JPH10291944A - Oxidation catalyst of hydrogen, selective oxidation of hydrogen and dehydrogenation of hydrocarbon - Google Patents

Oxidation catalyst of hydrogen, selective oxidation of hydrogen and dehydrogenation of hydrocarbon

Info

Publication number
JPH10291944A
JPH10291944A JP9101449A JP10144997A JPH10291944A JP H10291944 A JPH10291944 A JP H10291944A JP 9101449 A JP9101449 A JP 9101449A JP 10144997 A JP10144997 A JP 10144997A JP H10291944 A JPH10291944 A JP H10291944A
Authority
JP
Japan
Prior art keywords
hydrogen
alumina
hydrocarbon
oxidation catalyst
mixed gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9101449A
Other languages
Japanese (ja)
Other versions
JP3823433B2 (en
Inventor
Tomoatsu Iwakura
具敦 岩倉
Makoto Takiguchi
真 滝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP10144997A priority Critical patent/JP3823433B2/en
Publication of JPH10291944A publication Critical patent/JPH10291944A/en
Application granted granted Critical
Publication of JP3823433B2 publication Critical patent/JP3823433B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a high-performance selective oxidation catalyst capable of selectively oxidizing hydrogen present in a mixed gas formed when producing a dehydrogenated hydrocarbon by dehydrogenating a hydrocarbon. SOLUTION: This oxidation catalyst is the one for selectively oxidizing hydrogen in a mixed gas containing the hydrogen and a hydrocarbon, and comprises platinum supported by an alumina. The alumina is obtained by calcining the alumina under a condition determined so that the calcination factor(CF) of the formula CF=A-(B-1000)×C×D [A is a constant-1 of 9.0; B is a calcining temperature ( deg.C); C is a calcining time (hr); D is a constant-2 of 0.00555] may be 0-5, and has 0.5-6 m<2> /g BET specific surface area.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明に属する技術分野】本発明は、炭化水素を脱水素
して、脱水素された炭化水素を製造する際に、生成した
混合ガス中に存在する水素を選択的に酸化する方法、及
びそれに用いる触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for selectively oxidizing hydrogen present in a mixed gas produced when a hydrocarbon is dehydrogenated to produce a dehydrogenated hydrocarbon, and a method thereof. It relates to the catalyst used.

【0002】[0002]

【従来の技術】炭化水素を脱水素して、脱水素された炭
化水素を製造するプロセスは、従来多くの文献に記載さ
れている。例えばエチルベンゼンを脱水素してスチレン
を合成するプロセスは、鉄系の触媒を用いて工業的に実
施されている。しかしながら、一般に脱水素反応では、
平衡の制約を強く受け高い収率を得ることができない。
2. Description of the Related Art Processes for dehydrogenating hydrocarbons to produce dehydrogenated hydrocarbons have been described in many documents. For example, a process for synthesizing styrene by dehydrogenating ethylbenzene is industrially performed using an iron-based catalyst. However, in general, in the dehydrogenation reaction,
High yields cannot be obtained due to strong equilibrium constraints.

【0003】また、断熱反応器での反応においては、脱
水素反応が吸熱反応であるため、反応温度が反応と共に
低下してしまい高い収率で目的物を得ることが困難であ
る。このような状況から、既に幾つかの方法が提案され
ている。例えば、英国特許第1,404,641号明細
書には、エチルベンゼンを脱水素した後に、未反応エチ
ルベンゼン、スチレン及び水素を含む混合ガス中の水素
を選択的に酸化するプロセス及び触媒が開示されてい
る。この方法はスチレン合成に有効な方法であるが、水
素の選択的酸化触媒として白金を担持したA型ゼオライ
ト又はアルミナを用いており、その性能は必ずしも満足
しうるものではない。
[0003] In the reaction in an adiabatic reactor, the dehydrogenation reaction is an endothermic reaction, so that the reaction temperature decreases with the reaction, and it is difficult to obtain the desired product in a high yield. Under such circumstances, several methods have already been proposed. For example, GB 1,404,641 discloses a process and catalyst for dehydrogenating ethylbenzene and then selectively oxidizing hydrogen in a mixed gas containing unreacted ethylbenzene, styrene and hydrogen. I have. Although this method is effective for styrene synthesis, it uses A-type zeolite or alumina supporting platinum as a selective oxidation catalyst for hydrogen, and its performance is not always satisfactory.

【0004】米国特許4565898号明細書において
も、同様のプロセスでアルミナ上に白金、スズ及びリチ
ウム等を担持した触媒を用いる方法が開示されている。
しかしながら、この触媒も性能は充分なものでとは言え
ない。また、特開昭58−89945号公報及び特開平
6−298678号公報には、エチルベンゼンの脱水素
反応により生成される、スチレン、エチルベンゼン、水
素を含有する混合ガス中の水素を酸化スズ又は酸化スズ
とアルカリ金属を含有する触媒を用いて選択的に酸化す
る方法が開示されている。これらは白金を用いない触媒
として注目されるものであるが、その性能は必ずしも充
分とは言えない。
US Pat. No. 4,658,898 also discloses a method using a catalyst in which platinum, tin, lithium and the like are supported on alumina by a similar process.
However, the performance of this catalyst is not sufficient. Further, JP-A-58-89945 and JP-A-6-298678 disclose that hydrogen in a mixed gas containing styrene, ethylbenzene and hydrogen, which is produced by a dehydrogenation reaction of ethylbenzene, is tin oxide or tin oxide. A method for selective oxidation using a catalyst containing and alkali metal is disclosed. These are attracting attention as catalysts that do not use platinum, but their performance is not always satisfactory.

【0005】[0005]

【発明が解決しようとする課題】炭化水素の脱水素反応
により生成される、未反応の炭化水素、脱水素された炭
化水素、水素を含有する混合ガス中の水素を選択的に酸
化するための触媒としては、上記のように、従来知られ
ているものは性能的にも満足なものではない。従って、
本発明の目的は、該混合ガス中に存在する水素をより選
択的に酸化するための新規な触媒を提供することにあ
る。
An object of the present invention is to selectively oxidize hydrogen in a mixed gas containing unreacted hydrocarbons, dehydrogenated hydrocarbons, and hydrogen produced by the dehydrogenation of hydrocarbons. As described above, conventionally known catalysts are not satisfactory in performance. Therefore,
An object of the present invention is to provide a novel catalyst for more selectively oxidizing hydrogen present in the mixed gas.

