JPH10293254A - Microscope - Google Patents

Microscope

Info

Publication number
JPH10293254A
JPH10293254A JP9114234A JP11423497A JPH10293254A JP H10293254 A JPH10293254 A JP H10293254A JP 9114234 A JP9114234 A JP 9114234A JP 11423497 A JP11423497 A JP 11423497A JP H10293254 A JPH10293254 A JP H10293254A
Authority
JP
Japan
Prior art keywords
lens
objective
objective lens
imaging
imaging lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9114234A
Other languages
Japanese (ja)
Other versions
JP3861372B2 (en
Inventor
Kei Tomimatsu
圭 冨松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP11423497A priority Critical patent/JP3861372B2/en
Publication of JPH10293254A publication Critical patent/JPH10293254A/en
Application granted granted Critical
Publication of JP3861372B2 publication Critical patent/JP3861372B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/16Microscopes adapted for ultraviolet illumination ; Fluorescence microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microscoopes, Condenser (AREA)
  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To simply perform excellent observation by the same microscope device from ultraviolet light to infrared light and from a high magnification to a very low magnification <=1. SOLUTION: This microscope forms the intermediate image of a sample by combining one of plural selectively exchangeable objective lenses with an image forming lens and is provided with plural selectively exchangeable image forming lenses. Plural objective lenses have at least one different characteristic from among image forming positions and utilized wavelengths and plural image forming lenses are selectively combined with the plural objective lenses according to at least one characteristic. For example, in the case of normal observation by visible light, a normal objective lense for visible light observation may combine with an image forming lens, in the case of observation by ultraviolet ray, an objective lense for ultraviolet ray may combine with an image forming lens, in the case of observation by infrared ray, an objective lens for infrared ray may combine with an image forming lens, in the case of observation by visible light under very low magnification, an objective lens for visible lense for very low magnification may combine with an image forming lens.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は顕微鏡に関し、特に
高倍率から1倍以下の極低倍率まで観察に使用する光の
波長に依存せず良好に標本観察が行える顕微鏡に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microscope, and more particularly, to a microscope which can perform excellent sample observation from a high magnification to an extremely low magnification of 1 or less regardless of the wavelength of light used for observation.

【0002】[0002]

【従来の技術】従来の、対物レンズと結像レンズの組み
合わせにより標本の像を観察する顕微鏡、特に対物レン
ズと結像レンズの間の光束が平行光である無限遠系顕微
鏡においては、異なる焦点距離を有する複数の対物レン
ズの中から所定の倍率、すなわち対物レンズと結像レン
ズにより決まる一次像の倍率(以下「倍率」という)を
得るために必要な対物レンズを選択して使用している。
かかる場合に、対物レンズは切り換えているが、結像レ
ンズは常に固定されている。
2. Description of the Related Art In a conventional microscope for observing an image of a specimen by a combination of an objective lens and an imaging lens, especially in an infinity microscope in which a light beam between the objective lens and the imaging lens is parallel light, different focuses are used. An objective lens required to obtain a predetermined magnification, that is, a magnification of a primary image (hereinafter referred to as “magnification”) determined by the objective lens and the imaging lens is selected from a plurality of objective lenses having a distance and used. .
In such a case, the objective lens is switched, but the imaging lens is always fixed.

【0003】[0003]

【発明が解決しようとする課題】従来の可視光領域の照
明、観察を主目的にした無限遠系顕微鏡の場合、顕微鏡
装置に固定されている結像レンズは可視光領域用に設計
されている。換言すると、可視光領域の光に対して最も
透過率の良い硝材を使用し、諸収差が少なくなるように
設計されている。したがって、可視光領域以外の波長域
の光束(例えば紫外光や赤外光など)を用いて観察を行
なおうとすると、目的の波長域の光の透過率が低い、あ
るいは目的の使用波長での結像性能が悪くなり、可視光
用の顕微鏡装置を赤外光などの可視光以外の光束では使
用することが出来なかった。かかる場合には、赤外光専
用の別の装置を用意し、標本を移動させる必要があるな
ど極めて不便であり問題であった。
In the case of a conventional infinity microscope mainly intended for illumination and observation in the visible light region, the imaging lens fixed to the microscope device is designed for the visible light region. . In other words, a glass material having the highest transmittance for light in the visible light region is used, and is designed so that various aberrations are reduced. Therefore, when observing using a light flux in a wavelength range other than the visible light range (for example, ultraviolet light or infrared light), the transmittance of light in the target wavelength range is low, or the light at the target use wavelength is not used. The imaging performance deteriorated, and the microscope apparatus for visible light could not be used with light beams other than visible light such as infrared light. In such a case, it is extremely inconvenient and problematic because it is necessary to prepare another device dedicated to infrared light and move the sample.

【0004】また、対物レンズの切り換え機構として
は、いわゆるレボルバ方式が一般的であり、機構的な空
間等の制約から、対物レンズの全長はその焦点距離にか
かわらず一定の範囲内に納める必要がある。無限遠系顕
微鏡の場合、対物レンズの全長は、通常結像レンズの焦
点距離の1/3から1/4程度であることが多い。従っ
て倍率が1倍未満の対物レンズは、結像レンズよりも長
い焦点距離を必要とする。
Further, a so-called revolver system is generally used as a mechanism for switching the objective lens, and it is necessary to keep the entire length of the objective lens within a certain range irrespective of its focal length due to limitations in mechanical space and the like. is there. In the case of an infinity microscope, the overall length of the objective lens is usually about 1/3 to 1/4 of the focal length of the imaging lens. Therefore, an objective lens having a magnification of less than 1 times requires a longer focal length than an imaging lens.

