between the current collecting base 2b: the positive electrode mixture layer and the negative electrode 3 (3a: current collecting base, 3b: the negative electrode mixture layer).

【0026】リチウムイオン電池としての構成を例にと
った場合、シート状固体電解質1は、厚さ2〜1000
μm、特に10〜200μm程度であることが好まし
く、変性ポリフッ化ビニリデン系樹脂を主成分とするマ
トリクス樹脂100重量部に対して、10〜1000重
量部、特に100〜500重量部の割合で非水電解液を
含浸させたものが好ましく用いられる。
When the configuration as a lithium ion battery is taken as an example, the sheet-like solid electrolyte 1 has a thickness of 2 to 1000
μm, particularly preferably about 10 to 200 μm, and 10 to 1000 parts by weight, especially 100 to 500 parts by weight, of non-water based on 100 parts by weight of a matrix resin containing a modified polyvinylidene fluoride resin as a main component. Those impregnated with an electrolytic solution are preferably used.

【0027】スルホン酸基の導入量が増大すると、溶解
性の増大、従って電解液による膨潤性の増大、によるサ
イクル特性の劣化を避けるために、形成された固体電解
質1を架橋処理することが望ましい。架橋処理法として
はγ線や電子線などの放射線照射の方法が好適に用いら
れる。このときの放射線量としては、例えば10kGy
〜500kGy程度が好適である。また、この放射線架
橋の効果を増大するために、予め、マトリックス樹脂溶
液中に、上記変性ポリフッ化ビニリデン系樹脂(あるい
は必要に応じて混合される他の樹脂)に加えて、例えば
樹脂分の0.1〜30重量%に相当する多官能性を有す
る架橋剤を添加することも好適に用いられる。この架橋
剤としては、トリアリルシアヌレート、トリアリルイソ
シアヌレ−ト、トリアクリルフォルマール、ジアリルモ
ノプロパギルシアヌレート、1,3−ブチレングリコー
ルジメタクリレート、ポリエチレングリコールジメタク
リレートなどが好適に用いられるが、必ずしもこれらに
限定されるものではない。架橋処理法としては放射線照
射に留まらず、他の架橋方法、例えば熱架橋が可能なア
ミン基含有化合物、シアヌレート基含有化合物等を添加
して熱架橋させる熱架橋法等も好適に用いられる。
When the amount of sulfonic acid groups introduced increases, it is desirable to subject the formed solid electrolyte 1 to a cross-linking treatment in order to avoid deterioration in cycle characteristics due to an increase in solubility, and thus an increase in swelling due to the electrolytic solution. . As a crosslinking treatment method, a method of irradiating a radiation such as γ-ray or electron beam is preferably used. The radiation dose at this time is, for example, 10 kGy.
About 500 kGy is preferable. In order to increase the effect of the radiation crosslinking, in addition to the modified polyvinylidene fluoride-based resin (or other resin mixed as necessary) in the matrix resin solution, for example, a resin component is added. It is also preferable to add a crosslinking agent having a polyfunctionality corresponding to 0.1 to 30% by weight. As this cross-linking agent, triallyl cyanurate, triallyl isocyanurate, triacryl formal, diallyl monopropargyl cyanurate, 1,3-butylene glycol dimethacrylate, polyethylene glycol dimethacrylate and the like are preferably used. However, the present invention is not necessarily limited to these. As the cross-linking treatment method, not only irradiation but also other cross-linking methods, for example, a heat cross-linking method in which a thermally cross-linkable amine group-containing compound, a cyanurate group-containing compound, or the like is added to perform heat cross-linking, are suitably used.

【0028】正極2および負極3は、鉄、ステンレス
綱、銅、アルミニウム、ニッケル、チタン等の金属箔あ
るいは金属網等からなり、厚さが5〜100μm、小規
模の場合には例えば5〜20μmとなるような集電基体
2a、3aの例えば一面に、例えば厚さが10〜100
0μmの正極合剤層2b、負極合剤層3bを形成するこ
とにより得られる。
The positive electrode 2 and the negative electrode 3 are made of a metal foil or a metal net of iron, stainless steel, copper, aluminum, nickel, titanium or the like, and have a thickness of 5 to 100 μm. For example, on one surface of the current collecting bases 2a and 3a, for example, the thickness is 10 to 100.
It is obtained by forming a positive electrode mixture layer 2b and a negative electrode mixture layer 3b of 0 μm.