【0006】[0006]

【課題を解決する為の手段】本発明者らは上記課題を解
決すべく鋭意検討した結果、特定の条件で焼成した特定
のアルミナに白金を担持した成分を含有する触媒が、水
素の選択的酸化を高性能で行うことを見い出して本発明
を完成するに至った。即ち、本発明の第1の要旨は、水
素と炭化水素とを含有する混合ガスを、酸素含有ガスと
接触させて、該混合ガス中の水素を選択的に酸化するた
めの触媒であって、(1)アルミナ上に白金を担持させ
た成分を含有し、かつ(2)下記式で表される焼成ファ
クターが0〜5の条件で焼成したアルミナのBET比表
面積が0.5〜6m2/gであるか(3)焼成ファクターが
0〜5の条件で焼成したアルミナのアンモニア吸着量が
5μmol/g以下であることを特徴とする水素の選択的酸
化触媒、及びこの酸化触媒を用いた水素及び炭化水素を
含有する混合ガス中の水素を選択的に酸化させる方法、
並びに、原料炭化水素を脱水素反応させ、得られた脱水
素された炭化水素、未反応原料炭化水素、及び水素を含
有する混合ガスを、酸化触媒の存在下で酸素含有ガスと
接触させて、該混合ガス中の水素を選択的に酸化させ、
その後、更に未反応原料炭化水素を脱水素反応させる炭
化水素の脱水素反応において、該酸化触媒として前記の
酸化触媒をを用いる炭化水素の脱水素方法、に存する。
Means for Solving the Problems The present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, it has been found that a catalyst containing a component in which platinum is supported on specific alumina calcined under specific conditions is selectively used for hydrogen. The inventors have found that the oxidation is performed with high performance, and have completed the present invention. That is, a first gist of the present invention is a catalyst for bringing a mixed gas containing hydrogen and a hydrocarbon into contact with an oxygen-containing gas to selectively oxidize hydrogen in the mixed gas, (1) A component containing platinum supported on alumina, and (2) a BET specific surface area of alumina fired under the condition of a firing factor of 0 to 5 represented by the following formula is 0.5 to 6 m 2 / g or (3) a selective oxidation catalyst for hydrogen, characterized in that the amount of adsorbed ammonia on alumina calcined under the condition of a calcination factor of 0 to 5 is 5 μmol / g or less, and hydrogen using this oxidation catalyst And a method for selectively oxidizing hydrogen in a mixed gas containing hydrocarbons,
A raw material hydrocarbon is subjected to a dehydrogenation reaction, and the obtained dehydrogenated hydrocarbon, unreacted raw material hydrocarbon, and a mixed gas containing hydrogen are brought into contact with an oxygen-containing gas in the presence of an oxidation catalyst, Selectively oxidizing hydrogen in the mixed gas;
Thereafter, in a hydrocarbon dehydrogenation reaction in which unreacted raw material hydrocarbons are further dehydrogenated, the present invention relates to a hydrocarbon dehydrogenation method using the above-mentioned oxidation catalyst as the oxidation catalyst.

【0007】[0007]

【数3】CF=A−(B−1000)xCxD CF;焼成ファクター A ;定数(1)=9.0 B ;焼成温度(℃) C ;焼成時間(hr) D ;定数(2)=0.00555CF = A− (B−1000) × C × D CF; firing factor A; constant (1) = 9.0 B; firing temperature (° C.) C; firing time (hr) D; constant (2) = 0 .0055

【0008】[0008]

【発明の実施の形態】本発明の方法で用いられる水素の
選択的酸化触媒は、(1)アルミナ上に白金を担持させ
た成分を含有し、かつ(2)焼成ファクターが0〜5の
条件で焼成したアルミナのBET比表面積が0.5〜6
m2/gであるか(3)焼成ファクターが0〜5の条件で
焼成したアルミナのアンモニア吸着量が5μmol/g以
下である水素の選択的酸化触媒である。
BEST MODE FOR CARRYING OUT THE INVENTION The selective oxidation catalyst for hydrogen used in the method of the present invention comprises (1) a component comprising platinum supported on alumina and (2) a calcination factor of from 0 to 5. BET specific surface area of alumina calcined at 0.5 to 6
(3) A selective oxidation catalyst for hydrogen in which the amount of adsorbed ammonia on alumina calcined under the condition of m 2 / g or (3) a calcining factor of 0 to 5 is 5 μmol / g or less.

【0009】本発明で担体として用いられるアルミナ
は、焼成ファクターが0〜5の条件で焼成されたアルミ
ナのBET比表面積が0.5〜6m2/gであるか、又
は、焼成ファクターが0〜5の条件で焼成されたアルミ
ナのアンモニア吸着量が5μmol/g以下である必要が
ある。後述の比較例の様に焼成ファクターとBET比表
面積、或いは、焼成ファクターとアンモニア吸着量のい
ずれかが上記範囲内ないと、充分な触媒性能が得られな
い。
The alumina used as a carrier in the present invention has a BET specific surface area of 0.5 to 6 m 2 / g or a sintering factor of 0 to 5 when the sintering factor is 0 to 5. It is necessary that the amount of ammonia adsorbed on alumina calcined under the condition of 5 is 5 μmol / g or less. If any of the calcination factor and the BET specific surface area or the calcination factor and the amount of adsorbed ammonia do not fall within the above ranges as in the comparative examples described later, sufficient catalytic performance cannot be obtained.