【0005】通常、顕微鏡のレボルバに装着される交換
可能な対物レンズは、その全長が同焦点距離(対物レン
ズをレボルバに装着する際の胴付面と標本を載置するス
テージ面との間の光軸に沿った距離)内に納まるように
設計しなければならない。そのため、結像レンズが固定
されている顕微鏡で、倍率1倍以下の大きな焦点距離を
有する対物レンズの全長を同焦点距離内に納めることは
困難であり問題であった。
[0005] Usually, the interchangeable objective lens mounted on the revolver of the microscope has an overall focal length (the distance between the body surface when the objective lens is mounted on the revolver and the stage surface on which the sample is mounted). (Distance along the optical axis). For this reason, it is difficult and problematic to fit the entire length of the objective lens having a large focal length of 1 or less within the same focal length in a microscope having the imaging lens fixed.

【0006】すなわち、従来の無限遠系顕微鏡では対物
レンズと結像レンズの間が平行光束になっており、また
全ての倍率を単一の結像レンズでカバーする必要がある
ので、極低倍対物レンズの場合は短い全長で長大な焦点
距離を確保しなければならない。このため、かかるレン
ズの設計は極めて困難なものとなっている。
That is, in the conventional infinity microscope, the space between the objective lens and the imaging lens is a parallel light beam, and all magnifications must be covered by a single imaging lens. In the case of an objective lens, it is necessary to secure a long focal length with a short overall length. This makes the design of such lenses extremely difficult.

【0007】そこで、最近の装置では、特に極低倍対物
レンズの場合については、対物レンズと結像レンズの間
の光束を平行でなくし、結像レンズと対物レンズの間に
補助レンズを付加することで対応している。しかし、補
助レンズを付加する方法では、結像レンズのほかに更に
補助レンズを必要とするために、レンズ面が増加し、レ
ンズ面での光の散乱によって像のコントラストが悪化す
る要因となる。また、補助レンズを付加しても、結像レ
ンズは固定されたままであるため、紫外光や赤外光での
観察においては、上記のように光の透過率が低い等の問
題点は依然として解決されていない。
Therefore, in a recent apparatus, especially in the case of an extremely low magnification objective lens, the light flux between the objective lens and the imaging lens is not made parallel, and an auxiliary lens is added between the imaging lens and the objective lens. It corresponds by that. However, the method of adding an auxiliary lens requires an auxiliary lens in addition to the imaging lens, so that the number of lens surfaces increases, and light scattering on the lens surface causes deterioration of image contrast. In addition, since the imaging lens remains fixed even when the auxiliary lens is added, problems such as low light transmittance as described above are still solved in observation with ultraviolet light or infrared light. It has not been.

【0008】本発明は、かかる課題に鑑みてなされたも
のであり、高倍率観察から1倍未満の極低倍率観察ま
で、また、紫外光による観察から可視光、赤外光による
観察まで良好、簡便に行うことが出来る顕微鏡を提供す
ることを目的とする。
The present invention has been made in view of the above-mentioned problems, and is suitable for observation from high-magnification observation to extremely low-magnification observation of less than 1 ×, and observation from ultraviolet light to observation with visible light and infrared light. It is an object to provide a microscope which can be easily performed.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明にかかる顕微鏡は、選択的に交換可能な複数
の対物レンズのうち1つと結像レンズとを組み合わせて
標本の中間像を形成する顕微鏡であって、選択的に交換
可能な複数の結像レンズを備え、前記複数の対物レンズ
は、結像位置および使用波長のうちの少なくとも1つの
特性が異なるものであり、前記複数の結像レンズは、前
記少なくとも1つの特性に応じて選択的に前記複数の対
物レンズと組み合わせられることを特徴としている。
In order to achieve the above object, a microscope according to the present invention combines one of a plurality of selectively interchangeable objective lenses and an imaging lens to form an intermediate image of a specimen. A microscope to be formed, comprising a plurality of selectively interchangeable imaging lenses, wherein the plurality of objective lenses differ in at least one characteristic of an imaging position and a wavelength used; The imaging lens is characterized in that it is selectively combined with the plurality of objective lenses according to the at least one characteristic.

【0010】かかる本発明の特徴によれば、対物レンズ
として、通常の可視光観察用対物レンズ、紫外光用対物
レンズ、赤外光用対物レンズ、可視光極低倍用対物レン
ズなどの結像位置および使用波長のうちの少なくとも1
つの特性が異なるものを備えている。そして、単一の結
像レンズを常に装置に固定して使用するのではなく、通
常の可視光観察用結像レンズ、紫外光用結像レンズ、赤
外光用結像レンズ、可視光極低倍用結像レンズなどの複
数の結像レンズが選択的に光路中に位置するように構成
されている。このとき、結像レンズは、選択された対物
レンズの特性に応じて選択される。
According to the features of the present invention, as an objective lens, a normal visible light observation objective lens, an ultraviolet light objective lens, an infrared light objective lens, a visible light extremely low magnification objective lens and the like are used. At least one of position and wavelength used
The two characteristics are different. Instead of using a single imaging lens fixed to the device at all times, ordinary imaging lenses for visible light observation, imaging lenses for ultraviolet light, imaging lenses for infrared light, A plurality of imaging lenses such as a double imaging lens are configured to be selectively located in the optical path. At this time, the imaging lens is selected according to the characteristics of the selected objective lens.