【0029】正極合剤層2bおよび負極合剤層3bは、
例えば0.1〜20重量部の上述に変性または未変性ポ
リフッ化ビニリデン系樹脂の有機溶媒中溶液に、粉末電
極材料(正極または負極活物質および必要に応じて加え
られる導電助剤、その他の助剤)100重量部を分散さ
せて得られた電極合剤スラリーの塗布、乾燥により得ら
れる。
The positive electrode mixture layer 2b and the negative electrode mixture layer 3b
For example, 0.1 to 20 parts by weight of the above-mentioned modified or unmodified polyvinylidene fluoride-based resin solution in an organic solvent is mixed with a powdered electrode material (a positive electrode or negative electrode active material and a conductive additive added as necessary, Agent) obtained by applying and drying an electrode mixture slurry obtained by dispersing 100 parts by weight.

【0030】リチウムイオン二次電池用の活物質として
は、正極の場合は、一般式LiMY2 (Mは、Co、N
i、Fe、Mn、Cr、V等の遷移金属の少なくとも一
種:YはO、S等のカルコゲン元素)で表わされる複合
金属カルコゲン化合物、特にLiNix Co1-x
2 (0≦x≦1)をはじめとする複合金属酸化物やLi
Mn2 4 などのスピネル構造をとる複合金属酸化物が
好ましい。負極の場合は、黒鉛、活性炭、あるいはフェ
ノール樹脂やピッチ等を焼成炭化したもの等の粉末状炭
素質材料に加えて、金属酸化物系のGeO、GeO2
SnO、SnO2 、PbO、PbO2 など、あるいはこ
れらの複合金属酸化物(例えば特開平7−249409
号公報に開示されるもの)等が用いられる。
As an active material for a lithium ion secondary battery, in the case of a positive electrode, a general formula LiMY 2 (M is Co, N
i, at least one of transition metals such as Fe, Mn, Cr, and V: Y is a chalcogen element such as O, S, etc.), and a composite metal chalcogen compound, particularly LiNi x Co 1-x O
2 (0 ≦ x ≦ 1) and other complex metal oxides and Li
A composite metal oxide having a spinel structure such as Mn 2 O 4 is preferable. In the case of the negative electrode, in addition to graphite, activated carbon, or a powdery carbonaceous material such as a phenol resin or a material obtained by firing and carbonizing pitch, metal oxide GeO, GeO 2 ,
SnO, SnO 2 , PbO, PbO 2 , or a composite metal oxide thereof (for example, see JP-A-7-249409)
And the like disclosed in Japanese Patent Application Laid-Open Publication No. H10-209, for example.

【0031】電池における導電助剤は、LiCoO2
の電子伝導性の小さい活物質を使用する場合に、電極合
剤層の導電性を向上する目的で添加するもので、カーボ
ンブラック、黒鉛微粉末あるいは繊維等の炭素質物質や
ニッケル、アルミニウム等の金属微粉末あるいは、繊維
が使用される。活物質として導電性の大きい物質を用い
る場合はこれらの導電材は使用する必要がない。
The conductive assistant in the battery is added for the purpose of improving the conductivity of the electrode mixture layer when using an active material having low electron conductivity such as LiCoO 2. Alternatively, carbonaceous materials such as fibers, fine metal powders such as nickel and aluminum, or fibers are used. When a substance having high conductivity is used as the active material, it is not necessary to use these conductive materials.

【0032】このようにして得られた図1に示す構造の
積層シート状電池体は、必要に応じて、捲回し、折返し
等により更に積層して、容積当りの電極面積を増大さ
せ、更には比較的簡単な容器に収容して取出電極を形成
する等の処理により、例えば、角形、円筒形、コイン
形、ペーパ形等の全体構造を有する非水系電池が形成さ
れる。
The thus obtained laminated sheet-shaped battery having the structure shown in FIG. 1 is further wound or folded as necessary to increase the electrode area per volume, if necessary. A non-aqueous battery having an overall structure such as, for example, a square shape, a cylindrical shape, a coin shape, or a paper shape is formed by processing such as forming an extraction electrode in a relatively simple container.

【0033】[0033]

【実施例】以下、実施例、比較例により本発明を更に具
体的に説明する。
The present invention will be described more specifically with reference to examples and comparative examples.

【0034】(実施例1)内容積1リットルのセパラブ
ルフラスコ中で、固有粘度3.1のフッ化ビニリデン重
合体100gをクロロホルム400mlに分散させ、撹
拌しながらクロロスルホン酸100mlを滴下した後、
クロロホルムの還流温度(約61℃)まで昇温し4時間
反応させた。次に反応液を水中に注ぎ、固形物を濾別
し、水洗・乾燥を経て、変性ポリフッ化ビニリデン樹脂
を得た。
Example 1 In a separable flask having an internal volume of 1 liter, 100 g of a vinylidene fluoride polymer having an intrinsic viscosity of 3.1 was dispersed in 400 ml of chloroform, and 100 ml of chlorosulfonic acid was added dropwise with stirring.
The mixture was heated to the reflux temperature of chloroform (about 61 ° C.) and reacted for 4 hours. Next, the reaction solution was poured into water, the solid substance was separated by filtration, washed with water and dried to obtain a modified polyvinylidene fluoride resin.

【0035】得られた変性フッ化ビニリデン系重合体1
5gをテトラヒドロフラン90gに溶解させ、第一の溶
液を調製した。次にLiPF6 2gをプロピレンカーボ
ネート10ml中に溶解させた第二の溶液を調製した。
この第一の溶液と第二の溶液を混合してよく撹拌した
後、ガラス板上にキャストし、テトラヒドロフランを揮
発させるために50℃に加温して1時間静置し、その後
真空乾燥した。なお、以上の作業は電解質が水分などに
より分解することがないように露点が−70℃以下の窒
素気流下で行った。得られた厚さ約150μmのゲル状
の固体電解質膜Aを秤量したところ使用したテトラヒド
ロフランに見合った重量減少が確認された。
The obtained modified vinylidene fluoride polymer 1
5 g was dissolved in 90 g of tetrahydrofuran to prepare a first solution. Next, a second solution was prepared by dissolving 2 g of LiPF 6 in 10 ml of propylene carbonate.
The first solution and the second solution were mixed and stirred well, then cast on a glass plate, heated to 50 ° C. for volatilization of tetrahydrofuran, allowed to stand for 1 hour, and then vacuum dried. The above operation was performed under a nitrogen stream having a dew point of -70 ° C. or less so that the electrolyte would not be decomposed by moisture or the like. When the obtained gel-like solid electrolyte membrane A having a thickness of about 150 μm was weighed, a weight reduction corresponding to the tetrahydrofuran used was confirmed.

【0036】(実施例2)実施例1で変性フッ化ビニリ
デン系重合体を溶解する際に架橋剤としてトリアリルイ
ソシアヌレート1.5gを添加した以外は、参考例1と
同様の方法により固体電解質膜を得た。これにガンマ線
50kGyを照射して架橋を行わせて固体電解質膜Bを
得た。
Example 2 A solid electrolyte was prepared in the same manner as in Example 1 except that 1.5 g of triallyl isocyanurate was added as a crosslinking agent when the modified vinylidene fluoride polymer was dissolved in Example 1. A membrane was obtained. This was irradiated with 50 kGy of gamma rays to perform crosslinking, whereby a solid electrolyte membrane B was obtained.

【0037】(比較例1)固有粘度1.1のフッ化ビニ
リデン重合体(呉羽化学工業製KF#1100)を実施
例1の変性フッ化ビニリデン系重合体に代えた以外は、
実施例1と同様の操作を行い、固体電解質膜Cを得た。
Comparative Example 1 A vinylidene fluoride polymer having an intrinsic viscosity of 1.1 (KF # 1100 manufactured by Kureha Chemical Industry) was replaced with the modified vinylidene fluoride polymer of Example 1.
The same operation as in Example 1 was performed to obtain a solid electrolyte membrane C.

【0038】(比較例2)ヘキサフルオロプロピレンモ
ノマーとフッ化ビニリデンモノマーを12:88で共重
合させて得られた重合体(呉羽化学工業製KF#230
0)を実施例1の変性フッ化ビニリデン系重合体に代え
た以外は、実施例1と同様の操作を行い、固体電解質膜
Dを得た。 [イオン伝導度の測定]露点が−70℃の窒素気流下で
実施例1、2および比較例1、2で得た厚さがそれぞれ
約150μmの固体電解質膜をポンチで打ち抜き円盤状
のフィルムを得た。これを二枚のSUS電極で挾み20
16型(直径20mm×厚み1.6mm)のコイン電池
の中に収納した後、大気中に取り出した。このコイン型
電池を用いていわゆるCole−Cole−Plot法
により固体電解質膜の抵抗値を求めた。即ち、コイン型
電池の両極に周波数0.5mHzから500kHzで出
力電圧5mVの交流電圧を印加したときの電流を測定し
て、その複素インピーダンスを求めた。次に各周波数で
得られた複素インピーダンスを複素平面上にプロット
し、実軸との交点を求め、交点の示す値を固体電解質膜
の抵抗値とした。この測定の原理はSUS電極がリチウ
ムイオンと合金を作らず電荷移動反応を行わないので、
複素インピーダンスの複素平面上の軌跡は実軸に垂直な
半無限直線となるからである。得られた抵抗値を測定し
た固体電解質の厚みと面積で補正することにより、比抵
抗値が得られ、その逆数をもってイオン伝導度とした。
この様にして室温25℃での各固体電解質膜のイオン伝
導度を求めたところ下表1の結果が得られた。
Comparative Example 2 A polymer obtained by copolymerizing a hexafluoropropylene monomer and a vinylidene fluoride monomer at a ratio of 12:88 (KF # 230 manufactured by Kureha Chemical Industry Co., Ltd.)
A solid electrolyte membrane D was obtained in the same manner as in Example 1, except that 0) was changed to the modified vinylidene fluoride polymer of Example 1. [Measurement of Ion Conductivity] The solid electrolyte membranes having a thickness of about 150 μm each obtained in Examples 1 and 2 and Comparative Examples 1 and 2 were punched out with a punch under a nitrogen stream having a dew point of -70 ° C. Obtained. This is sandwiched between two SUS electrodes and 20
After being stored in a 16-type (20 mm diameter × 1.6 mm thick) coin battery, it was taken out into the atmosphere. Using this coin-type battery, the resistance value of the solid electrolyte membrane was determined by the so-called Cole-Cole-Plot method. That is, a current was measured when an AC voltage having an output voltage of 5 mV was applied to both poles of the coin-type battery at a frequency of 0.5 to 500 kHz and the complex impedance was determined. Next, the complex impedance obtained at each frequency was plotted on a complex plane, the intersection with the real axis was determined, and the value indicated by the intersection was defined as the resistance value of the solid electrolyte membrane. The principle of this measurement is that the SUS electrode does not form an alloy with lithium ions and does not perform a charge transfer reaction,
This is because the locus of the complex impedance on the complex plane is a semi-infinite straight line perpendicular to the real axis. By correcting the obtained resistance value with the measured thickness and area of the solid electrolyte, a specific resistance value was obtained, and the reciprocal thereof was used as the ionic conductivity.
When the ionic conductivity of each solid electrolyte membrane at room temperature of 25 ° C. was determined in this way, the results shown in Table 1 below were obtained.