【0010】この様なアルミナは、水に可溶なアルミニ
ウム塩、例えば硝酸アルミニウムの水溶液にアンモニア
水、炭酸アルカリ等の塩基性水溶液を加え、水酸化アル
ミニウムを合成し、これを洗浄、乾燥、焼成することに
よりアルミナ粉末を得、このアルミナ粉末を更に押し出
し成型、打状成型等により適当な形態とし、焼成するこ
とにより得ることができる。このときの焼成温度及び焼
成時間は、焼成ファクターとアルミナの表面積、又は焼
成ファクターとアンモニア吸着量のいずれかが前記範囲
となる様な条件に設定する。又、市販のアルミナを上記
の焼成ファクターの範囲内で再焼成して、得られたアル
ミナのBET比表面積、又はアンモニア吸着量を前記規
定値を満足するようにしてもよい。
Such alumina is prepared by adding a basic aqueous solution such as aqueous ammonia or alkali carbonate to an aqueous solution of an aluminum salt soluble in water, for example, aluminum nitrate, to synthesize aluminum hydroxide, which is washed, dried and calcined. Thus, an alumina powder is obtained, and the alumina powder can be further obtained by extruding, punching, or the like, forming an appropriate form, and firing. The firing temperature and the firing time at this time are set so that either the firing factor and the surface area of alumina or the firing factor and the amount of adsorbed ammonia fall within the above range. Alternatively, commercially available alumina may be refired within the range of the above firing factor so that the BET specific surface area of the obtained alumina or the amount of adsorbed ammonia satisfies the above specified values.

【0011】アルミナの焼成ファクターは、次式で算出
できる。
The firing factor of alumina can be calculated by the following equation.

【0012】[0012]

【数4】CF=A−(B−1000)xCxD CF;焼成ファクター A ;定数(1)=9.0 B ;焼成温度(℃) C ;焼成時間(hr) D ;定数(2)=0.00555 アルミナのBET比表面積測定は、8〜16meshに
破砕したアルミナ0.5〜1gをU字型の石英製試料セ
ルに充填して30%N2/Heガス流通下250℃で1
5分間保持して試料の前処理実施後、液体N2温度下で
同ガスを用いてBET法にて測定することができる。
CF = A− (B−1000) × C × D CF; firing factor A; constant (1) = 9.0 B; firing temperature (° C.) C; firing time (hr) D; constant (2) = 0 .00555 The BET specific surface area of alumina was measured by filling 0.5 to 1 g of alumina crushed to 8 to 16 mesh into a U-shaped quartz sample cell at 250 ° C. under a 30% N 2 / He gas flow.
After holding the sample for 5 minutes and performing pretreatment of the sample, measurement can be performed by the BET method using the same gas at the temperature of liquid N 2 .

【0013】アンモニアの吸着量は、粗粉砕したアルミ
ナ100〜500mgを試料セルにセットしてHeガス
80ml/min.流通下400℃に昇温30分保持
後、100℃、10-2torr.で減圧脱気し、次に同
温度でアンモニアガスを約10ml注入して約70tor
r.とした条件で15分保持する。更に同温度で10-2
torr.で30分間減圧して物理吸着と思われるアン
モニアを脱気後、ヘリウムガス80ml/min.流通
下大気圧として室温まで降温した後、ヘリウムガス80
ml/min.流通下10℃/min.の速度で700℃
迄昇温しつつアルミナを通過して来たガスを四重極質量
分析計に連続的に導入して脱離アンモニア量を測定する
ことができる。
The adsorption amount of ammonia is set at 100 ° C. and 10 −2 torr after 100-500 mg of coarsely crushed alumina is set in a sample cell, heated to 400 ° C. for 30 minutes while flowing He gas at 80 ml / min. Degas under reduced pressure, and then inject about 10 ml of ammonia gas at the same temperature to about 70 torr.
r. And hold for 15 minutes. At the same temperature 10 -2
After depressurizing for 30 minutes by depressurizing at Torr and degassing ammonia which is considered to be physical adsorption, the temperature was lowered to room temperature while flowing helium gas at 80 ml / min.
700 ° C. at a flow rate of 10 ° C./min.
The gas that has passed through the alumina while the temperature was raised to the maximum is continuously introduced into the quadrupole mass spectrometer, and the amount of desorbed ammonia can be measured.

【0014】アルミナに白金を担持する方法としては、
焼成後のアルミナに白金塩の水溶液を含浸し、これを5
0〜1000℃の温度で乾燥及び/又は焼成する方法が
挙げられる。白金の原料塩としては特に限定はなく、白
金のハロゲン化物、水酸化物、硫酸塩、有機塩等を用い
ることができる。白金の担持量は、アルミナに対し、
0.01〜10重量%、好ましくは0.05〜5重量%
である。担持量が少なすぎると、酸化反応の活性が低下
する可能性があり、また、これ以上担持量を多くしても
反応特性に殆ど影響を与えないのでコストの面で不利と
なる。
As a method of supporting platinum on alumina,
The fired alumina is impregnated with an aqueous solution of a platinum salt, and
A method of drying and / or baking at a temperature of 0 to 1000 ° C. is exemplified. The raw material salt of platinum is not particularly limited, and halides, hydroxides, sulfates, organic salts and the like of platinum can be used. The supported amount of platinum is
0.01 to 10% by weight, preferably 0.05 to 5% by weight
It is. If the supported amount is too small, the activity of the oxidation reaction may be reduced, and if the supported amount is further increased, the reaction characteristics are hardly affected, which is disadvantageous in cost.

【0015】本発明の酸化触媒は、反応開始前に水素、
又は窒素、ヘリウム等の不活性ガス、或いはこれらの混
合ガスにより前処理することができる。本発明の酸化触
媒は、水素と炭化水素とを含有する混合ガスを、酸素含
有ガスと接触させて、該混合ガス中の水素を選択的に酸
化する反応に用いられる。前記の反応は300〜800
℃で行われることが好ましく、更に好ましくは400〜
700℃の温度範囲である。温度が高すぎると、水素の
選択率が減少し、炭化水素の燃焼が多くなるので好まし
くない。温度が低すぎる場合には、選択率にはあまり影
響を与えないが、活性が低下する可能性があるので好ま
しくない。
The oxidation catalyst of the present invention comprises hydrogen,
Alternatively, the pretreatment can be performed with an inert gas such as nitrogen or helium, or a mixed gas thereof. The oxidation catalyst of the present invention is used for a reaction in which a mixed gas containing hydrogen and a hydrocarbon is brought into contact with an oxygen-containing gas to selectively oxidize hydrogen in the mixed gas. The above reaction is 300-800
C., more preferably 400 to
The temperature range is 700 ° C. If the temperature is too high, the selectivity for hydrogen decreases, and the combustion of hydrocarbons increases, which is not preferable. If the temperature is too low, the selectivity is not significantly affected, but the activity may be undesirably reduced.

【0016】水素と炭化水素とを含有する混合ガスの具
体例としては、原料炭化水素を脱水素触媒により脱水素
反応させて得られる、脱水素された炭化水素、未反応原
料炭化水素及び水素からなる混合ガスが挙げられる。酸
素含有ガスとしては、分子状酸素を1〜100%含有す
るガスが用いられ、具体的には空気、酸素富化空気、不
活性ガスで希釈した空気などが好適に用いられる。ま
た、酸素含有ガスに水蒸気を含有させることもできる。
As a specific example of a mixed gas containing hydrogen and a hydrocarbon, a mixed gas obtained by subjecting a raw hydrocarbon to a dehydrogenation reaction with a dehydrogenation catalyst is obtained from a dehydrogenated hydrocarbon, an unreacted raw hydrocarbon and hydrogen. Mixed gas. As the oxygen-containing gas, a gas containing 1 to 100% of molecular oxygen is used, and specifically, air, oxygen-enriched air, air diluted with an inert gas, or the like is preferably used. Further, water vapor can be contained in the oxygen-containing gas.

【0017】本発明の選択的酸化触媒及び選択的酸化方
法が適用される代表的なプロセスは次のようなものであ
る。第1段反応器において脱水素触媒により原料炭化水
素の脱水素反応を行った後に、この第1段の反応層から
出た脱水素された炭化水素、未反応原料炭化水素及び水
素を含む混合ガスを第2段の反応層へ供給する。この第
2段反応層において、本発明の酸化触媒の存在下で、新
たに供給された酸素含有ガスを用いて、水素の選択的酸
化を行う。これにより、第1段の吸熱反応である脱水素
反応により低下した温度を上昇させ、且つ、水素を消費
することにより脱水素反応の平衡的制約を除去或いは緩
和する。更に、この第2段反応層から出たガスを第1段
反応層と同様の第3段の脱水素反応層に供給し、未反応
の炭化水素の脱水素を実施する。
A typical process to which the selective oxidation catalyst and the selective oxidation method of the present invention are applied is as follows. A mixed gas containing dehydrogenated hydrocarbons, unreacted raw material hydrocarbons and hydrogen discharged from the first-stage reaction layer after performing a dehydrogenation reaction of raw material hydrocarbons with a dehydrogenation catalyst in a first-stage reactor Is supplied to the second reaction layer. In the second-stage reaction layer, selective oxidation of hydrogen is performed using a newly supplied oxygen-containing gas in the presence of the oxidation catalyst of the present invention. As a result, the temperature lowered by the dehydrogenation reaction, which is the first endothermic reaction, is raised, and the equilibrium restriction of the dehydrogenation reaction is eliminated or relaxed by consuming hydrogen. Further, the gas discharged from the second-stage reaction layer is supplied to a third-stage dehydrogenation reaction layer similar to the first-stage reaction layer, and the unreacted hydrocarbon is dehydrogenated.

【0018】このときには、第2段反応層において、脱
水素反応に必要な温度に回復しており、且つ、平衡的制
約も解除或いは緩和されているので、第3段の脱水素反
応において更に高い収率を得ることが可能となる。必要
に応じて更に上記の選択的酸化反応層と脱水素反応層と
の組み合わせを追加して反応を実施することができる。
At this time, since the temperature required for the dehydrogenation reaction has been recovered in the second-stage reaction layer, and the equilibrium restriction has been released or relaxed, the temperature is higher in the third-stage dehydrogenation reaction. It is possible to obtain a yield. If necessary, a reaction can be carried out by further adding a combination of the above-described selective oxidation reaction layer and dehydrogenation reaction layer.

【0019】一般に脱水素反応では水蒸気を共存させる
ことが多いが、上記反応プロセスにおいても水蒸気を共
存させることができる。上記脱水素プロセスの代表的具
体例としてエチルベンゼンの脱水素プロセスを挙げるこ
とができる。例えば、鉄とアルカリ金属を主要活性成分
とする鉄系触媒が存在する第1段反応層に、エチルベン
ゼンと水蒸気の混合ガスを供給し、400℃〜800
℃、好ましくは500℃〜700℃の温度範囲、0.0
5〜10気圧(絶対圧、約5kPa〜約1MPa)の圧
力範囲で脱水素反応を行う。この後、未反応エチルベン
ゼン、生成したスチレン、水素、水蒸気の混合ガスを第
2段反応層に供給する。第2段反応層で本発明の酸化触
媒の存在下、新たに供給された酸素含有ガスを用いて、
300〜800℃、好ましくは400〜700℃の温度
範囲、0.05〜10気圧(絶対圧、約5kPa〜約1
MPa)の圧力範囲で水素の選択的酸化を行う。次に、
この反応ガスを第3段反応層に供給し、ここで再び鉄系
触媒により未反応のエチルベンゼンの脱水素を行い、よ
り高い収率でスチレンを得る。
In general, steam is often made to coexist in the dehydrogenation reaction, but steam can also be made to coexist in the above reaction process. A typical example of the above dehydrogenation process is a dehydrogenation process of ethylbenzene. For example, a mixed gas of ethylbenzene and water vapor is supplied to a first-stage reaction layer in which an iron-based catalyst containing iron and an alkali metal as main active components is present.
° C, preferably in the temperature range of 500 ° C to 700 ° C, 0.0
The dehydrogenation reaction is performed in a pressure range of 5 to 10 atm (absolute pressure, about 5 kPa to about 1 MPa). Thereafter, a mixed gas of unreacted ethylbenzene, generated styrene, hydrogen, and steam is supplied to the second-stage reaction layer. In the second stage reaction layer, using the newly supplied oxygen-containing gas in the presence of the oxidation catalyst of the present invention,
Temperature range of 300 to 800 ° C, preferably 400 to 700 ° C, 0.05 to 10 atm (absolute pressure, about 5 kPa to about 1
The selective oxidation of hydrogen is performed in the pressure range of MPa). next,
This reaction gas is supplied to the third-stage reaction layer, where the unreacted ethylbenzene is dehydrogenated again with an iron-based catalyst to obtain styrene in a higher yield.

【0020】このように本発明の方法によれば、平衡的
制約が除かれ或いは緩和され、かつ反応温度の低下を補
償することができるため、通常の脱水素反応に比較して
遙かに高い収率で脱水素反応を行うことができる。
As described above, according to the method of the present invention, the equilibrium restriction is eliminated or relaxed, and the reduction of the reaction temperature can be compensated. Therefore, the method is much higher than the ordinary dehydrogenation reaction. The dehydrogenation reaction can be performed in a yield.

【0021】[0021]

【実施例】以下に示す実施例により、本発明を更に具体
的に説明するが、本発明はこれらの実施例により限定さ
れるものではない。 実施例1 (触媒調製)硝酸アルミニウムAl(NO33・9H2
Oの水溶液に3Nのアンモニア水を撹拌しながら30℃
以下の温度で徐々に加え、水酸化物の沈殿を発生させ
る。沈殿物の生成が終了した時点でアンモニア水の添加
を止め、次いで生成した水酸化アルミニウムの沈殿物を
濾別し、水で洗浄した。得られた沈殿物を 乾燥器に入
れ120℃で1晩乾燥した。乾燥後の沈殿物をマッフル
炉に入れ、700℃で5時間焼成した。この焼成品に少
量の水を加えニ−ダ−で2時間湿式擂潰後押し出し成型
機にて平均粒径2φ×2mmのペレットとした。このペ
レットを乾燥器で120℃1晩乾燥後、マッフル炉で1
300及び1400℃で3時間それぞれ焼成した。この
時の焼成ファクターと得られたアルミナのBET比表面
積及びNH3吸着量は、1300℃焼成品が4.00
5、3.2m2/g及び4.5μmol/g、1400
℃焼成品が2.34、1.4m2/g及び2.8μmo
l/gであった。
EXAMPLES The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to these examples. Example 1 (Catalyst preparation) of aluminum nitrate Al (NO 3) 3 · 9H 2
30 ° C. while stirring 3N ammonia water in an aqueous solution of O
Add slowly at the following temperatures to cause hydroxide precipitation. When the formation of the precipitate was completed, the addition of aqueous ammonia was stopped, and then the formed precipitate of aluminum hydroxide was separated by filtration and washed with water. The obtained precipitate was placed in a dryer and dried at 120 ° C. overnight. The dried precipitate was placed in a muffle furnace and calcined at 700 ° C. for 5 hours. A small amount of water was added to this calcined product, wet crushed with a kneader for 2 hours, and extruded into a pellet having an average particle size of 2φ × 2 mm using an extruder. The pellets were dried in a dryer at 120 ° C. overnight, and then dried in a muffle furnace for 1 hour.
Baking was performed at 300 and 1400 ° C. for 3 hours, respectively. At this time, the firing factor, the BET specific surface area of the obtained alumina, and the NH3 adsorption amount were 4.00 for the product fired at 1300 ° C.
5, 3.2 m 2 / g and 4.5 μmol / g, 1400
2.34, 1.4 m 2 / g and 2.8 μmo
1 / g.

【0022】次に焼成したアルミナにPtとして0.2
wt%相当量の塩化白金酸六水和物水溶液を均一に添加
してロータリーエバポレーターにて60℃で減圧乾燥し
た。乾燥品は、乾燥器にて120℃で1晩乾燥後、マッ
フル炉中650℃で3時間焼成して担体焼成温度の異な
る0.2wt%Pt/Al23触媒を得た。 (反応)上記のようにして調製した触媒1mlを上下は
触媒と略同粒径の石英チップを充填した内径約7mmの
石英反応管に充填した後、水素と窒素の混合ガス流通下
500℃で1時間還元処理を施した。還元処理後窒素ガ
スで反応器系内を置換してから所望の温度に触媒層温度
を変化した。次いで、スチレン、エチルベンゼン、水、
水素及び空気混合ガスを反応管に導入して反応を開始し
た。混合ガスの組成は、
Next, 0.2% of Pt was added to the calcined alumina.
An aqueous solution of chloroplatinic acid hexahydrate in an amount equivalent to wt% was uniformly added, and dried under reduced pressure at 60 ° C. using a rotary evaporator. The dried product was dried in a dryer at 120 ° C. overnight, and then fired in a muffle furnace at 650 ° C. for 3 hours to obtain a 0.2 wt% Pt / Al 2 O 3 catalyst having a different carrier firing temperature. (Reaction) 1 ml of the catalyst prepared as described above was filled in a quartz reaction tube having an inner diameter of about 7 mm filled with quartz chips having a particle size substantially the same as that of the catalyst at the top and bottom, and then heated at 500 ° C. under a mixed gas flow of hydrogen and nitrogen. The reduction treatment was performed for 1 hour. After the reduction treatment, the inside of the reactor system was replaced with nitrogen gas, and then the temperature of the catalyst layer was changed to a desired temperature. Then, styrene, ethylbenzene, water,
The reaction was started by introducing a mixed gas of hydrogen and air into the reaction tube. The composition of the mixed gas is

【0023】[0023]

【数5】 スチレン/エチルベンゼン/水/水素/酸素/窒素=1
/1/12/1/0.52/1.95 (モル比) である。また、反応器における空間速度は
## EQU5 ## Styrene / ethylbenzene / water / hydrogen / oxygen / nitrogen = 1
/1/12/1/0.52/1.95 (molar ratio). The space velocity in the reactor is

【0024】[0024]

【数6】 GHSV=23900hr-1(0℃、1気圧) LHSV(スチレン+エチルベンゼン)=15hr-1 である。反応開始0.5時間後から反応管出口のガス及
び液受器にトラップされた液をガスクロマトグラフで分
析を行い触媒を評価した。結果を表−1〜2に示す。
GHSV = 23900 hr −1 (0 ° C., 1 atm) LHSV (styrene + ethylbenzene) = 15 hr −1 . 0.5 hours after the start of the reaction, the gas at the outlet of the reaction tube and the liquid trapped in the liquid receiver were analyzed by gas chromatography to evaluate the catalyst. The results are shown in Tables 1-2.

【0025】なお表中『SM+EB燃焼率(%)』は、
以下の手法で算出した。
In the table, "SM + EB combustion rate (%)" is
It was calculated by the following method.

【0026】[0026]

【数7】 但し、SM、EBはそれぞれスチレン、エチルベンゼン
のモル数を表す。
(Equation 7) Here, SM and EB represent the number of moles of styrene and ethylbenzene, respectively.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 比較例1 (触媒調製)濃硝酸6.6wt%を含む水溶液66.8
gに7.6gの塩化スズを加え溶解した液をベーマイト
アルミナ(Kaiser)を1139.6gに加え、この溶液を
15秒間徐々混合し、続いて5分間激しく混合した。得
られた物質を直径3mmに押し出し成型した。次に押し
出し物は95℃の乾燥器中で2時間乾燥した。乾燥した
押し出し品は石英管中空気流通下、350℃で1時間焼
成した。
[Table 2] Comparative Example 1 (Preparation of catalyst) 66.8 aqueous solution containing 6.6 wt% of concentrated nitric acid
To 1399.6 g of boehmite alumina (Kaiser) was added a solution obtained by adding 7.6 g of tin chloride to g, and the solution was mixed gently for 15 seconds, followed by vigorous mixing for 5 minutes. The resulting material was extruded to a diameter of 3 mm. The extrudate was then dried in a 95 ° C. oven for 2 hours. The dried extruded product was fired at 350 ° C. for 1 hour in a quartz tube under air flow.

【0029】更に、空気流通下600℃に昇温して3時
間焼成した。600℃で3時間焼成した押し出し品は、
更にマッフル炉にて6時間で1230℃に昇温して3時
間保持後、6時間にわたって徐々に室温迄冷却した。本
方法での焼成ファクターと得られた押し出し品のBET
比表面積及びNH3吸着量は、それぞれ5.1705、
10.8m2/g及び3.7μmol/gであった。
Further, the temperature was raised to 600 ° C. in a stream of air and calcined for 3 hours. Extruded products fired at 600 ° C for 3 hours
Further, the temperature was raised to 1230 ° C. in a muffle furnace in 6 hours, maintained for 3 hours, and then gradually cooled to room temperature over 6 hours. Baking factor of this method and BET of the extruded product obtained
The specific surface area and NH 3 adsorption amount were 5.1705, respectively.
10.8 m 2 / g and 3.7 μmol / g.

【0030】次に、水142.5gにPt2.54wt
%を含む塩化白金酸溶液12.91g、Li0.88w
t%を含む硝酸リチウム溶液37.27g及び7.3gの
濃硝酸を加えた混合溶液から所定量をガラス製のスチ−
ムジャケトの蒸発器に加えた。その後、1230℃で焼
成された押し出し品を0.85〜1.0mmに破砕した
物50gを蒸発器に加え、蒸発器を室温で15分間回転
し、スチームを蒸発器のジャケットに導入した。1L/
min.の窒素を蒸発器の口にパージしながら蒸発器を
2時間回転後、水蒸気を止めて含浸物を取り出し、乾燥
器中で150℃の温度で2時間乾燥し、その後石英管中
で焼成した。含浸物の焼成は、65℃の温度に加熱した
水バブラーを通してバブルした空気流通下、室温から6
50℃に2時間で昇温した。650℃に達した時、空気
流通下、同温度で2時間維持した。2時間保持後、水バ
ブラ−をバイパスした空気流通下、650℃で1時間焼
成してから室温に冷却して、0.2wt%Pt-0.5
wt%Sn-0.2wt%Li-Al23触媒得た。
Next, Pt 2.54 wt.
% Chloroplatinic acid solution 12.91 g, Li0.88w
A predetermined amount was added from a mixed solution to which 37.27 g of a lithium nitrate solution containing t% and 7.3 g of concentrated nitric acid were added.
Added to the Mujaquet evaporator. Thereafter, 50 g of the extruded product fired at 1230 ° C. crushed to 0.85 to 1.0 mm was added to the evaporator, the evaporator was rotated at room temperature for 15 minutes, and steam was introduced into the evaporator jacket. 1L /
After rotating the evaporator for 2 hours while purging the nitrogen of the evaporator into the mouth of the evaporator, the steam was stopped and the impregnated material was taken out, dried at 150 ° C. for 2 hours in a dryer, and then fired in a quartz tube. did. The impregnation was calcined at room temperature to 6 ° C under a stream of air bubbled through a water bubbler heated to a temperature of 65 ° C.
The temperature was raised to 50 ° C. in 2 hours. When the temperature reached 650 ° C., it was maintained at the same temperature for 2 hours under air flow. After holding for 2 hours, the mixture was calcined at 650 ° C. for 1 hour under a flow of air bypassing a water bubbler, then cooled to room temperature, and 0.2 wt% Pt-0.5
yield wt% Sn-0.2wt% Li- Al 2 O 3 catalyst.

【0031】(反応)実施例1と同一条件で評価した結
果を表−3に示す。
(Reaction) The results of evaluation under the same conditions as in Example 1 are shown in Table 3.

【0032】[0032]

【表3】 比較例2 担体アルミナが2150℃で溶融して得たアルミナであ
る以外は実施例1と同様に調製し評価した結果を表−4
に示す。 本方法での焼成ファクターと得たアルミナの
BET比表面積及びとNH3吸着量は、−10.14、
0.1m2/g以下及び1μmol/g以下であった。
[Table 3] Comparative Example 2 Table 4 shows the results of preparation and evaluation in the same manner as in Example 1 except that the carrier alumina was alumina obtained by melting at 2150 ° C.
Shown in The calcination factor, the BET specific surface area of the obtained alumina and the NH3 adsorption amount by this method were −10.14,
It was 0.1 m 2 / g or less and 1 μmol / g or less.

【0033】[0033]

【表4】 比較例3 (触媒調製)硝酸アルミニウムAl(NO33・9H2
Oの水溶液に3Nのアンモニア水を撹拌しながら30℃
以下の温度で徐々に加え、水酸化物の沈殿を発生させ
る。沈殿物の生成が終了した時点でアンモニア水の添加
を止め、次いで生成した水酸化アルミニウムの沈殿物を
濾別し、水で洗浄した。得られた沈殿物を 乾燥器に入
れ120℃で1晩乾燥した。乾燥後の沈殿物をマッフル
炉に入れ、700℃で5時間焼成した。この焼成品に少
量の水を加えニ−ダ−で2時間湿式擂潰後押し出し成型
機にて平均粒径2φ×2mmのペレットとした。
[Table 4] Comparative Example 3 (Catalyst preparation) of aluminum nitrate Al (NO 3) 3 · 9H 2
30 ° C. while stirring 3N ammonia water in an aqueous solution of O
Add slowly at the following temperatures to cause hydroxide precipitation. When the formation of the precipitate was completed, the addition of aqueous ammonia was stopped, and then the formed precipitate of aluminum hydroxide was separated by filtration and washed with water. The obtained precipitate was placed in a dryer and dried at 120 ° C. overnight. The dried precipitate was placed in a muffle furnace and calcined at 700 ° C. for 5 hours. A small amount of water was added to this calcined product, wet crushed with a kneader for 2 hours, and extruded into a pellet having an average particle size of 2φ × 2 mm using an extruder.

【0034】このペレットを乾燥器で120℃1晩乾燥
後、マッフル炉で1200℃で3時間それぞれ焼成し
た。本方法での焼成ファクターと得られたアルミナのB
ET比表面積及びNH3吸着量は、5.67、5.0m2
g及び6.7μmol/gであった。アルミナにPtと
して0.2wt%相当量の塩化白金酸六水和物水溶液を
均一に添加してロータリーエバポレーターにて60℃で
減圧乾燥した。乾燥品は、乾燥器にて120℃で1晩乾
燥後、マッフル炉中650℃で3時間焼成して担体焼成
温度の異なる0.2wt%Pt/Al23触媒を得た。
The pellets were dried in a dryer at 120 ° C. overnight, and then fired in a muffle furnace at 1200 ° C. for 3 hours. Calcination factor and B of the obtained alumina by this method
The ET specific surface area and the NH 3 adsorption amount were 5.67, 5.0 m 2 /
g and 6.7 μmol / g. An aqueous solution of chloroplatinic acid hexahydrate equivalent to 0.2 wt% as Pt was uniformly added to alumina, and dried under reduced pressure at 60 ° C. using a rotary evaporator. The dried product was dried in a dryer at 120 ° C. overnight, and then fired in a muffle furnace at 650 ° C. for 3 hours to obtain a 0.2 wt% Pt / Al 2 O 3 catalyst having a different carrier firing temperature.

【0035】(反応)実施例1と同一条件で評価した結
果を表−5に示す。
(Reaction) The results of evaluation under the same conditions as in Example 1 are shown in Table-5.

【0036】[0036]

【表5】 実施例2 担体アルミナの焼成が1200℃で8時間にした以外は
実施例1と同様に調製し評価した結果を表−6に示す。
[Table 5] Example 2 The results of preparation and evaluation in the same manner as in Example 1 except that the calcination of the carrier alumina was performed at 1200 ° C. for 8 hours are shown in Table-6.

【0037】本方法での焼成ファクターと得られたアル
ミナのBET比表面積及びNH3吸着量は、それぞれ
0.12、4.7m2/g及び5.0μmol/gであっ
た。
The sintering factor and the BET specific surface area and the NH 3 adsorption amount of the obtained alumina were 0.12, 4.7 m 2 / g and 5.0 μmol / g, respectively.

【0038】[0038]

【表6】 [Table 6]

【0039】[0039]

【発明の効果】本発明により、高効率かつ選択的に混合
炭化水素ガス中の水素を酸化することができ、特にエチ
ルベンゼンを脱水素してスチレンを製造する方法に有用
である。
According to the present invention, hydrogen in a mixed hydrocarbon gas can be oxidized with high efficiency and selectively, and it is particularly useful for a method for producing styrene by dehydrogenating ethylbenzene.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】水素及び炭化水素を含有する混合ガス中の
水素を選択的に酸化するための触媒であって、(1)ア
ルミナ上に白金を担持させたものであり、(2)該アル
ミナは、次式で求めた焼成ファクターが、0〜5の範囲
で焼成したアルミナであり、 【数1】式: CF=A−(B−1000)xCxD CF;焼成ファクター A ;定数(1)=9.0 B ;焼成温度(℃) C ;焼成時間(hr) D ;定数(2)=0.00555 (3)尚かつ、該アルミナのBET比表面積が0.5〜
6m2/gであることを特徴とする水素の酸化触媒。
1. A catalyst for selectively oxidizing hydrogen in a mixed gas containing hydrogen and hydrocarbons, wherein (1) platinum is supported on alumina, and (2) the alumina Is alumina calcined in the range of 0 to 5 in the calcining factor obtained by the following equation. Formula: CF = A- (B-1000) xCxD CF; calcining factor A; constant (1) = 9.0 B; calcination temperature (° C.) C; calcination time (hr) D; constant (2) = 0.00555 (3) Further, the BET specific surface area of the alumina is 0.5 to
A catalyst for oxidizing hydrogen, which is 6 m 2 / g.
【請求項2】水素及び炭化水素を含有する混合ガス中の
水素を選択的に酸化するための触媒であって、(1)ア
ルミナ上に白金を担持させたものであり、(2)該アル
ミナは、次式で求めた焼成ファクターが、0〜5の範囲
で焼成したアルミナであり、 【数2】式: CF=A−(B−1000)xCxD CF;焼成ファクター A ;定数(1)=9.0 B ;焼成温度(℃) C ;焼成時間(hr) D ;定数(2)=0.00555 (3)尚かつ、該アルミナのアンモニア吸着量が5μmo
l/g以下であること 特徴とする水素の酸化触媒。
2. A catalyst for selectively oxidizing hydrogen in a mixed gas containing hydrogen and hydrocarbons, wherein (1) platinum is supported on alumina, and (2) the alumina is Is alumina calcined in the range of 0 to 5 in the calcining factor determined by the following equation: Formula: CF = A− (B−1000) × C × D CF; Calcining Factor A; Constant (1) = 9.0 B; calcination temperature (° C.) C; calcination time (hr) D; constant (2) = 0.00555 (3) Further, the ammonia adsorption amount of the alumina is 5 μmo.
An oxidation catalyst for hydrogen, which is not more than 1 / g.
【請求項3】白金担持量が、アルミナに対して0.01
〜10重量%である請求項1又は2に記載の酸化触媒。
3. A method according to claim 1, wherein the amount of platinum carried is 0.01 to alumina.
The oxidation catalyst according to claim 1, wherein the amount is 10 to 10% by weight.
【請求項4】炭化水素及び水素を含有する混合ガスを、
酸化触媒の存在下で酸素含有ガスと接触させて、該混合
ガス中の水素を選択的に酸化させる方法において、該酸
化触媒として請項1〜3のいずれか1項に記載の酸化触
媒を用いることを特徴とする水素の選択的酸化方法。
4. A mixed gas containing hydrocarbon and hydrogen,
In the method of contacting with an oxygen-containing gas in the presence of an oxidation catalyst to selectively oxidize hydrogen in the mixed gas, the oxidation catalyst according to any one of claims 1 to 3 is used as the oxidation catalyst. A method for selectively oxidizing hydrogen, comprising the steps of:
【請求項5】300〜800℃の温度範囲で炭化水素と
水素の混合ガスと酸素含有ガスとを接触させる請求項4
に記載の方法。
5. A mixed gas of hydrocarbon and hydrogen and an oxygen-containing gas in a temperature range of 300 to 800 ° C.
The method described in.
【請求項6】原料炭化水素を脱水素反応させ、得られた
脱水素された炭化水素、未反応の原料炭化水素、及び水
素を含有する混合ガスを、酸化触媒の存在下で酸素含有
ガスと接触させて、該混合ガス中の水素を選択的に酸化
させ、その後、更に未反応原料炭化水素を脱水素反応さ
せる炭化水素の脱水素反応において、該酸化触媒として
請求項1〜3のいずれか1項に記載された酸化触媒を用
いることを特徴とする炭化水素の脱水素方法。
6. A raw material hydrocarbon is subjected to a dehydrogenation reaction, and a mixed gas containing the obtained dehydrogenated hydrocarbon, unreacted raw material hydrocarbon, and hydrogen is mixed with an oxygen-containing gas in the presence of an oxidation catalyst. Contacting to selectively oxidize hydrogen in the mixed gas, and then further dehydrogenating unreacted raw material hydrocarbons, as an oxidation catalyst in the hydrocarbon dehydrogenation reaction according to any one of claims 1 to 3. A method for dehydrogenating a hydrocarbon, comprising using the oxidation catalyst according to claim 1.
【請求項7】原料炭化水素がエチルベンゼンであり、脱
水素された炭化水素がスチレンである請求項6に記載の
炭化水素の脱水素方法。
7. The method according to claim 6, wherein the raw material hydrocarbon is ethylbenzene and the dehydrogenated hydrocarbon is styrene.
【請求項8】脱水素反応の温度範囲が400〜800℃
であり、酸化反応の温度が300〜800℃である請求
項6又は7に記載の炭化水素の脱水素方法。
8. The temperature range of the dehydrogenation reaction is 400 to 800 ° C.
The hydrocarbon dehydrogenation method according to claim 6 or 7, wherein the temperature of the oxidation reaction is 300 to 800 ° C.
JP10144997A 1997-04-18 1997-04-18 Hydrogen oxidation catalyst, hydrogen selective oxidation method, and hydrocarbon dehydrogenation method Expired - Lifetime JP3823433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10144997A JP3823433B2 (en) 1997-04-18 1997-04-18 Hydrogen oxidation catalyst, hydrogen selective oxidation method, and hydrocarbon dehydrogenation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10144997A JP3823433B2 (en) 1997-04-18 1997-04-18 Hydrogen oxidation catalyst, hydrogen selective oxidation method, and hydrocarbon dehydrogenation method

Publications (2)

Publication Number Publication Date
JPH10291944A true JPH10291944A (en) 1998-11-04
JP3823433B2 JP3823433B2 (en) 2006-09-20

Family

ID=14301010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10144997A Expired - Lifetime JP3823433B2 (en) 1997-04-18 1997-04-18 Hydrogen oxidation catalyst, hydrogen selective oxidation method, and hydrocarbon dehydrogenation method

Country Status (1)

Country Link
JP (1) JP3823433B2 (en)

Also Published As

Publication number Publication date
JP3823433B2 (en) 2006-09-20

Similar Documents

Publication Publication Date Title
JP3345783B2 (en) Synthesis gas production method
JP3553066B2 (en) Process for the catalytic decomposition of nitrous oxide contained in pure or gaseous mixtures
JPS6041989B2 (en) Method for reactivating used silver catalyst
KR20140108264A (en) Zinc and/or manganese aluminate catalyst useful for alkane dehydrogenation
JP3434512B2 (en) Dehydrogenation method
JPH0640962B2 (en) Method for producing modified copper- and zinc-containing catalyst composition and method for producing methanol using the catalyst composition
JPS61225140A (en) Selective oxidation of hydrogen
JPH07509398A (en) Silver-containing aluminum oxide supported catalyst and process for the catalytic cracking of dinitrogen monoxide, pure or contained in a gas mixture
JPH03501100A (en) Method for producing a catalyst capable of promoting oxidative conversion of methane to higher hydrocarbons
RU2346741C2 (en) Oxidation catalyst and its preparation
JP2002511017A (en) Use of Ce / Zr mixed oxide phase for the production of styrene by dehydrogenation of ethylbenzene
JP3860625B2 (en) Hydrogen oxidation catalyst, hydrogen selective oxidation method, and hydrocarbon dehydrogenation method
RU2387478C2 (en) Ethane oxidation catalyst and method where said catalyst is used
JPS60248629A (en) Preparation of lower olefin
JP3823433B2 (en) Hydrogen oxidation catalyst, hydrogen selective oxidation method, and hydrocarbon dehydrogenation method
JP3831444B2 (en) Hydrogen selective oxidation catalyst, hydrogen selective oxidation method, and hydrocarbon dehydrogenation method
RU2350385C2 (en) Mixed metal oxide catalyst
WO1999003806A1 (en) Process for producing styrene
JP3302402B2 (en) Ammonia decomposition catalyst
RU2627667C1 (en) Catalyst with low content of chrome oxide for isobutane dehydrogenation and method for dehydrogenating isobutane using it
JP3757624B2 (en) Hydrogen selective oxidation catalyst, hydrogen selective oxidation method, and hydrocarbon dehydrogenation method
JPH03106445A (en) Catalyst for preparing ammonia
JP3801352B2 (en) Method for producing oxidation catalyst, oxidation catalyst, and hydrocarbon dehydrogenation method
JPH02196733A (en) Production of ethylbenzene and styrene
JP3794235B2 (en) Hydrogen selective oxidation catalyst, hydrogen selective oxidation method, and hydrocarbon dehydrogenation method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4