【0011】この構成により、例えば、通常の可視光観
察を行う場合には通常の可視光観察用対物レンズと結像
レンズを組み合わせ、紫外光観察を行う場合には紫外光
用対物レンズと結像レンズを組み合わせ、赤外光観察を
行う場合には赤外光用対物レンズと結像レンズを組み合
わせ、極低倍の可視光観察を行う場合には可視光極低倍
用対物レンズと結像レンズを組み合わせれば良い。
With this configuration, for example, a normal visible light observation objective lens and an imaging lens are combined when performing normal visible light observation, and an ultraviolet light objective lens is formed with an image when performing ultraviolet light observation. Combining lenses, combining an objective lens for infrared light and an imaging lens for infrared light observation, and an objective lens for visible light extremely low magnification and an imaging lens for ultra-low magnification visible light observation Should be combined.

【0012】このように本発明は、使用波長、対物レン
ズの焦点位置と物体面との関係によって、対物レンズと
結像レンズとを組み合わせるものである。
As described above, the present invention combines an objective lens and an imaging lens according to the relationship between the wavelength used, the focal position of the objective lens, and the object plane.

【0013】それぞれの対物レンズと結像レンズの適切
な組み合わせにおいて、結像位置が常に同一の位置にあ
る場合、観察する標本に一度焦準を合わせておけば、す
なわちピントを合わせておけば、他のレンズの組み合わ
せを使用しても、再焦準操作をしなくともよい。
[0013] In an appropriate combination of the objective lens and the imaging lens, if the imaging position is always at the same position, once the specimen to be observed is focused once, that is, if the focus is adjusted, Even if another lens combination is used, the refocusing operation need not be performed.

【0014】結像レンズの切り換える機構としては、ス
ライダ、ターレット、または結像レンズを鏡筒に捩じ込
む構造にして各使用目的に合わせて使用者が交換する等
様々な方法がある。
As a mechanism for switching the imaging lens, there are various methods such as a structure in which a slider, a turret, or an imaging lens is screwed into a lens barrel, and a user replaces it according to each intended use.

【0015】また、装備される結像レンズと対物レンズ
の組は、可視光用と紫外光用のみの2種類、あるいは可
視光の通常倍率用と極低倍用の2種類など使用目的に合
わせて限定されたものであっても構わない。
The combination of the imaging lens and the objective lens to be equipped is set according to the purpose of use, such as two types for visible light and ultraviolet light only, or two types for normal magnification and extremely low magnification of visible light. May be limited.

【0016】さらに、対物レンズと結像レンズの組み合
わせはl対1対応である必要はなく、一つの結像レンズ
が複数の対物レンズと組み合わせて使用できるようにし
てもよい。
Further, the combination of the objective lens and the imaging lens does not need to be in a one-to-one correspondence, and one imaging lens may be used in combination with a plurality of objective lenses.

【0017】また、対物レンズと結像レンズの組み合わ
せが極低倍観察用の場合、特に倍率が1倍以下の場合
は、対物レンズと結像レンズの間の光束が、像側に向か
って発散している状態、即ち対物レンズの物体側主平面
から物体面までの距離が対物レンズ自身の焦点距離より
も短い方が、物像間距離を一定とすると、いわゆる無限
遠系の場合よりも対物レンズに要求される焦点距離が短
く、また対物レンズ全体が物体側に繰り出された状態に
なるため、結果としてレンズ全長を短くできて有利であ
る。そして、このような対物レンズから発せられた光束
を所定の像面に集光させるため、結像レンズは、その焦
点距離をF、像側主平面から観察像面までの距離をLと
するとき、 L>F の条件を満足する事が望ましい。
When the combination of the objective lens and the imaging lens is for ultra-low magnification observation, particularly when the magnification is 1 or less, the light beam between the objective lens and the imaging lens diverges toward the image side. When the distance from the object-side principal plane of the objective lens to the object plane is shorter than the focal length of the objective lens itself, the distance between the object and the image is constant. Since the focal length required of the lens is short and the entire objective lens is extended toward the object side, the overall length of the lens can be advantageously reduced. Then, in order to converge the light beam emitted from such an objective lens on a predetermined image plane, the imaging lens has a focal length of F and a distance from the image-side main plane to the observation image plane of L. , L> F.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態を添付
図面に基づいて説明する。図1は、本発明の実施例の構
成を示す概略図である。対物レンズ11ないし14はレ
ボルバ1にセットされ、結像レンズ21ないし24はス
ライダ2に配置されている。これらのレンズは、例え
ば、対物レンズ11と結像レンズ21の組み合わせは紫
外光観察用、対物レンズ12と結像レンズ22の組み合
わせは可視光観察用、対物レンズ13と結像レンズ23
の組み合わせは極低倍観察用など観察時の使用波長や所
望倍率に応じて種々のものを用いることが出来る。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a schematic diagram showing a configuration of an embodiment of the present invention. The objective lenses 11 to 14 are set on the revolver 1, and the imaging lenses 21 to 24 are arranged on the slider 2. These lenses are, for example, a combination of the objective lens 11 and the imaging lens 21 for ultraviolet light observation, a combination of the objective lens 12 and the imaging lens 22 for visible light observation, and a combination of the objective lens 13 and the imaging lens 23.
Various combinations can be used according to the wavelength used at the time of observation and the desired magnification, such as for ultra-low magnification observation.