【0039】[0039]

【表1】 [Table 1]

【0040】(実施例3)正極にLiCoO2 100重
量部と固有粘度1.3のフッ化ビニリデン重合体3重量
部とからなる電極と、負極にピッチ系多孔質炭素材料
(呉羽化学工業製「カーボトロンP」)42重量部と上
記と同じフッ化ビニリデン重合体からなる電極を用い、
両極を実施例1の電解液(第二の溶液)で濡らして含浸
させたのち、実施例2で得た高分子固体電解質を挟んで
2016型コイン電池を作製した。室温で4.2Vの定
電位充電を行った後、その放電容量を測定したところ
4.5mAhであった。
Example 3 An electrode composed of 100 parts by weight of LiCoO 2 and 3 parts by weight of a vinylidene fluoride polymer having an intrinsic viscosity of 1.3 was used for the positive electrode, and a pitch-based porous carbon material (manufactured by Kureha Chemical Industry) was used for the negative electrode. Carbotron P ") using an electrode composed of 42 parts by weight and the same vinylidene fluoride polymer as above,
After both electrodes were wetted and impregnated with the electrolytic solution (second solution) of Example 1, a 2016 type coin battery was produced with the polymer solid electrolyte obtained in Example 2 interposed therebetween. After performing 4.2 V constant potential charging at room temperature, the discharge capacity was measured and found to be 4.5 mAh.

【0041】上記表1の結果は、本発明のスルホン化さ
れたポリフッ化ビニリデン系樹脂からなる高分子マトリ
クスを用いた固体電解質(実施例1および2)が、従来
のフッ素系樹脂(フッ化ビニリデン重合体(比較例1)
およびフッ化ビニリデン−ヘキサフルオロプロピレン共
重合体(比較例2)からなる高分子マトリクスを用いた
固体電解質に対し、著しく増大したイオン伝導度を与え
ることを示す。
The results shown in Table 1 above show that the solid electrolyte (Examples 1 and 2) using the polymer matrix composed of the sulfonated polyvinylidene fluoride resin of the present invention was replaced with the conventional fluorine resin (vinylidene fluoride). Polymer (Comparative Example 1)
It shows that a significantly increased ionic conductivity is given to a solid electrolyte using a polymer matrix composed of a vinylidene fluoride-hexafluoropropylene copolymer (Comparative Example 2).

【0042】[0042]

【発明の効果】上述したように、本発明によれば、スル
ホン化したポリフッ化ビニリデン系樹脂を高分子マトリ
クスとして用い非水電解液を含浸したゲル状固体電解質
を形成することにより、著しいイオン伝導度の増大が得
られ、良好な特性のゲル状リチウムイオン電池をはじめ
とする非水系電池の形成が可能となる。
As described above, according to the present invention, the use of a sulfonated polyvinylidene fluoride resin as a polymer matrix to form a gel-like solid electrolyte impregnated with a non-aqueous electrolyte leads to significant ion conduction. As a result, a non-aqueous battery such as a gel lithium ion battery having good characteristics can be formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の非水系電池の基本的積層構造
を示す厚さ方向断面図。
FIG. 1 is a sectional view in a thickness direction showing a basic laminated structure of a nonaqueous battery of the present invention.

【符号の説明】[Explanation of symbols]

1 シート状固体電解質 2 正極 2a 導電性基体 2b 正極合剤層 3a 導電性基体 3b 負極合剤層 DESCRIPTION OF SYMBOLS 1 Sheet-like solid electrolyte 2 Positive electrode 2a Conductive substrate 2b Positive electrode mixture layer 3a Conductive substrate 3b Negative electrode mixture layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 スルホン化したポリフッ化ビニリデン系
樹脂からなる固体電解質形成用高分子マトリクス。
1. A polymer matrix for forming a solid electrolyte, comprising a sulfonated polyvinylidene fluoride resin.
【請求項2】 架橋されている請求項1記載の高分子マ
トリクス。
2. The polymer matrix according to claim 1, which is crosslinked.
【請求項3】 請求項1または2の高分子マトリクス
と、該高分子マトリクスに含浸された非水電解液とから
なるゲル状固体電解質。
3. A gelled solid electrolyte comprising the polymer matrix according to claim 1 or 2 and a non-aqueous electrolyte impregnated in the polymer matrix.
【請求項4】 シート状固体電解質を正極と負極との間
に挾持してなり、該シート状固体電解質が請求項3の固
体電解質からなる非水系電池。
4. A non-aqueous battery comprising a sheet-like solid electrolyte sandwiched between a positive electrode and a negative electrode, wherein said sheet-like solid electrolyte comprises the solid electrolyte according to claim 3.
JP12286097A 1997-04-28 1997-04-28 Gel-like solid electrolyte and battery Expired - Fee Related JP3942232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12286097A JP3942232B2 (en) 1997-04-28 1997-04-28 Gel-like solid electrolyte and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12286097A JP3942232B2 (en) 1997-04-28 1997-04-28 Gel-like solid electrolyte and battery

Publications (2)

Publication Number Publication Date
JPH10298246A true JPH10298246A (en) 1998-11-10
JP3942232B2 JP3942232B2 (en) 2007-07-11

Family

ID=14846432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12286097A Expired - Fee Related JP3942232B2 (en) 1997-04-28 1997-04-28 Gel-like solid electrolyte and battery

Country Status (1)

Country Link
JP (1) JP3942232B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002058175A1 (en) * 2001-01-22 2002-07-25 Sony Corporation Electolyte-absorptive polymer and its production method, and cell using the polymer
CN113067030A (en) * 2021-03-04 2021-07-02 常州大学 Polyvinylidene fluoride-lithium hexafluoropropene sulfonate composite polymer solid electrolyte membrane for lithium battery and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002058175A1 (en) * 2001-01-22 2002-07-25 Sony Corporation Electolyte-absorptive polymer and its production method, and cell using the polymer
CN113067030A (en) * 2021-03-04 2021-07-02 常州大学 Polyvinylidene fluoride-lithium hexafluoropropene sulfonate composite polymer solid electrolyte membrane for lithium battery and preparation method thereof
CN113067030B (en) * 2021-03-04 2022-03-01 常州大学 Polyvinylidene fluoride-lithium hexafluoropropene sulfonate composite polymer solid electrolyte membrane for lithium battery and preparation method thereof

Also Published As

Publication number Publication date
JP3942232B2 (en) 2007-07-11

Similar Documents

Publication Publication Date Title
JP3784494B2 (en) Binder for battery, binder solution, electrode mixture, electrode structure and battery
JP6163188B2 (en) Electrode covered with a thin film obtained from an aqueous solution containing a water-soluble binder, its production method and use
KR100633713B1 (en) An electrolytic-solution-supporting polymer film, a polymer electrolyte secondary battery using the same and a process for producing the battery
US8574770B2 (en) Vinylidene fluoride copolymer-based polymer electrolyte for nonaqueous battery retaining large proportion of electrolytic solution
EP0793286A1 (en) Grafted polyvinylidene fluoride as a solid polymer electrolyte for eletrochemical cells, and electrochemical cell incorporating same
JP2006506775A5 (en)
WO2002061874A1 (en) A multi-layered, uv-cured polymer electrolyte and lithium secondary battery comprising the same
KR100371954B1 (en) Vinylidene fluoride copolymer for gel-form solid electrolyte formation, solid electrolyte, and battery
JP3854382B2 (en) Polymer matrix for forming gelled solid electrolyte, solid electrolyte and battery
WO2002061872A1 (en) A multi-layered polymer electrolyte and lithium secondary battery comprising the same
JP4163295B2 (en) Gel-like solid electrolyte battery
JPWO1999034372A6 (en) Polymer electrolyte and non-aqueous battery using the same
JP4781547B2 (en) Polymer gel electrolyte and battery
JP4402192B2 (en) Composition for forming polymer electrolyte
JP3942232B2 (en) Gel-like solid electrolyte and battery
JP2001319690A (en) Polymer-electrolyte battery and its manufacturing method
EP1199764A1 (en) Polymer electrolyte
JPH103897A (en) Separator for battery
WO1994019840A1 (en) Cell and method of its manufacture
JP3667005B2 (en) Gel-based electrolyte and method for producing electrochemical element
JP3514994B2 (en) Sheet electrolyte, lithium secondary battery, and method for producing sheet electrolyte
JP4438141B2 (en) Polymer lithium secondary battery
JPH113717A (en) Hybrid electrolyte and battery
JPH11214039A (en) N0naqueous secondary battery
JPH10294130A (en) Hybrid electrolyte for non-aqueous battery and non-aqueous battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070403

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees