JPH10297719A - Conveyance vehicle allocation method - Google Patents

Conveyance vehicle allocation method

Info

Publication number
JPH10297719A
JPH10297719A JP9111399A JP11139997A JPH10297719A JP H10297719 A JPH10297719 A JP H10297719A JP 9111399 A JP9111399 A JP 9111399A JP 11139997 A JP11139997 A JP 11139997A JP H10297719 A JPH10297719 A JP H10297719A
Authority
JP
Japan
Prior art keywords
transport
command
transfer
conveyance
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9111399A
Other languages
Japanese (ja)
Inventor
Akira Fujii
井 章 藤
Katsumi Suehiro
廣 克 己 末
Minoru Harada
田 稔 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9111399A priority Critical patent/JPH10297719A/en
Publication of JPH10297719A publication Critical patent/JPH10297719A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Multi-Process Working Machines And Systems (AREA)
  • Time Recorders, Dirve Recorders, Access Control (AREA)
  • Warehouses Or Storage Devices (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the efficiency of respective work following of a plurality of conveyance vehicles on the whole by allocating the conveyance vehicle which can reach a cargo receiving point in a conveyance command the earliest for the execution of a conveyance command, from among the conveyance commands which are within an upper limit number set in each block and have the high priority in order. SOLUTION: In 'scheduling', an AGV calculator executes 'pretreatment' 39 first. Next, in 'allocation processing' 40, each conveyance command of conveyance command table to be allocated is assorted into blocks to which From skid belongs in each conveyance command (S1). An upper limit value of the conveyance command for block is set (S2). The conveyance commands are arranged and changed according to the priority order, only the conveyance command equivalent to command upper limit number for each block is left in each block table, from among the conveyance commands having the higher priority, and the other conveyance commands are erased (S3). AGV is allocated to each conveyance command of conveyance command table to be allocated (S4). The AGV calculator executes 'allocation outputting' (S5).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、次々に発生する搬
送命令に搬送車を割り当てる搬送スケジュ−リング方法
に関し、特に、これに限定する意図ではないが、工場,
倉庫あるいはヤ−ド又はフィ−ルドに、複数台の車両を
常備し、次々に発生する物体搬送命令に各車両を割付け
る物流スケジュ−リング方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transport scheduling method for allocating a transport vehicle to a transport command that is generated one after another.
The present invention relates to a logistics scheduling method in which a plurality of vehicles are always provided in a warehouse, yard, or field, and each vehicle is assigned to an object transfer command generated one after another.

【0002】[0002]

【従来の技術】例えば鋼板(鋼コイル)製造において
は、原板の冷間圧延,焼鈍,亜鉛メッキ,コイル梱包等
々、各種の加工が行なわれ、各設備間あるいは設備/ヤ
−ド間で鋼コイルの受渡しが行なわれる。各設備および
ヤ−ドには、搬送されて来る鋼コイルを受ける入側スキ
ッドと、搬出する鋼コイルを受ける出側スキッドがあ
り、入側スキッドに降された鋼コイルは入側クレ−ンで
設備内の処理ラインに送り込まれ、処理を終えた鋼コイ
ルは出側クレ−ンで処理ラインから出側スキッドに排出
される。設備間の鋼コイル搬送は車両で行なわれる。あ
る設備で処理を終えた鋼コイルは、その設備の出側スキ
ッドから車両に移され、他の設備に搬送されてその入側
スキッドに降ろされる。設備,ヤ−ド間での鋼コイルの
搬送ル−ト(発送元と受け側の組合せ数)は比較的に少
いが、各設備が次々に鋼コイルを排出し、設備およびヤ
−ドの全体として見ると、鋼コイル搬送要求が各所から
次々に発生する。これに対処するために複数台の搬送車
両があり、鋼コイル搬送要求のそれぞれに順次に搬送車
両が割り当てられる。
2. Description of the Related Art In the production of steel sheets (steel coils), for example, various processes such as cold rolling, annealing, galvanizing, coil packing, etc. of an original sheet are performed. Is delivered. Each equipment and yard has an entrance skid for receiving a steel coil to be conveyed and an exit skid for receiving a steel coil to be carried out. The steel coil lowered to the entrance skid is an entrance crane. The steel coil which has been fed into the processing line in the equipment and has been processed is discharged from the processing line to the output skid by the output crane. The transfer of the steel coil between the equipment is performed by a vehicle. A steel coil that has been processed in one facility is transferred from the exit skid of the facility to the vehicle, transported to another facility, and lowered to the entrance skid. Although the conveyance route of the steel coil between the equipment and the yard (the number of combinations of the sending source and the receiving side) is relatively small, each equipment discharges the steel coil one after another, and As a whole, steel coil conveyance requests are generated one after another from various places. To cope with this, there are a plurality of transport vehicles, and the transport vehicles are sequentially assigned to each of the steel coil transport requests.

【0003】鋼コイル搬送要求が発生してから搬送を完
了するまでの所要時間を短くすることが、各設備の稼働
効率を高くする観点から必要である。このためには搬送
車両数を多くすればよいが、これは維持コストの上昇を
招く。また搬送ル−トが複数であるので、少数の搬送車
両で、どの搬送ル−トであってもタイミング良く、次々
に発生する鋼コイル搬送要求に対応していくかが問題と
なっている(最適化問題)。
[0003] It is necessary to shorten the time required from completion of a steel coil transfer request to completion of the transfer from the viewpoint of increasing the operation efficiency of each facility. For this purpose, the number of transport vehicles may be increased, but this increases the maintenance cost. In addition, since there are a plurality of transport routes, there is a problem in that a small number of transport vehicles can respond to the successively required steel coil transport requests in any transport route with good timing ( Optimization problem).

【0004】特開平7−219920号公報には、複数
台のトラックで複数箇所の配送先に荷物を混載配送する
場合の最適化問題を、遺伝的アルゴリズムを用いて解く
一手法を提示している。これは、工場間あるいは企業間
の荷物搬送を行うトラック運送などのように、あらかじ
め1日分といったようなある程度の搬送ロットが与えら
れた場合に、それを効率よく搬送するための配車計画を
バッチ処理的に行なうものと思われる。
Japanese Unexamined Patent Publication No. 7-219920 proposes a method for solving the optimization problem in the case of carrying a package by using a plurality of trucks at a plurality of delivery destinations using a genetic algorithm. . This means that when a certain number of transport lots, such as one day's worth of transport lots, are given in advance, such as truck transport for transporting luggage between factories or companies, a dispatch plan for efficiently transporting them is batched. It seems to be a process.

【0005】遺伝的アルゴリズムを用いる従来のスケジ
ュ−リングには、遺伝的アルゴニズムによって生成する
複搬の搬送命令リスト(仮スケジュ−ル)のそれぞれの
適否を評価するための評価関数を、複数のペナルティの
和とし、それぞれに重みを持たせたものとし、各搬送命
令リストの各ペナルティの値はテーブルを参照して決定
して、評価関数値が最小値の搬送命令リストを選択する
方法(以下テーブルルックアップ評価法と称す)、なら
びに、遺伝的アルゴリズムで生成する搬送命令リストす
べてをシミュレーションし、シミュレーション結果から
評価関数値を算出し、評価関数値に基づいて最適な搬送
命令リストを選択する方法(以下シミュレーション評価
法と称す)がある。
Conventional scheduling using a genetic algorithm includes an evaluation function for evaluating the propriety of each of a plurality of transport instruction lists (temporary schedules) generated by a genetic algorithm, and a plurality of penalties. And a method of selecting a transport instruction list having a minimum evaluation function value by determining each penalty value of each transport instruction list with reference to a table (hereinafter referred to as a table). A method of simulating all transfer instruction lists generated by a genetic algorithm, calculating an evaluation function value from a simulation result, and selecting an optimal transfer instruction list based on the evaluation function value (referred to as a lookup evaluation method). This method is hereinafter referred to as a simulation evaluation method).

【0006】[0006]

【発明が解決しようとする課題】特開平7−21992
0号公報に開示のスケジュ−リング方法は、解算出(ス
ケジュ−ル決定)時間の短縮を主たる目的として、決定
論的な手法によって解の一部を決定することによって、
遺伝的アルゴリズムで処理する解の数(仮スケジュ−ル
の数)を少くするので、最適解の精度が低く、解算出時
間の短縮と最適解の精度とが相反する。この問題は、一
台のトラックに複数箇所の配送先への荷物を混載するた
め、トラック対荷物の組合せ数が膨大になり、したがっ
て、適応評価値算出に膨大な演算を要することが主因と
思われる。
Problems to be Solved by the Invention
The scheduling method disclosed in Japanese Patent Application Publication No. 0-200,000 is to determine a part of the solution by a deterministic method with the main purpose of shortening the solution calculation (schedule determination) time.
Since the number of solutions (the number of provisional schedules) to be processed by the genetic algorithm is reduced, the precision of the optimal solution is low, and the shortening of the solution calculation time and the precision of the optimal solution conflict. One of the main reasons for this problem is that the number of truck-to-baggage combinations is enormous because a single truck is loaded with luggage to a plurality of delivery destinations. It is.

【0007】ところが、上述の鋼コイルの搬送のように
単一送り先に搬送する場合(これを一般化して表現する
と、各搬送車が各一単位の作業を処理する場合)には、
作業に対する搬送車の割付の最適解算出時間の短縮と最
適解精度の向上を同時に満して、ニ−ズ(作業要求)に
即応するのが好ましい。
[0007] However, in the case of transporting to a single destination as in the above-described transport of steel coils (when this is generalized and expressed, each transport vehicle processes one unit of work),
It is preferable to simultaneously respond to needs (work requests) by simultaneously shortening the time required to calculate the optimum solution for allocating the carriers to the work and improving the accuracy of the optimum solution.

【0008】テーブルルックアップ評価法では、計算時
間は速いが複数の搬送車間の作業追行上の干渉(例えば
自動搬送台車運行時の複数の台車間の走行ル−ト上の干
渉)が考慮されていないため、実際にその搬送命令リス
トにしたがって自動搬送台車を運行した場合、必ずしも
最適な運行が実現するとは限らない。
In the table look-up evaluation method, the calculation time is fast, but interference in work following between a plurality of carriers (for example, interference on a traveling route between a plurality of vehicles during operation of an automatic carrier vehicle) is considered. Therefore, when the automatic transport trolley is actually operated according to the transport instruction list, the optimal operation is not always realized.

【0009】シミュレーション評価法では、自動搬送台
車運行時の干渉が考慮されているが、遺伝的アルゴリズ
ムが組み替えを行うすべての搬送命令リストに対するシ
ミュレーションを行うため、最適な搬送命令リストを作
成するために膨大な時間を要する。このため、実時間で
の作業に対しての搬送リストを作成することが困難であ
る。
In the simulation evaluation method, the interference during the operation of the automatic transport trolley is taken into consideration. However, the simulation is performed for all the transport instruction lists for which the genetic algorithm is rearranged. It takes an enormous amount of time. For this reason, it is difficult to create a transport list for work in real time.

【0010】また、テーブルルックアップ評価法および
シミュレーション評価法とも重み付けを行う際には、あ
る特定条件のもとでシミュレーションを行うため、作業
状況に応じた最適な搬送命令リストが得られるとは限ら
ない。
In addition, when weighting is applied to both the table look-up evaluation method and the simulation evaluation method, a simulation is performed under certain specific conditions, so that an optimum transfer instruction list according to the work situation cannot always be obtained. Absent.

【0011】本発明は、複数の搬送車それぞれの作業追
行の、全体的な効率を改善することを第1の目的とし、
作業要求に対する即応性を向上することを第2の目的と
し、作業要求に対する搬送車の割付処理時間を短縮する
ことを第3の目的とし、工場内物流スケジュ−ルをリア
ルタイムで行なうことを第4の目的とする。
A first object of the present invention is to improve the overall efficiency of the work following of each of a plurality of transport vehicles.
A second object is to improve responsiveness to work requests, a third object is to reduce the time required for allocating vehicles to work requests, and a fourth object is to perform a real-time distribution schedule in a factory. The purpose of.

【0012】[0012]

【課題を解決するための手段】[Means for Solving the Problems]

(1)複数点に荷受け又は荷降ろし点が分散する、複数
ブロックに区分された物体搬送エリア上の荷受け点,荷
降ろし点および優先度を含む搬送命令を、該命令中の荷
受け点が属するブロックに区分し同一区分内では優先度
順とし、各ブロックに設定された上限数以内の、高い優
先度順の搬送命令から、該搬送命令の中の荷受け点に最
も早く到達できる搬送車を該搬送命令の実行に割付け
る、搬送車割付方法。
(1) A transfer command including an unloading point, an unloading point, and a priority on an object transfer area divided into a plurality of blocks in which the unloading points are dispersed at a plurality of points, and the block to which the unloading point in the instruction belongs , And within the same section, the order of priority is set. Within the upper limit set for each block, from the highest priority order of transport instructions, the transport vehicle that can reach the receiving point in the transport instruction the earliest can be transferred. A method of allocating vehicles to be assigned to the execution of instructions.

【0013】これによれば、物体搬送エリアを複数ブロ
ックに区分し各ブロック内で搬送車に割付けて同時に実
行できる搬送命令数に上限を設けたので、各ブロックに
上限数以上の搬送車が集中することによる搬送車の干渉
が少くなり、搬送効率が向上する。優先度が高い命令か
ら順に搬送車を割付けるので、プロセスの減産や停止の
確率が減少する。
According to this, the object transfer area is divided into a plurality of blocks, and the upper limit is set on the number of transfer commands that can be simultaneously executed by being assigned to the transfer vehicles in each block. This reduces the interference of the transport vehicle and improves the transport efficiency. Since the vehicles are assigned in order from the one with the highest priority, the probability of the production reduction or stop of the process is reduced.

【0014】[0014]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(2)複数点に荷受け又は荷降ろし点が分散する、複数
ブロックに区分された物体搬送エリア上の荷受け点,荷
降ろし点および優先度を含む、搬送車割付が未定の搬送
命令を、該命令中の荷受け点が属するブロックに区分し
同一区分内では優先度順とし、〔各ブロックに設定され
た上限数−現在該ブロック内で実行中の命令数〕以内
の、高い優先度順の搬送命令から、該搬送命令の中の荷
受け点に最も早く到達できる搬送車を該搬送命令の実行
に割付ける、搬送車割付方法。
(2) A transfer command whose transfer vehicle assignment is undecided, including a receiving point, a discharge point, and a priority on the object transfer area divided into a plurality of blocks, in which the receiving and unloading points are dispersed at a plurality of points. The transport instructions are sorted into blocks to which the receiving point belongs, and are ranked in order of priority within the same section, and transport instructions in order of priority within [upper limit set for each block-number of instructions currently being executed in the block]. And allocating a carrier that can reach the receiving point in the transfer command earliest to the execution of the transfer command.

【0015】各ブロックに、そのブロックを荷受け点と
する現在実行中の命令数を上限値から差し引いた命令数
を宛てるので、搬送車の干渉確率が更に低減し搬送効率
が更に向上する。
Since the number of instructions obtained by subtracting the number of instructions currently being executed with the block as the receiving point from the upper limit value is sent to each block, the probability of interference of the transport vehicle is further reduced, and the transport efficiency is further improved.

【0016】(3)搬送命令の割付けは現在空車の搬送
車のみとし、先行して割付された命令を実行中の搬送車
への割付は保留する。
(3) The assignment of the transfer command is limited to the currently empty carrier, and the assignment to the carrier that is executing the previously assigned command is suspended.

【0017】これによれば、搬送作業の遂行を完了して
いる搬送車のみの割付けであるので、割付処理が簡易に
なり、また割付後の運行状況の変化に対するその後の誤
差が少く、割付処理速度が高くかつ割付信頼性が高い。
[0017] According to this, since the assignment is performed only for the transport vehicles that have completed the carrying operation, the assignment process is simplified, and the subsequent error with respect to the change in the operation status after the assignment is small. High speed and high allocation reliability.

【0018】本発明の他の目的および特徴は、図面を参
照した以下の実施例の説明より明らかになろう。
Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.

【0019】[0019]

【実施例】図1に、鋼コイルをバッテリ搭載の電動搬送
車で搬送する搬送路VRの分布を示す。図1において、
A〜Gは、鋼コイルを受けるスキッド又は充電器がある
場所であり、これらの場所の1つから他の1つに搬送車
が走行するための搬送路VRが張りめぐらされている。
なおスキッドは、略門型であって、上面が鋼コイルを安
定して受けるように谷型に傾斜している。その谷底部
は、下方からコイル受けブロックを上昇させてスキッド
上の鋼コイルを下支持して上方に持ち上げ、そしてコイ
ルの内穴軸の延びる方向に移動しうるように、スリット
状に開いている。つまり、スキッドは、逆レ型の支持脚
2つを、それらの上斜辺を相対向させて両者間に空隙を
置いて相対向させた形状である。搬送路VRには、搬送
車の退避場がある。
FIG. 1 shows a distribution of a conveyance path VR for conveying a steel coil by an electric vehicle equipped with a battery. In FIG.
A to G are locations where there are skids or chargers for receiving the steel coils, and a transport path VR for running the transport vehicle from one of these locations to the other is routed.
The skid is substantially gate-shaped, and its upper surface is inclined in a valley shape so as to stably receive the steel coil. The bottom of the valley is opened in a slit shape so that the coil receiving block is raised from below to support the steel coil on the skid below and lift it upward, and can move in the direction in which the inner hole axis of the coil extends. . In other words, the skid has a shape in which two inverted-type support legs are opposed to each other with their upper oblique sides facing each other and a gap between them. There is a shelter for the transport vehicles on the transport path VR.

【0020】搬送路VRには、磁気誘導型無人車両走行
システムの、誘導磁石が敷設されており、また、搬送路
VR,退避場,スキッド位置および充電器位置の路側端
には、搬送車と近距離リモ−ト通信を行なうための赤外
線通信装置を装備したポストP1〜P12が立ってい
る。各ポストの赤外線通信装置は、搬送車が放射する赤
外線を検知すると、搬送車No.デ−タを摘出し、これ
を後述するAGV計算機3(図3)に接続された通信装
置に転送し、そしてAGV計算機3が与える制御信号お
よびデ−タを搬送車に送信し、搬送車が与えるデ−タを
AGV計算機3に転送する。
An induction magnet of a magnetic induction type unmanned vehicle traveling system is laid on the transport path VR, and a transport vehicle is provided at a road side end of the transport path VR, a shelter, a skid position and a charger position. Posts P1 to P12 equipped with an infrared communication device for performing short-distance remote communication stand. When the infrared communication device of each post detects the infrared rays emitted from the carrier, the carrier communication No. The data is extracted, transferred to a communication device connected to an AGV computer 3 (FIG. 3) described later, and a control signal and data provided by the AGV computer 3 are transmitted to the carrier. The given data is transferred to the AGV computer 3.

【0021】搬送車AGVi(i=1〜n:図3)は、
バッテリを搭載した無人電気自動車であり、ポストを介
してAGV計算機3から受信した制御信号およびデ−タ
に従って、スキッドから鋼コイルを受取りそして保持
し、また、保持している鋼コイルをスキッドに渡すとい
う、荷受けおよび荷渡しを行なう鋼コイル移送機構と、
ポストを介してAGV計算機3から受信した行先情報
(道順情報)に従って、路上の誘導磁石を探索しその通
過を計数して、誘導磁石の配列に沿って行先に達する無
人運転システムが搭載されている。同一仕様の搬送車が
n台、上述の搬送路VRおよび引込み路にあり、鋼コイ
ルをスキッドから受け又はスキッドに渡す作業中の搬送
車は、引込み路に入ってスキッド直下にあり、搬送指示
待ちの待機車は、搬送路VR上の退避場又は充電場(充
電器がある場所)にある。各スキッド,退避場および充
電場には、そこにある搬送車と通信するためのポストが
存在する。
The carrier AGVi (i = 1 to n: FIG. 3)
An unmanned electric vehicle equipped with a battery, receives and holds a steel coil from a skid according to a control signal and data received from an AGV computer 3 via a post, and passes the held steel coil to the skid. A steel coil transfer mechanism for receiving and unloading,
According to the destination information (route information) received from the AGV computer 3 via the post, an unmanned operation system is installed which searches for an induction magnet on the road, counts the passage thereof, and reaches the destination along the arrangement of the induction magnets. . There are n transport vehicles of the same specification in the above-mentioned transport route VR and the drop-in route, and the transporting vehicle that is receiving the steel coil from the skid or passing it to the skid is in the drop-in route, directly under the skid, and is waiting for a transport instruction. Is in a shelter or a charging area (where a charger is located) on the transport path VR. Each skid, shelter and charging station has a post for communicating with a carrier there.

【0022】スキッドがある位置には、図2に示すよう
に、自動又はオペレ−タ操作のクレ−ンCra,Crbがあ
る。ある設備(前工程)から鋼コイル出し(生産実績)
がビジコン(原材料,製品管理コンピュ−タ)1に報知さ
れると、ビジコン1は、該鋼コイルの、出側スキッドへ
の排出すなわち配替がビジコン1からクレ−ンCraに指
示される。クレ−ンCraはこの指示に応答して、自動又
はオペレ−タ操作で、鋼コイルをスキッド(From)に移
す。この移送が完了すると、クレ−ンCraからビジコン
1に配替完了が報知され、ビジコン1がこれに応答し
て、その鋼コイルの、送り先設備(次工程)への搬送を、
AGV計算機3に指示する(搬送命令の発生)。AGV
計算機3は、詳細は後述する物流スケジュ−リングによ
り、該鋼コイルを搬送すべき搬送車AGViを決定し
て、上述のポストを介して該搬送車AGViに、スキッ
ド(From)への道順情報とそこへの移動を指示する。
At the position where the skid is located, there are automatic or operator operated crane Cra, Crb as shown in FIG. Take out steel coil from a certain facility (pre-process) (production results)
Is notified to the vidicon (raw material, product management computer) 1 and the vidicon 1 instructs the crane Cra from the vidicon 1 to discharge or replace the steel coil to the exit skid. In response to this instruction, the crane Cra transfers the steel coil to the skid (From) automatically or by operating an operator. When the transfer is completed, the crane Cra notifies the vidicon 1 of the completion of the transfer, and in response, the vidicon 1 responds to the transfer of the steel coil to the destination equipment (the next step).
Instructs the AGV computer 3 (generation of a transport command). AGV
The computer 3 determines the transport vehicle AGVi to transport the steel coil by the distribution scheduling described later in detail, and sends the route information to the skid (From) to the transport vehicle AGVi via the post described above. Instruct them to move there.

【0023】これに応答して搬送車AGViは待機位置
からスキッド(From)へ移動する(図2の要求走行(回
送))。そしてそこのポストを介してAGV計算機3と
通信して該スキッド(From)の鋼コイルを受取り、かつ行
先の道順情報とそこへの移動を指示されて、行先のスキ
ッド(To)に行く(図2の積載走行)。そして該スキッ
ド(To)のポストを介してAGV計算機3と通信して搬送
した鋼コイルを該スキッド(To)に降ろし、かつ行先(退
避場)の道順情報とそこへの移動を指示されて、そこへ
移動し、そこに到着するとそこのポストがAGV計算機
3に、該AGViの到着を報知する。
In response, the carrier AGVi moves from the standby position to the skid (From) (request traveling (forwarding) in FIG. 2). Then, it communicates with the AGV computer 3 via the post, receives the steel coil of the skid (From), and is instructed to travel to the destination with the destination information and goes to the skid (To) of the destination (FIG. 2). Then, the steel coil communicated with the AGV computer 3 via the post of the skid (To) is dropped onto the skid (To), and the destination (evacuation place) is instructed and the travel information is instructed. After moving there and arriving there, the post notifies the AGV computer 3 of the arrival of the AGVi.

【0024】一方、AGV計算機3は、搬送車AGVi
からスキッド(To)への鋼コイルの降ろしが終了し、搬送
車AGViが該スキッド(To)から離れると、ビジコン1
に搬送完了を報知する。ビジコン1は、クレ−ンCrbに
配替を指示し、該クレ−ンCrbの自動又はオペレ−タ操
作でスキッド(To)から行先設備(次工程)の入側コイル
置場に鋼コイルが降ろされる。これが完了するとクレ−
ンCrbがビジコン1に配替完了を報知する。
On the other hand, the AGV computer 3 is provided with a carrier AGVi.
When the lowering of the steel coil from the skid (To) to the skid (To) is completed and the AGVi moves away from the skid (To), the vidicon 1
To notify the completion of conveyance. The vidicon 1 instructs the crane Crb to perform a rearrangement, and the steel coil is dropped from the skid (To) to the entry side coil storage of the destination facility (next step) by automatic or operator operation of the crane Crb. . When this is completed,
Crb notifies the vidicon 1 of the completion of the transfer.

【0025】図3に、AGV計算機3の機能構成を示
す。この計算機3には、搬送命令管理(プログラム)3
1,運行制御(プログラム)32,前処理(プログラ
ム)39、および、割付処理(プログラム)40が組込
まれている。
FIG. 3 shows a functional configuration of the AGV computer 3. The computer 3 has a transfer command management (program) 3
1, an operation control (program) 32, a pre-processing (program) 39, and an allocation processing (program) 40 are incorporated.

【0026】搬送命令管理31はビジコン1から与えら
れる搬送命令(図2)を、搬送命令テ−ブル33(メ
モリの1領域)に書込み、そして「前処理」を指示す
る。「前処理」39はこれに応じて前処理を終了すると
「割付処理」を指示する。
The transfer command management 31 writes a transfer command (FIG. 2) given from the vidicon 1 into a transfer command table 33 (one area of the memory), and instructs "pre-processing". The “pre-processing” 39 instructs “assignment processing” when the pre-processing ends in response.

【0027】搬送命令は、命令No.,搬送始点(Fro
m:搬送元スキッドNo.),搬送終点(To:搬送先スキッ
ドNo.)および搬送完了予定(指令)時刻を含む。搬
送命令管理31は、搬送命令テ−ブル33の、すでに書
込んでいる搬送命令(割付が未定の搬送命令)の末尾の
次に、最新に受信した搬送命令を命令No.を与えて、
書込む。
The transfer command is the command No. , Transfer start point (Fro
m: Source skid No. ), Transfer end point (To: transfer destination skid No.), and transfer completion schedule (command) time. The transfer command management 31 stores the latest received transfer command in the transfer command table 33 next to the end of the already written transfer command (the transfer command whose assignment is undetermined). And give
Write.

【0028】運行制御32は、割付処理40からの割付
情報ならびにポストを介して搬送車AGV1〜AGVn
から受信した情報に基づいて、作業状態テ−ブル34上
の、各搬送車宛ての、現状態(空車/搬送命令実行中/
充電中/故障),現在実行中の搬送命令,現在位置およ
び現充電量(バッテリ残充電量)を更新する。また、割
付けられた搬送命令の作業を搬送車が完了し該搬送車が
待機(空車:次の作業待ち)になると、搬送命令管理3
1が、搬送命令テ−ブル33上の、該搬送車が実行した
搬送命令を消去し、「前処理」39に処理を指示する。
なお、搬送命令管理31は、上述のように空車が発生し
たときに加えて、新しい搬送命令が発生したときならび
に定周期(30sec)で、「前処理」39に処理を指示す
る。
The operation control 32 controls the allocation information from the allocation processing 40 and the vehicles AGV1 to AGVn via the posts.
Based on the information received from, the current state (vacant vehicle / transfer command execution /
(Currently charged / failed), the currently executed transfer command, the current position, and the current charge amount (remaining battery charge amount) are updated. When the work of the assigned transfer command is completed and the transfer vehicle is on standby (vacant: waiting for the next work), the transfer command management 3
1 deletes the transfer command executed by the transfer vehicle on the transfer command table 33, and instructs the "pre-processing" 39 to perform processing.
The transfer command management 31 instructs the “pre-processing” 39 to execute processing when a new transfer command is generated and at a fixed period (30 seconds) in addition to when an empty vehicle is generated as described above.

【0029】図4に、図3に示すビジコン1およびAG
V計算機3の機能と、搬送車の作業の制御項目との関連
を示す。
FIG. 4 shows the vidicon 1 and AG shown in FIG.
The relationship between the functions of the V calculator 3 and the control items for the work of the transport vehicle will be described.

【0030】次に、図3および図5,図6を参照して、
搬送命令管理31が「前処理」を指示したときの、「前
処理」39および「割付処理」40の機能を説明する。
図5に示す「スケジュ−リング」は、空車が発生したと
き,新しい搬送命令が発生したときならびに定周期(例
えば30sec)で、搬送命令管理31が「前処理」を指示
したときに、AGV計算機3(の「前処理」39および
「割付処理」40)が行なうものである。
Next, referring to FIG. 3, FIG. 5, and FIG.
The functions of “pre-processing” 39 and “assignment processing” 40 when the transfer command management 31 instructs “pre-processing” will be described.
The “scheduling” shown in FIG. 5 is performed when an empty vehicle is generated, when a new transport command is issued, and when the transport command management 31 instructs “pre-processing” at a fixed period (for example, 30 seconds). 3 ("pre-processing" 39 and "allocation processing" 40).

【0031】図5を参照すると、「スケジュ−リング」
では、AGV計算機3はまず、「前処理」39を実行す
る。ここでは、各AGVの作業状態デ−タを作業状態テ
−ブル34から読出して、物理的に作業が不可能なAG
V(例えば故障車)を除き、作業が可能なAGVを設定
する。すなわち、作業状態テ−ブル34に登録されてい
るAGVの、物理的に作業が可能なAGVを摘出して、
それに処理対象可を意味する情報(フラグ)を与えて、
該AGVの作業状態情報と共に、作業状態予測テ−ブル
38(T3)に書込む。作業状態予測テ−ブル38(T
3)のデ−タ項目を表1に示す。
Referring to FIG. 5, "scheduling"
Then, the AGV computer 3 first executes the "pre-processing" 39. Here, the work state data of each AGV is read from the work state table 34, and the AGV which cannot physically work is read out.
Except for V (for example, a failed car), an AGV that can be operated is set. That is, of the AGVs registered in the work state table 34, the AGVs that can physically work are extracted,
Give it information (flag) that means that it can be processed,
The information is written in the work state prediction table 38 (T3) together with the work state information of the AGV. Work state prediction table 38 (T
Table 1 shows the data items of 3).

【0032】[0032]

【表1】 [Table 1]

【0033】次に搬送命令テ−ブル33の未割付の搬送
命令のそれぞれを読み、搬送命令中の荷受け(以下Fr
omと称す)スキッドと荷降ろし(以下Toと称す)ス
キッドから、パラメ−タテ−ブル35(P1)の、優先
度テ−ブル(表2)を参照して、該Fromスキッドか
らToスキッドへのコイル搬送の優先度デ−タを読出し
て、これを搬送命令に付加して割付対象搬送命令テ−ブ
ル37(T2)に書込む。
Next, each of the unassigned transfer commands in the transfer command table 33 is read, and the receiving device (hereinafter referred to as Fr) in the transfer command is read.
om) skid and unloading (hereinafter referred to as To) skid from the From skid to the To skid by referring to the priority table (Table 2) of parameter table 35 (P1). The priority data of the coil transfer is read out, added to the transfer instruction, and written in the transfer target transfer instruction table 37 (T2).

【0034】[0034]

【表2】 [Table 2]

【0035】以上の処理により、優先度付の未割付搬送
命令が割付対象搬送命令テ−ブル37(T2)にあり、
作業状態予測テ−ブル38(T3)には、物理的に作業
が可能なAGVの作業状態デ−タがあることになる。こ
の状態で「割付処理」40が起動される。
As a result of the above processing, the unassigned transfer instruction with priority is present in the transfer target transfer instruction table 37 (T2).
The work state prediction table 38 (T3) has work state data of an AGV that can be physically worked. In this state, the “assignment process” 40 is started.

【0036】AGV計算機3は「割付処理」40でま
ず、割付対象搬送命令テ−ブル37(T2)の各搬送命
令を、その中のFromスキッドが属するブロックに仕
分けする(ステップ1)。パラメ−タテ−ブル35(P
1)には、Fromスキッドが属するブロック情報を格
納したブロック情報テ−ブル(表3)があり、このテ−
ブルを参照してブロック情報を読出して、該ブロック情
報に対応するブロック別搬送命令テ−ブル36(T1)
の各ブロックテ−ブル(表4)に、搬送命令を書込む。
In the "assignment process" 40, the AGV computer 3 first sorts each transfer command of the transfer command table 37 (T2) to be allocated to the block to which the From skid belongs (step 1). Parameter table 35 (P
1) has a block information table (Table 3) that stores block information to which the From skid belongs.
The block information is read out with reference to the table, and the transport instruction table for each block 36 (T1) corresponding to the block information is read.
Is written in each block table (Table 4).

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【表4】 [Table 4]

【0039】次に、ブロック宛てに搬送命令の上限値を
設定する(ステップ2)。パラメ−タテ−ブル35(P
1)には、ブロック宛ての命令上限数を格納した上限数
テ−ブル(表5)がある。ここでは、各ブロックの命令
上限数を上限数テ−ブル(表5)から読出し、各ブロッ
ク内の現作業中の搬送車の数(現在該ブロック内で実行
中の命令数)を作業状態予測テ−ブル38(T3)の各
搬送車の作業状態デ−タより摘出し、各ブロック宛ての
命令上限数を、〔上限数テ−ブル上の上限値−現在該ブ
ロック内で実行中の命令数〕に定める。この「現在該ブ
ロック内で実行中の命令数=該ブロック内で現作業中の
搬送車の数である。
Next, the upper limit value of the transport command is set for the block (step 2). Parameter table 35 (P
1) has an upper limit number table (Table 5) storing the upper limit number of instructions addressed to a block. Here, the upper limit number of instructions in each block is read from the upper limit number table (Table 5), and the number of currently working carriers in each block (the number of instructions currently being executed in the block) is estimated. The upper limit number of commands addressed to each block is extracted from the work state data of each carrier of the table 38 (T3), and the upper limit value of the upper limit number table—the command currently being executed in the block. Number]. This “the number of instructions currently being executed in the block = the number of carriers currently working in the block.

【0040】[0040]

【表5】 [Table 5]

【0041】次に、ブロック別搬送命令テ−ブル36
(T1)の各ブロックテ−ブル(表4)の搬送命令を優
先度順に並べ替えて、各ブロック宛ての命令上限数分の
搬送命令のみを高位優先度のものから各ブロックテ−ブ
ル(表4)に残し、他は消去する(ステップ3)。そし
て各ブロックテ−ブル(表4)に残した搬送命令の全体
を、高位優先度の順に再集成して、割付対象搬送命令テ
−ブル37(T2)に書込む。つまり、割付対象搬送命
令テ−ブル37(T2)より、各ブロックテ−ブル(表
4)に残らなかった搬送命令を消去し、残した搬送命令
を優先度順に再配列する。 次に、割付対象搬送命令テ
−ブル37(T2)の各搬送命令にAGVを割付ける
(ステップ4)。この内容を図6に示す。
Next, the transport command table 36 for each block is shown.
The transport instructions of each block table (Table 4) of (T1) are rearranged in order of priority, and only the transport instructions of the upper limit number of instructions addressed to each block are sorted from those of higher priority to those of each block table (Table 4). 4), and others are deleted (step 3). Then, the entirety of the transport instructions left in each block table (Table 4) are re-assembled in the order of higher priority, and written in the transport instruction table 37 (T2) to be allocated. In other words, the transfer commands not remaining in each block table (Table 4) are deleted from the transfer target transfer command table 37 (T2), and the remaining transfer commands are rearranged in order of priority. Next, an AGV is assigned to each transfer command of the transfer command table 37 (T2) to be allocated (step 4). This is shown in FIG.

【0042】図6を参照すると、ここでは、まず割付対
象搬送命令テ−ブル37(T2)の最高優先度の搬送命
令jを選択し(ステップ41)、待ち時間レジスタTf
に最大時間(図1に示す搬送エリアでは有り得ない大き
な値)を書込み(ステップ42)、作業状態予測テ−ブ
ル38(T3)の1つの搬送車AGViを仮割付けする
(ステップ43)。
Referring to FIG. 6, here, the transfer instruction j having the highest priority of the transfer instruction table 37 (T2) to be allocated is selected (step 41), and the waiting time register Tf is selected.
Then, the maximum time (a large value that is impossible in the transport area shown in FIG. 1) is written (step 42), and one transport vehicle AGVi of the work state prediction table 38 (T3) is provisionally allocated (step 43).

【0043】そして、この搬送車AGViが現在空車で
あると、現位置から搬送命令jのFromステッドに回
送(要求走行)するに要する時間Tfiを算出し、現
在作業中(過去に割付けられた搬送命令を実行中)であ
ると、 Tfi=残り作業時間+回送時間 を算出する(ステップ44)。「残り作業時間」は、現
時点から現在作業を完了するまでの時間であり、「回送
時間」は、現在作業を完了する位置から搬送命令jのF
romスキッドに回送するに要する時間である。
If the transport vehicle AGVi is currently empty, the time Tfi required to forward (request traveling) from the current position to the Fromstead of the transport instruction j is calculated, and the current work (the transport allocated in the past) is calculated. If the instruction is being executed), Tfi = remaining work time + forwarding time is calculated (step 44). The “remaining work time” is the time from the current time to the completion of the current work, and the “forwarding time” is the F of the transfer instruction j from the position where the current work is completed.
This is the time required for forwarding to the rom skid.

【0044】パラメ−タテ−ブル35(P1)には、各
ポストから他のポストに移動するに要する時間を格納し
た所要時間テ−ブル(表6)があり、また、スキッド位
置(A〜G)とそこにあるポストNo.との対応テ−ブ
ル(表7)がある。作業状態予測テ−ブル38(T3)
の作業状態情報には、搬送車の現在位置を示すポストN
o.があるので、ステップ44では、搬送車AGViが
空車であれば、搬送命令jのFromスキッドを対応テ
−ブル(表7)を用いてFromスキッドのポストN
o.に変換し、搬送車AGViの現在位置(ポストN
o.)からFromスキッドのポストNo.に移動する
に要する時間を、所要時間テ−ブル(表6)を参照し読
み出して、これを回送所要時間Tfiとする。
The parameter table 35 (P1) has a required time table (Table 6) storing the time required to move from each post to another post, and the skid positions (A to G). ) And the post No. there. (Table 7). Work state prediction table 38 (T3)
The work status information includes a post N indicating the current position of the carrier.
o. Therefore, in step 44, if the carrier AGVi is empty, the From skid of the transport instruction j is converted into the post N of the From skid using the corresponding table (Table 7).
o. Into the current position (post N
o. ) To From Skid post no. Is read out with reference to the required time table (Table 6), and this is set as the required transport time Tfi.

【0045】[0045]

【表6】 [Table 6]

【0046】[0046]

【表7】 [Table 7]

【0047】搬送車AGViが現在作業中であって、
積載走行中であるときには、現在実行中の搬送命令の中
のToスキッドのポストNo.を対応テ−ブル(表7)
から読出し、現在位置からそこに移動する所要時間を所
要時間テ−ブル(表6)から読出してこれに荷降ろし時
間(固定値)を加算した和を残り作業時間とし、該To
スキッドのポストNo.から搬送命令jのFromスキ
ッドのポストNo.に移動する所要時間を所要時間テ−
ブル(表6)から読出してこれを回送時間とする。
If the carrier AGVi is currently working,
When the vehicle is being loaded and loaded, the post No. of the To skid in the currently executed transport command. Table (Table 7)
And the time required to move there from the current position is read from the required time table (Table 6), and the sum of the read time and the unloading time (fixed value) is taken as the remaining work time.
Skid post no. From the post No. of the From skid of the transfer instruction j from the The time required to move to
This is read out from the table (Table 6) and is used as the forwarding time.

【0048】搬送車AGViが現在作業中であって、F
romスキッドに向けて要求走行中であったときに
は、現在位置からFromスキッドに移動する所要時
間,Fromスキッドで鋼コイルを受ける荷受け時間
(固定値),FromスキッドからToスキッドへの
積載走行時間および荷降ろし時間を加算した和を残り作
業時間とする。
If the carrier AGVi is currently working and F
When the vehicle is traveling for demand from the rom skid, the time required to move from the current position to the From skid, the load receiving time for receiving the steel coil by the From skid (fixed value), the loading travel time from the From skid to the To skid, and the load The sum of the unloading times is defined as the remaining work time.

【0049】次に、上述のように算出した時間Tfi
が、待ち時間レジスタTfの時間Tfより小さいかをチ
ェックして(ステップ45)、Tfi<Tfであると、
待ち時間レジスタTfのデ−タをTfiに更新して(ス
テップ46)、AGViを搬送命令jに仮割付けして割
付対象搬送命令テ−ブル37(T2)に書込む(ステッ
プ47)。
Next, the time Tfi calculated as described above is used.
Is less than the time Tf of the waiting time register Tf (step 45), and if Tfi <Tf,
The data in the waiting time register Tf is updated to Tfi (step 46), and AGVi is provisionally assigned to the transfer instruction j and written into the transfer instruction transfer instruction table 37 (T2) (step 47).

【0050】そして、搬送命令jに対する割付け候補搬
送車グル−プから搬送車iを除去する(ステップ4
8)。そして割付け候補搬送車グル−プの中に、まだ上
述のような処理を実行していない搬送車があるかをチェ
ックして(49)、あると、それを対象車として上述の
ステップ43〜49の処理を行ない、これを割付け候補
搬送車グル−プの中に上述のような処理を実行していな
い搬送車が無くなるまで繰返す。この繰返しにより、T
fiが最短の搬送車が搬送命令jに仮割付けされ、最短
でなかった搬送車は仮割付を解除され、最短であったT
fiがレジスタTfに格納されており、最短の搬送車の
みが割付対象搬送命令テ−ブル37(T2)上の搬送命
令jに仮割付けされていることになる。
Then, the carrier i is removed from the candidate carrier group assigned to the carrier instruction j (step 4).
8). Then, it is checked whether or not any of the allocation candidate transport vehicle groups has not yet executed the above-described processing (49). If there is, the target vehicle is set as the target vehicle and the above-mentioned steps 43 to 49 are performed. The above process is repeated until there are no carriers in which the above-mentioned processes have not been performed in the allocation candidate carrier group. By this repetition, T
The transport vehicle with the shortest fi is provisionally assigned to the transport instruction j, and the transport vehicle that is not the shortest is released from the temporary assignment and the shortest T
fi is stored in the register Tf, and only the shortest transport vehicle is provisionally assigned to the transport command j on the allocation target transport command table 37 (T2).

【0051】次に、このように仮割付けした搬送車を除
く残りの搬送車を割付対象に設定して(ステップ5
0)、割付対象搬送車グル−プの中に現在空車のものが
あるかをチェックする(51)。
Next, the remaining vehicles except the temporarily allocated vehicles are set as objects to be allocated (step 5).
0), it is checked whether or not there is a currently empty vehicle in the allocation target carrier group (51).

【0052】空車のものがあると、割付対象搬送命令テ
−ブル37(T2)の次の順位の優先度の搬送命令を選
択する(ステップ41)。そしてこの選択した搬送命令
に関して、上述の割付処理(42〜50)を実行する。
なお、ここでは、先順位の優先度の搬送命令に仮割付け
された搬送車は、処理対象から除外されているので、今
回の「スケジュ−リング」の割付処理ですでに仮割付け
が定まった搬送車には、後順位の優先度の搬送命令は割
付けられない。表8に、割付対象搬送命令テ−ブル37
(T2)のデ−タ項目を示す。
If there is an empty vehicle, a transport instruction having the next highest priority is selected from the transport instruction table 37 (T2) to be allocated (step 41). Then, the above-described allocation processing (42 to 50) is executed for the selected transport instruction.
Note that, in this case, since the transport vehicles temporarily assigned to the transport command of the priority of the first priority are excluded from the processing target, the transport vehicles for which the temporary allocation has already been determined in the current “scheduling” allocation process. Cars are not assigned a rear priority transport command. Table 8 shows the assignment target transport instruction table 37.
The data item of (T2) is shown.

【0053】[0053]

【表8】 [Table 8]

【0054】このようにして、空車のすべてのAGVが
いずれかの搬送命令に仮割付けされるか、あるいは、割
付対象搬送命令テ−ブル37(T2)上の搬送命令のす
べてに仮割付けが完了するまで、ステップ41〜51の
処理が繰返えされる。
In this way, all the AGVs of the empty vehicle are provisionally assigned to any of the transfer commands, or the provisional assignment is completed for all the transfer commands on the transfer command table 37 (T2) to be allocated. Until the process, steps 41 to 51 are repeated.

【0055】そして、空車のすべてのAGVがいずれか
の搬送命令に仮割付けされるか、あるいは、割付対象搬
送命令テ−ブル37(T2)上の搬送命令のすべてに仮
割付けが完了すると、AGV計算機3は、図5の「割付
出力」(ステップ5)を実行する。
When all the AGVs in the empty vehicle are provisionally assigned to any of the transfer commands, or when the provisional assignment to all the transfer commands on the transfer command table 37 (T2) to be allocated is completed, the AGV is completed. The computer 3 executes “assignment output” (step 5) in FIG.

【0056】この「割付出力」(ステップ5)では、割
付対象搬送命令テ−ブル37(T2)の仮割付けが済ん
だ搬送命令を摘出し、仮割付けされた搬送車が現在空車
であるかをチェックして、空車であると、空車の搬送車
のみに、仮割付けされた搬送命令を確定割付けとして与
え、この搬送命令は搬送命令テ−ブル33から削除して
作業状態テ−ブル34の該確定割付けとした搬送車宛て
に書込む。すなわち、現在作業中(今回の「スケジュ−
リング」の処理に入る前に割付けられている搬送命令を
実行中)の搬送車への割付けは保留する。このように保
留しても、該搬送車が現在実行中の作業を完了して空車
となったときに、上述のように、その時点に未割付の搬
送命令が割付けられることになる。
In the "assignment output" (step 5), the transfer instruction to which the transfer instruction table 37 (T2) to be assigned has been temporarily assigned is extracted, and it is determined whether the provisionally assigned transfer vehicle is currently empty. If it is checked that the vehicle is empty, the provisionally assigned transfer command is given as a definite assignment only to the empty transfer vehicle, and this transfer command is deleted from the transfer command table 33 and is replaced with the work status table 34. Write it to the finalized carrier. In other words, currently working (this time “Schedule-
The assignment to the carrier (which is executing the assigned transfer command before the processing of the "ring") is suspended. Even if the transportation is suspended in this way, when the transport vehicle completes the work currently being executed and becomes empty, an unallocated transport instruction is allocated at that time as described above.

【0057】以上に説明したように、物体搬送エリア
(図1)を複数ブロック(No.1〜3)に区分し各ブ
ロック内で搬送車AGV1〜nに割付けて同時に実行で
きる搬送命令数に上限を設けたので、各ブロックに上限
数以上の搬送車が集中することによる搬送車の干渉が少
くなり、搬送効率が向上する。優先度が高い搬送命令か
ら順に搬送車を割付けるので、プロセスの減産や停止の
確率が減少する。
As described above, the object transfer area (FIG. 1) is divided into a plurality of blocks (Nos. 1 to 3), and within each block, the number of transfer commands that can be simultaneously executed by being assigned to the transfer vehicles AGV1 to AGV is limited. Is provided, the interference of the transport vehicles due to the concentration of the transport vehicles of the upper limit or more in each block is reduced, and the transport efficiency is improved. Since the transfer vehicles are assigned in order from the transfer command having the highest priority, the probability of the production reduction or stop of the process is reduced.

【0058】また、〔各ブロックに設定された上限数−
現在該ブロック内で実行中の命令数〕以内の、高い優先
度順の搬送命令から、該搬送命令の中のFromスキッ
ドに最も早く到達できる搬送車を該搬送命令の実行に割
付けることにより、搬送車の干渉確率が更に低減し搬送
効率が更に向上する。
Also, [upper limit set for each block−
The number of instructions currently being executed in the block], by allocating, to the execution of the transportation instruction, a transportation vehicle that can reach the From skid among the transportation instructions in the highest priority order from the transportation instruction in the highest priority order. The probability of interference of the transport vehicle is further reduced, and the transport efficiency is further improved.

【0059】更には、割付けは現在空車の搬送車のみと
し、先行して割付された命令を実行中の搬送車への割付
は保留するので、割付処理が簡易であり、また割付後の
運行状況の変化に対するその後の誤差が少く、割付処理
速度が高くかつ割付信頼性が高い。
Furthermore, since the assignment is made only to the currently empty carrier, and the assignment to the carrier that is executing the previously assigned command is suspended, the assignment process is simplified, and the operation status after the assignment is simplified. Is small, the allocation processing speed is high, and the allocation reliability is high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明を一態様で実施する鋼コイル加工工場
の設備配置の概要を示す、平面図相当のブロック図であ
る。
FIG. 1 is a block diagram corresponding to a plan view, showing an outline of a facility arrangement of a steel coil processing plant for implementing the present invention in one embodiment.

【図2】 図1に示す各設備の鋼コイル出側,出側にあ
るクレ−ンCra,Crbを示す、側面図対応のブロック図
である。
FIG. 2 is a block diagram corresponding to a side view, showing crane Cra and Crb on a steel coil outlet side and an outlet side of each equipment shown in FIG. 1;

【図3】 図2に示すビジコン1からの搬送命令に応答
して、図2に示す搬送車AGViで代表される複数台の
搬送車AGV1〜AGVnのそれぞれの運行を制御し管
理するAGV計算機3の機能構成を示すブロック図であ
る。
3 is an AGV computer 3 that controls and manages the operation of each of a plurality of transport vehicles AGV1 to AGVn represented by the transport vehicle AGVi shown in FIG. 2 in response to a transport command from the vidicon 1 shown in FIG. FIG. 2 is a block diagram showing a functional configuration of the first embodiment.

【図4】 図3に示すビジコン1およびAGV計算機3
の機能と搬送車の作業との関連を示すブロック図であ
る。
4 is a vidicon 1 and an AGV calculator 3 shown in FIG.
FIG. 4 is a block diagram showing the relationship between the function of the vehicle and the work of the carrier.

【図5】 図3に示すAGV計算機3の「スケジュ−リ
ング」機能の内容を示すフロ−チャ−トである。
FIG. 5 is a flowchart showing the contents of a "scheduling" function of the AGV computer 3 shown in FIG.

【図6】 図3に示すAGV計算機3の、図5に示す
「搬送命令へのAGVの割付け」4の内容を示すフロ−
チャ−トである。
FIG. 6 is a flowchart showing the contents of “assignment of AGV to transport command” 4 shown in FIG. 5 of the AGV computer 3 shown in FIG.
It is a chart.

【符号の説明】[Explanation of symbols]

A〜G:スキッド P1〜P1
2:ポスト VR:搬送路
A to G: skids P1 to P1
2: Post VR: Conveyance path

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // G06F 17/60 G06F 15/21 L ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI // G06F 17/60 G06F 15/21 L

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】複数点に荷受け又は荷降ろし点が分散す
る、複数ブロックに区分された物体搬送エリア上の荷受
け点,荷降ろし点および優先度を含む搬送命令を、該命
令中の荷受け点が属するブロックに区分し同一区分内で
は優先度順とし、各ブロックに設定された上限数以内
の、高い優先度順の搬送命令から、該搬送命令の中の荷
受け点に最も早く到達できる搬送車を該搬送命令の実行
に割付ける、搬送車割付方法。
A transfer command including an unloading point, an unloading point, and a priority on an object transfer area divided into a plurality of blocks, in which the unloading points are dispersed at a plurality of points, is received. The transport vehicles that can reach the receiving point in the transport instruction from the high-priority transport instructions within the upper limit set for each block are sorted according to the priority order within the same division. A transfer vehicle allocating method for allocating to execution of the transfer command.
【請求項2】複数点に荷受け又は荷降ろし点が分散す
る、複数ブロックに区分された物体搬送エリア上の荷受
け点,荷降ろし点および優先度を含む、搬送車割付が未
定の搬送命令を、該命令中の荷受け点が属するブロック
に区分し同一区分内では優先度順とし、〔各ブロックに
設定された上限数−現在該ブロック内で実行中の命令
数〕以内の、高い優先度順の搬送命令から、該搬送命令
の中の荷受け点に最も早く到達できる搬送車を該搬送命
令の実行に割付ける、搬送車割付方法。
2. A transfer command whose delivery vehicle assignment is undecided, including a receiving point, an unloading point, and a priority on an object transfer area divided into a plurality of blocks, in which a plurality of receiving and unloading points are dispersed, The instruction is divided into blocks to which the receiving point belongs, and within the same division, the order is prioritized. Within the [upper limit set for each block-the number of instructions currently executed in the block], the order of priority is high. A transport vehicle allocating method, wherein a transport vehicle that can reach a receiving point among the transport commands at the earliest is assigned to the execution of the transport command.
【請求項3】搬送命令の割付けは現在空車の搬送車のみ
とし、先行して割付された命令を実行中の搬送車への割
付は保留する、請求項1又は請求項2記載の搬送車割付
方法。
3. The transportation vehicle allocation according to claim 1, wherein the allocation of the transportation instruction is limited to the currently empty transportation vehicle, and the allocation to the transportation vehicle currently executing the previously allocated instruction is suspended. Method.
JP9111399A 1997-04-28 1997-04-28 Conveyance vehicle allocation method Withdrawn JPH10297719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9111399A JPH10297719A (en) 1997-04-28 1997-04-28 Conveyance vehicle allocation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9111399A JPH10297719A (en) 1997-04-28 1997-04-28 Conveyance vehicle allocation method

Publications (1)

Publication Number Publication Date
JPH10297719A true JPH10297719A (en) 1998-11-10

Family

ID=14560175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9111399A Withdrawn JPH10297719A (en) 1997-04-28 1997-04-28 Conveyance vehicle allocation method

Country Status (1)

Country Link
JP (1) JPH10297719A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005324278A (en) * 2004-05-13 2005-11-24 Honda Motor Co Ltd Robot control device
CN107521894A (en) * 2017-08-28 2017-12-29 智久(厦门)机器人科技有限公司 Method is allocated in a kind of logistics based on AGV
WO2018092222A1 (en) 2016-11-16 2018-05-24 株式会社牧野フライス製作所 Machine tool system
JP6381087B1 (en) * 2017-07-28 2018-08-29 三菱ロジスネクスト株式会社 Cargo handling information distribution system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005324278A (en) * 2004-05-13 2005-11-24 Honda Motor Co Ltd Robot control device
WO2018092222A1 (en) 2016-11-16 2018-05-24 株式会社牧野フライス製作所 Machine tool system
US11273530B2 (en) 2016-11-16 2022-03-15 Makino Milling Machine Co., Ltd. Machine tool system
JP6381087B1 (en) * 2017-07-28 2018-08-29 三菱ロジスネクスト株式会社 Cargo handling information distribution system
CN107521894A (en) * 2017-08-28 2017-12-29 智久(厦门)机器人科技有限公司 Method is allocated in a kind of logistics based on AGV

Similar Documents

Publication Publication Date Title
CN111344726B (en) Method and system for dynamic truck routing between automated facilities
US20120226624A1 (en) Optimization system of smart logistics network
CN109976320A (en) A kind of more AGV paths planning methods based on time window on-line amending
JPH0719177B2 (en) Operation management method for mobile
CN111882215B (en) Personalized customization flexible job shop scheduling method containing AGV
CN110689231B (en) Intelligent management method and system for metro underground space
CN110728472B (en) Logistics management method for real-time configuration by using storage space and distribution route
JP3212028B2 (en) Automatic guided vehicle system
JPH10254847A (en) Scheduling device
JPH10143566A (en) Scheduling device
Hu et al. A dynamic integrated scheduling method based on hierarchical planning for heterogeneous AGV fleets in warehouses
JPH10297719A (en) Conveyance vehicle allocation method
CN115630895A (en) Cargo management method and device, carrying equipment and computer readable storage medium
CN115629587A (en) Dispatching method and device for rail carrying trolley
CN115167457A (en) Multi-AGV scheduling and collaborative path planning method and device considering electric quantity constraint
JPH11119829A (en) Vehicle navigation management system
CN113869819A (en) Intelligent warehouse system and intelligent warehouse management method
Zakrzewski et al. Changes in logistics processes caused by the implementation of automation in transport
JP7302536B2 (en) CONTROL SYSTEM AND CONTROL METHOD FOR WAREHOUSE FACILITIES
JPH09282038A (en) Conveyance controller for unmanned carrier
JP7493136B2 (en) Warehouse facility control system and control method
JPH11328573A (en) Vehicle allocation system
JP2002370832A (en) Dispatch control method and dispatch controller for manned conveyance carrier
KR101016690B1 (en) Method for supplying semifinished products for forming vehicle tires
CN113393086B (en) Distribution task information processing method and device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040706