【0019】ここで、赤外光とは800nm以上、紫外
光とは380nm以下の波長域をいう。かかる波長域で
は、可視光用に使用される光学材料では、可視域との屈
折率差が大きい、透過率やソラリゼ−ションといった物
理的特性が悪化する、可視域と共用可能な有効な反射防
止膜が存在しないといった問題があり、可視光との光学
系の共用が難しい。特に、これらの波長域のうち、赤外
光で2.5μm以上、紫外光で340nm以下の波長域
においては、これ以外の前記波長域に比較して、材料の
物理的特性の悪化がさらに激しく、使用不能になるもの
が多いため、可視光用と光学系を共用することがさらに
難しくなるため、より本発明の効果が顕著である。
Here, infrared light means a wavelength range of 800 nm or more, and ultraviolet light means a wavelength range of 380 nm or less. In such a wavelength range, an optical material used for visible light has a large difference in refractive index from the visible range, physical properties such as transmittance and solarization are deteriorated, and effective antireflection that can be shared with the visible range. There is a problem that there is no film, and it is difficult to share an optical system with visible light. In particular, in these wavelength ranges, in the wavelength range of 2.5 μm or more for infrared light and 340 nm or less for ultraviolet light, the physical properties of the material are more severely deteriorated than in the other wavelength ranges. In many cases, it becomes impossible to use the optical system for the visible light, and it becomes more difficult to use the optical system. Therefore, the effect of the present invention is more remarkable.

【0020】観察者は、レボルバ1を回転させて所定の
用途にあった対物レンズを選択し、切り換える。次に、
スライダ2を移動させて、選択した対物レンズの光学特
性、例えば焦点距離、波長特性に応じた結像レンズを選
択する。かかるレンズの選択、切り換え操作は、顕微鏡
装置によって自動的に行なうことも可能である。ここ
で、結像レンズ21ないし24は、それぞれの結像位置
がすべて同一になるようにスライダに配置されている。
The observer rotates the revolver 1 to select and switch an objective lens suitable for a predetermined application. next,
The slider 2 is moved to select an imaging lens according to the optical characteristics of the selected objective lens, for example, the focal length and the wavelength characteristics. Such lens selection and switching operations can be automatically performed by the microscope device. Here, the imaging lenses 21 to 24 are arranged on the slider so that the respective imaging positions are all the same.

【0021】例えば、観察者は対物レンズ12と結像レ
ンズ22の組み合わせで可視光を用いて標本を観察して
いたが、紫外光を使用して同一標本の観察を続けたい場
合には、レボルバ1を回転し紫外光観察用の対物レンズ
11を選択し、スライダ2を移動させて対物レンズ11
の紫外光用という光学特性に応じた結像レンズ21を選
択する。かかるレンズ11と21の組み合わせにより、
紫外光に切り換えても、標本を移動させたり、紫外光専
用の他の装置を用いることなく良好な観察を迅速、簡便
に行うことが出来る。赤外光観察を行いたい場合には、
同様の手順で対物レンズ14と結像レンズ24の組み合
わせを選択すればよい。
For example, an observer observes a sample using visible light with a combination of the objective lens 12 and the imaging lens 22. If the observer wants to continue observing the same sample using ultraviolet light, a revolver 1 to select the objective lens 11 for ultraviolet light observation, and move the slider 2 to move the objective lens 11
The imaging lens 21 is selected in accordance with the optical characteristic for ultraviolet light. By combining such lenses 11 and 21,
Even when switching to ultraviolet light, good observation can be performed quickly and easily without moving the sample or using another device dedicated to ultraviolet light. If you want to observe infrared light,
A combination of the objective lens 14 and the imaging lens 24 may be selected in a similar procedure.

【0022】さらに、倍率が1倍未満の極低倍の観察を
行うには極低倍用の対物レンズを選択する。従来の、結
像レンズが固定されている顕微鏡では、極低倍、例えば
0.5倍で観察する場合を考えると、固定されている結
像レンズの焦点距離をfとすると、対物レンズの焦点距
離は2fである必要がある。上述したように、結像レン
ズが固定されている顕微鏡での極低倍観察では対物レン
ズの焦点距離が長くなり、同焦点距離に納めるという制
約上、レンズ設計が困難であった。
Further, in order to observe a very low magnification of less than 1 ×, an objective lens for a very low magnification is selected. In a conventional microscope in which an imaging lens is fixed, when the observation is performed at an extremely low magnification, for example, 0.5 times, assuming that the focal length of the fixed imaging lens is f, the focal length of the objective lens is The distance needs to be 2f. As described above, in ultra-low magnification observation with a microscope in which the imaging lens is fixed, the focal length of the objective lens becomes long, and it is difficult to design a lens due to the restriction that the objective lens can be kept at the same focal length.

【0023】本実施例では、極低倍観察用の対物レンズ
と極低倍用の結像レンズを選択することが出来る。した
がって、倍率が1倍以下となるような対物レンズの焦点
距離と結像レンズの焦点距離の組み合わせの自由度が大
きくなり、極低倍観察の実現のみならず極めて収差が良
く補正された対物・結像レンズ系の設計ができる。
In this embodiment, it is possible to select an objective lens for extremely low magnification and an imaging lens for extremely low magnification. Therefore, the degree of freedom of the combination of the focal length of the objective lens and the focal length of the imaging lens such that the magnification is 1 or less is increased, and not only the ultra-low magnification observation is realized but also the objective lens whose aberration is extremely well corrected An imaging lens system can be designed.

【0024】以下、数値実施例を添付図面に基づいて説
明する。図2は紫外光用対物レンズのレンズ構成を示す
図である。以下の表1に紫外光用対物レンズの諸元値を
掲げる。面番号は標本側からのレンズ面の番号、rは曲
率半径、dは空気間隔を示している。以下すべての数値
例において同様である。
Hereinafter, numerical embodiments will be described with reference to the accompanying drawings. FIG. 2 is a diagram showing a lens configuration of the objective lens for ultraviolet light. Table 1 below shows specifications of the objective lens for ultraviolet light. The surface number is the number of the lens surface from the specimen side, r is the radius of curvature, and d is the air gap. The same applies to all numerical examples below.

【0025】[0025]

【表1】紫外光(λ=250nm付近)用対物レンズ 結像レンズと組み合わせたときの倍率 5X 開口数 0.1 焦点距離 40 (λ=250nm) 作動距離 33 [Table 1] Objective lens for ultraviolet light (around λ = 250 nm) Magnification when combined with imaging lens 5 × Numerical aperture 0.1 Focal length 40 (λ = 250 nm) Working distance 33

【0026】図3は、かかる紫外光用対物レンズと組み
合わされる紫外光用結像レンズのレンズ構成を示す図で
ある。紫外光用結像レンズの諸元値を表2に掲げる。
ndは使用波長に対する屈折率、vdはアッベ数であ
る。
FIG. 3 is a diagram showing a lens configuration of an ultraviolet light imaging lens combined with such an ultraviolet light objective lens. Table 2 shows the specification values of the imaging lens for ultraviolet light.
nd is the refractive index for the wavelength used, and vd is the Abbe number.

【0027】[0027]

【表2】紫外光(λ=250nm付近)用結像レンズ 焦点距離200 (λ=250nm) Table 2 Focal length 200 (λ = 250 nm) for imaging lens for ultraviolet light (around λ = 250 nm)

【0028】上記紫外光用対物レンズおよび結像レンズ
を組み合わせて使用した場合の諸収差を図4に示す。図
4から明らかなように、極めて良好に諸収差が補正され
ていることがわかる。
FIG. 4 shows various aberrations when the above-mentioned ultraviolet light objective lens and imaging lens are used in combination. As is clear from FIG. 4, it can be seen that various aberrations are corrected very well.

【0029】図5及び図6は可視光観察用の対物レンズ
及び結像レンズのレンズ構成を示す図である。かかる対
物レンズ及び結像レンズの諸元値を表3及び表4に掲げ
る。
FIGS. 5 and 6 are diagrams showing the lens structure of the objective lens and the imaging lens for observing visible light. Tables 3 and 4 show specifications of the objective lens and the imaging lens.

【0030】[0030]

【表3】 可視光用対物レンズ 結像レンズと組み合わせたときの倍率 5X 開口数 0.l 焦点距離 40mm 作動距離 30.37mm 面番号 r d nd vd 1 25.393 3 1.77279 49.45 2 −30.912 7 1 3 −11.036 2 1.7552 26.61 4 38.1 6 1 5 −66.751 3 1.74376 52.3 6 −14.855[Table 3] Objective lens for visible light Magnification when combined with imaging lens 5X numerical aperture 0. l Focal length 40 mm Working distance 30.37 mm Surface number rd nd vd 1 25.393 3 1.77279 49.45 2 -30.912 7 13 -11.036 2 1.7552 26.614.438.16 15-5.6.751 3 1.74376 52.3 6-14.855

【0031】[0031]

【表4】 可視光用結像レンズ 焦点距離 200 面番号 r d nd vd 1 127.109 4 1.56883 56.05 2 −89.095 2 1.68893 31.08 3 −365.281 196.973Table 4 Imaging lens for visible light Focal length 200 Surface number rd nd vd 1 127.109 4 1.56883 56.05 2-89.095 2 1.68893 31.08 3 -365.281 196.973 1

【0032】上記可視光用対物レンズおよび結像レンズ
を組み合わせて使用した場合の諸収差を図7に示す。図
7中、CはC線(λ=656.28nm)、dはd線
(λ=587.56nm)、FはF線(λ=486.1
3nm)を表している。以下の収差図においても同様で
ある。図7から明らかなように、極めて良好に諸収差が
補正されていることがわかる。
FIG. 7 shows various aberrations when the visible light objective lens and the imaging lens are used in combination. In FIG. 7, C is the C line (λ = 656.28 nm), d is the d line (λ = 587.56 nm), and F is the F line (λ = 486. 1).
3 nm). The same applies to the following aberration diagrams. As is clear from FIG. 7, it is understood that various aberrations are corrected extremely well.

【0033】図8及び図9は可視光極低倍観察用の対物
レンズ及び結像レンズのレンズ構成を示す図である。か
かる対物レンズ及び結像レンズの諸元値を表5及び表6
に掲げる。
FIG. 8 and FIG. 9 are diagrams showing the lens configuration of an objective lens and an imaging lens for very low magnification observation of visible light. Table 5 and Table 6 show the specifications of the objective lens and the imaging lens.
Listed in

【0034】[0034]

【表5】 極低倍対物レンズ 結像レンズと組み合わせたときの倍率 0.5X 開口数 0.025 焦点距離 F1=388.2 作動距離 7.8 面番号 r d nd vd 1 62.552 6 1.6172 54.01 2 225.295 0.2 1 3 59.519 8.5 1.62041 60.14 4 −170.773 3 1.74 28.19 5 263.331 35.5 1 6 −77.231 2 1.6516 58.5 7 13.735 4.6 1.80458 25.5 8 18.333Table 5 Ultra-low magnification objective lens Magnification when combined with imaging lens 0.5X Numerical aperture 0.025 Focal length F1 = 388.2 Working distance 7.8 Surface number rd nd vd 1 62.552 6 1 .6172 54.01 2 22.295 0.21 3 59.519 8.5 1.662041 60.14 4 -170.773 3 1.74 28.19 5 263.3331 35.5 16 -77. 231 2 1.6516 58.5 7 13.735 4.6 1.80458 25.5 8 18.333

【0035】[0035]

【表6】 可視光極低倍結像レンズ 対物レンズと結像レンズの間隔 109mm 焦点距離(F) 78.428mm 像側主平面と像面間の距離(L) 197.94mm 面番号 r d nd vd 1 300 4 1.62041 60.14 2 −24 2 1.80384 33.92 3 −44 198.02 (条件対応値) L=197.94>F=78.428[Table 6] Visible light extremely low magnification imaging lens Distance between objective lens and imaging lens 109mm Focal length (F) 78.428mm Distance between image-side main plane and image plane (L) 197.94mm Surface number r d nd vd 1 300 4 1.62041 60.14 2 -24 2 1.80384 33.92 3 -44 198.02 (Conditional value) L = 197.94> F = 78.428

【0036】上記可視光極低倍用対物レンズおよび結像
レンズを組み合わせて使用した場合の諸収差を図10に
示す。図10から明らかなように、極めて良好に諸収差
が補正されていることがわかる。
FIG. 10 shows various aberrations when the above-described objective lens for extremely low magnification of visible light and the imaging lens are used in combination. As is clear from FIG. 10, it can be seen that various aberrations are corrected extremely well.

【0037】図11及び図12は赤外光観察用の対物レ
ンズ及び結像レンズのレンズ構成を示す図である。かか
る対物レンズ及び結像レンズの諸元値を表7及び表8に
掲げる。
FIGS. 11 and 12 are views showing the lens arrangement of an objective lens and an imaging lens for infrared light observation. Tables 7 and 8 show specifications of the objective lens and the imaging lens.

【0038】[0038]

【表7】 赤外光(λ=3〜5μm)用対物レンズ 結像レンズと組み合わせたときの倍率 5X 開口数 0.2 焦点距離 40 (λ=4μm) 作動距離 31.5 面番号 r d 硝材 1 48.006 2.5 Si(シリコン) 2 −196.487 7.5 3 −20.671 1.5 Ge(ゲルマニウム) 4 −81.097 7.5 5 −28.034 2.5 Si(シリコン) 6 −20.461 Table 7 Objective lens for infrared light (λ = 3 to 5 μm) Magnification when combined with imaging lens 5X Numerical aperture 0.2 Focal length 40 (λ = 4 μm) Working distance 31.5 Surface number r d Glass material 1 48.006 2.5 Si (silicon) 2 -196.487 7.5 3 -20.671.5 1.5 Ge (germanium) 4-81.097 7.55 -28.034 2.5 Si (silicon) ) 6-20.461

【0039】[0039]

【表8】 赤外光(λ=3〜5μm)用結像レンズ 焦点距離 200 (λ=4μm) 面番号 r d 硝材 1 176.124 3 Si(シリコン) 2 510.063 1 3 645.711 2 Ge(ゲルマニウム) 4 339.562 194.415Table 8 Imaging lens for infrared light (λ = 3 to 5 μm) Focal length 200 (λ = 4 μm) Surface number r d Glass material 1 176.124 3 Si (silicon) 2 510.063 1 3 645.7711 2 Ge (germanium) 4 339.562 194.415

【0040】上記赤外光用対物レンズおよび結像レンズ
を組み合わせて使用した場合の諸収差を図13に示す。
図13から明らかなように、極めて良好に諸収差が補正
されていることがわかる。
FIG. 13 shows various aberrations when the above-mentioned infrared light objective lens and imaging lens are used in combination.
As is clear from FIG. 13, it is understood that various aberrations are corrected extremely well.

【0041】[0041]

【発明の効果】本発明によれば、紫外光から赤外光ま
で、また高倍率から1倍以下の極低倍率まで、同一の顕
微鏡装置により、標本をステージ上から移動させること
なく、諸収差が良く補正された状態で良好な観察を行う
ことができる。
According to the present invention, various aberrations from ultraviolet light to infrared light, and from high magnification to extremely low magnification of less than 1 ×, without moving the specimen from the stage by the same microscope apparatus. And good observation can be performed in a state where is well corrected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の概略を示す図である。FIG. 1 is a diagram schematically showing an embodiment of the present invention.

【図2】紫外光用対物レンズの構成を示す図である。FIG. 2 is a diagram showing a configuration of an objective lens for ultraviolet light.

【図3】紫外光用結像レンズの構成を示す図である。FIG. 3 is a diagram showing a configuration of an imaging lens for ultraviolet light.

【図4】紫外光用対物レンズと紫外光用結像レンズを組
み合わせた場合の諸収差を示す図である。
FIG. 4 is a diagram showing various aberrations when an ultraviolet light objective lens and an ultraviolet light imaging lens are combined.

【図5】可視光用対物レンズの構成を示す図である。FIG. 5 is a diagram illustrating a configuration of a visible light objective lens.

【図6】可視光用結像レンズの構成を示す図である。FIG. 6 is a diagram showing a configuration of a visible light imaging lens.

【図7】可視光用対物レンズと可視光用結像レンズを組
み合わせた場合の諸収差を示す図である。
FIG. 7 is a diagram showing various aberrations when a visible light objective lens and a visible light imaging lens are combined.

【図8】可視光極低倍用対物レンズの構成を示す図であ
る。
FIG. 8 is a diagram showing a configuration of an objective lens for extremely low magnification of visible light.

【図9】可視光極低倍用結像レンズの構成を示す図であ
る。
FIG. 9 is a diagram showing a configuration of an imaging lens for extremely low magnification of visible light.

【図10】可視光極低倍用対物レンズと可視光極低倍用
結像レンズを組み合わせた場合の諸収差を示す図であ
る。
FIG. 10 is a diagram showing various aberrations when a visible light extremely low magnification objective lens and a visible light extremely low magnification imaging lens are combined.

【図11】赤外光用対物レンズの構成を示す図である。FIG. 11 is a diagram showing a configuration of an objective lens for infrared light.

【図12】赤外光用結像レンズの構成を示す図である。FIG. 12 is a diagram showing a configuration of an imaging lens for infrared light.

【図13】赤外光用対物レンズと赤外光用結像レンズを
組み合わせた場合の諸収差を示す図である。
FIG. 13 is a diagram illustrating various aberrations when the infrared light objective lens and the infrared light imaging lens are combined.

【符号の説明】[Explanation of symbols]

1 レボルバ 2 スライダ 11 紫外光用対物レンズ 12 可視光用対物レンズ 13 可視光極低倍対物レンズ 14 赤外光用対物レンズ 21 紫外光用結像レンズ 22 可視光用結像レンズ 23 可視光極低倍結像レンズ 24 赤外光用結像レンズ DESCRIPTION OF SYMBOLS 1 Revolver 2 Slider 11 Objective lens for ultraviolet light 12 Objective lens for visible light 13 Very low magnification objective lens for infrared light 14 Objective lens for infrared light 21 Imaging lens for ultraviolet light 22 Imaging lens for visible light 23 Very low visible light Double imaging lens 24 Infrared imaging lens

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 選択的に交換可能な複数の対物レンズの
うち1つと結像レンズとを組み合わせて標本の中間像を
形成する顕微鏡において、 選択的に交換可能な複数の結像レンズを備え、 前記複数の対物レンズは、結像位置および使用波長のう
ちの少なくとも1つの特性が異なるものであり、 前記複数の結像レンズは、前記少なくとも1つの特性に
応じて選択的に前記複数の対物レンズと組み合わせられ
ることを特徴とする顕微鏡。
1. A microscope for forming an intermediate image of a specimen by combining one of a plurality of selectively interchangeable objective lenses and an imaging lens, comprising a plurality of selectively interchangeable imaging lenses, The plurality of objective lenses differ in at least one characteristic of an imaging position and a wavelength used, and the plurality of imaging lenses selectively include the plurality of objective lenses according to the at least one characteristic. A microscope characterized by being combined with:
【請求項2】 前記結像レンズの焦点距離をF、結像レ
ンズの像側主平面から観察像面までの距離をLとすると
き、少なくとも1つの結像レンズにおいて、 L>F の条件を満足し、 当該結像レンズと組み合わせて所定の倍率を得ることの
できる対物レンズをゆうすることを特徴とする請求項1
記載の顕微鏡。
2. When the focal length of the imaging lens is F and the distance from the image-side principal plane of the imaging lens to the observation image plane is L, at least one of the imaging lenses has a condition of L> F. 2. An objective lens that satisfies and can obtain a predetermined magnification in combination with the imaging lens.
Microscope as described.
【請求項3】 前記対物レンズと前記結像レンズとを組
み合わせた結像倍率をβとするとき、少なくとも1つの
組み合わせにおいて、 1≧β の条件で前記標本を観察することが可能な請求項1又は
2記載の顕微鏡。
3. When at least one combination of the objective lens and the imaging lens is β, the specimen can be observed under the condition of 1 ≧ β in at least one combination. Or the microscope according to 2.
【請求項4】 前記交換可能な複数の対物レンズと前記
交換可能な複数の結像レンズの少なくとも一つの組み合
わせが、紫外光を使用して前記標本を観察するための組
み合わせであることを特徴とする請求項1、2または3
記載の顕微鏡。
4. The combination of at least one of the plurality of interchangeable objective lenses and the plurality of interchangeable imaging lenses is a combination for observing the sample using ultraviolet light. Claim 1, 2 or 3
Microscope as described.
【請求項5】 前記交換可能な複数の対物レンズと前記
交換可能な複数の結像レンズの少なくとも一つの組み合
わせが、赤外光を使用して前記標本を観察するための組
み合わせであることを特徴とする請求項1、2または3
記載の顕微鏡。
5. A combination of at least one of the plurality of interchangeable objective lenses and the plurality of interchangeable imaging lenses is a combination for observing the sample using infrared light. Claim 1, 2 or 3
Microscope as described.
JP11423497A 1997-04-17 1997-04-17 microscope Expired - Fee Related JP3861372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11423497A JP3861372B2 (en) 1997-04-17 1997-04-17 microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11423497A JP3861372B2 (en) 1997-04-17 1997-04-17 microscope

Publications (2)

Publication Number Publication Date
JPH10293254A true JPH10293254A (en) 1998-11-04
JP3861372B2 JP3861372B2 (en) 2006-12-20

Family

ID=14632621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11423497A Expired - Fee Related JP3861372B2 (en) 1997-04-17 1997-04-17 microscope

Country Status (1)

Country Link
JP (1) JP3861372B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002006232A (en) * 2000-06-19 2002-01-09 Nikon Corp Microscope having automatic focusing function
EP1731941A1 (en) * 2004-03-31 2006-12-13 Olympus Corporation Observing device and fluorescent light observing device
JP2012173561A (en) * 2011-02-22 2012-09-10 Tamron Co Ltd Infrared lens
JP2012194354A (en) * 2011-03-16 2012-10-11 Olympus Corp Microscope apparatus
JP2013178483A (en) * 2012-01-31 2013-09-09 Olympus Corp Microscope objective lens
JP2019537067A (en) * 2016-12-01 2019-12-19 バークレー ライツ,インコーポレイテッド Apparatus, system, and method for imaging a minute object
JP2020086298A (en) * 2018-11-29 2020-06-04 株式会社キーエンス Magnifying observation device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002006232A (en) * 2000-06-19 2002-01-09 Nikon Corp Microscope having automatic focusing function
EP1731941A1 (en) * 2004-03-31 2006-12-13 Olympus Corporation Observing device and fluorescent light observing device
EP1731941A4 (en) * 2004-03-31 2010-09-15 Olympus Corp Observing device and fluorescent light observing device
JP2012173561A (en) * 2011-02-22 2012-09-10 Tamron Co Ltd Infrared lens
JP2012194354A (en) * 2011-03-16 2012-10-11 Olympus Corp Microscope apparatus
JP2013178483A (en) * 2012-01-31 2013-09-09 Olympus Corp Microscope objective lens
JP2019537067A (en) * 2016-12-01 2019-12-19 バークレー ライツ,インコーポレイテッド Apparatus, system, and method for imaging a minute object
JP2023015028A (en) * 2016-12-01 2023-01-31 バークレー ライツ,インコーポレイテッド Apparatuses, systems and methods for imaging micro-objects
US11731129B2 (en) 2016-12-01 2023-08-22 Berkeley Lights, Inc. Apparatuses, systems and methods for imaging micro-objects
JP2020086298A (en) * 2018-11-29 2020-06-04 株式会社キーエンス Magnifying observation device

Also Published As

Publication number Publication date
JP3861372B2 (en) 2006-12-20

Similar Documents

Publication Publication Date Title
US6674582B2 (en) Microscope zoom objective lens
JP5387588B2 (en) Imaging optical system, microscope apparatus and stereomicroscope apparatus having the imaging optical system
JP2006154230A (en) Zoom microscope
JP2004004827A (en) Afocal zoom system used in microscope
JPH08190056A (en) Optical observation device
JP2004070092A (en) Zoom photography optical system
JP2007133071A (en) Microscope objective lens of liquid immersion system
JP2002365555A (en) Illumination optical system for microscope
JP2005173602A (en) Objective lens for observation device, microscope and adjusting method of objective lens
JP3861372B2 (en) microscope
JP4862368B2 (en) Zoom microscope
JPH1026729A (en) Object lens for microscope, and mono-objective binocular stereomicroscopic system
US7643216B2 (en) Microscope objective
JPH1195117A (en) High magnification objective optical system for binocular stereomicroscope
JP4434612B2 (en) Microscope and zoom objective
JP7290190B2 (en) Objectives, optics and microscopes
JP4160270B2 (en) Imaging optics and lens barrel
JP2000284184A (en) Parallel system stereoscopic microscope and objective lens
JP3039388B2 (en) Microscope equipped with a first objective lens for extremely low magnification
JPH11231224A (en) Microscope objective
JP2004145351A (en) Zoom system
US6208462B1 (en) Conversion optical system
JP2007219319A (en) Phase-contrast microscope
US7724427B2 (en) Stereoscopic microscope with high numerical aperture
JP2017111423A (en) Zoom objective lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060918

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151006

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151006

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151006

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees