JPH10290572A - Power converter - Google Patents

Power converter

Info

Publication number
JPH10290572A
JPH10290572A JP9095548A JP9554897A JPH10290572A JP H10290572 A JPH10290572 A JP H10290572A JP 9095548 A JP9095548 A JP 9095548A JP 9554897 A JP9554897 A JP 9554897A JP H10290572 A JPH10290572 A JP H10290572A
Authority
JP
Japan
Prior art keywords
power converter
phase
valve
circuit
current limiting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9095548A
Other languages
Japanese (ja)
Inventor
Shigeta Ueda
茂太 上田
Hironori Kodama
弘則 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9095548A priority Critical patent/JPH10290572A/en
Publication of JPH10290572A publication Critical patent/JPH10290572A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inverter Devices (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a power converter in which the inductance of a DC wiring is decreased while protecting the power converter against overcurrent due to short circuit of arm by providing a current limit circuit for each phase on condition that a structure for making uniform the capacitance of unit DC capacitor for each phase is employed. SOLUTION: Each arm 21, 22, 23, 31, 32, 33 constituting a three-phase converter comprises a series connection of a plurality of GTOs required for high voltage operation. A DC smoothing capacitor 400 comprises a series parallel connection of unit capacitors 411, 412, 421, 422, 423, and the like, required for high capacity and high voltage operation. A current limit circuit 11, 12, 13 is connected between the capacitor 400 and a valve 21, 22, 23. The current limit circuit 11, 12, 13 comprises a parallel connection of a reactor and a diode. Since a corresponding current limit circuit 11, 12, 13 functions even when arm short circuit takes place in any phase of any valve, a power converter can be protected surely against overcurrent. Furthermore, wiring inductance can be minimized and made uniform for each phase of each valve 21, 22, 23.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は自励式電力変換器に
関し、特に直流電圧を数十kVから数百kVという高い
電圧で使用する変換器において、アーム短絡による過電
流を抑制し変換器を確実に保護可能にした電力変換装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a self-excited power converter, and more particularly, to a converter using a DC voltage at a high voltage of several tens kV to several hundred kV, suppressing overcurrent due to arm short-circuit and ensuring the conversion. The present invention relates to a power converter that can be protected.

【0002】[0002]

【従来の技術】自励式電力変換器のアーム短絡による過
電流保護方式として、低圧インバータでは通常ヒューズ
による保護方式が使用される。しかし、直流電圧が高く
なると保護協調が可能なヒューズがなく、この方式では
保護ができなくなる。高電圧自励式変換器ではリアクト
ルとダイオードの並列体により短絡電流の傾斜をいった
ん抑制してその後ゲートブロックにより変換器を保護す
る方式が一般に使用されている。この方式ではリアクト
ルのインダクタンスを大きくし、変換器動作中はリアク
トルとダイオードを循環する電流を流しておき、過電流
が発生したらダイオードが逆回復し、リアクトルで電流
の上昇が抑制されるという原理による。この限流回路は
通常は、三相変換器の場合には直流平滑コンデンサとバ
ルブの中間に接続され、三相に共通に1回路設置する。
2. Description of the Related Art A low-voltage inverter usually employs a protection method using a fuse as an overcurrent protection method due to an arm short circuit of a self-excited power converter. However, when the DC voltage increases, there is no fuse that can perform protection coordination, and protection cannot be performed by this method. In a high-voltage self-excited converter, a method is generally used in which a slope of a short-circuit current is once suppressed by a parallel body of a reactor and a diode, and then the converter is protected by a gate block. In this system, the inductance of the reactor is increased, a current circulating between the reactor and the diode is passed during the operation of the converter, and if an overcurrent occurs, the diode reversely recovers and the rise of the current is suppressed by the reactor. . Usually, this current limiting circuit is connected between a DC smoothing capacitor and a valve in the case of a three-phase converter, and one circuit is provided commonly for the three phases.

【0003】[0003]

【発明が解決しようとする課題】直流電圧が数十kVか
ら数百kVという高電圧の自励式変換器では、バルブの
スイッチ素子を直列に接続して高電圧化に対応する。ま
た、直流平滑コンデンサは単位コンデンサを直列に接続
し、容量を増やすためにさらに並列に接続する。単位コ
ンデンサとしては通常耐電圧10kV程度,容量10μ
F程度のものが使用されるから、例えば直流送電を想定
した場合、250kV程度の直流電圧となり、これに対
応するためには少なくとも25直列は必要である。ま
た、総容量として100μF程度が必要であるため、並
列数としては100μF/(10μF/25直列)=2
50となり、合計25×250=6250個の単位コン
デンサを必要とする。単位コンデンサの電圧アンバラン
ス,電流アンバランスを考慮するとさらに個数が増加す
ることが予想される。6250個のコンデンサの総体積
はかなり大きくなる。このコンデンサをバルブの三相分
に共通に限流回路を介して接続することを考える。図2
には従来のバルブの構成を示す。三相変換器を構成する
各アーム21,22,23,31,32,33はGTO
を複数個直列接続して高電圧化する。直流平滑コンデン
サ400は単位コンデンサ411,412,413,4
21,422,423などを直並列に接続して大容量,
高電圧化する。図では6個の単位コンデンサで代表して
示しているが、実際にはさらに直並列に接続している。
コンデンサ400とバルブ21,22,23の間に限流
回路11を接続する。限流回路11を三相に共通に設け
ているため、図示のA,B,C部の配線がかなり長く、
また各相によって配線長が異なる。相によってはコンデ
ンサからバルブまでの距離がかなり長くなり、直流回路
の配線インダクタンスが大きくなる。すると、アームを
構成するスイッチ素子がターンオフする際の電圧跳ね上
がりが大きくなるため、素子耐圧の関係で遮断可能な電
流に制約を受けることになる。配線インダクタンスを低
減するために単位コンデンサをできるだけ三相分均等に
なるように分散配置させることを考える。ところが、限
流回路は三相分に共通に利用するため、分散配置したコ
ンデンサから一旦限流回路を通って、各相のアームへ分
岐することになる。この場合も、直流回路の配線インダ
クタンスが増加する。本発明の目的は、直流配線インダ
クタンスを小さくしかつアーム短絡による過電流を確実
に保護できる電力変換装置を提供することである。
In a self-excited converter having a high DC voltage of several tens kV to several hundred kV, the switching elements of the valves are connected in series to cope with the high voltage. Also, the DC smoothing capacitor is connected in series with unit capacitors, and further connected in parallel to increase the capacity. As a unit capacitor, usually a withstand voltage of about 10 kV and a capacity of 10 μ
Since a voltage of about F is used, for example, assuming DC power transmission, a DC voltage of about 250 kV is required, and at least 25 series are required to cope with this. Further, since a total capacitance of about 100 μF is required, the number of parallel circuits is 100 μF / (10 μF / 25 series) = 2
50, which requires a total of 25 × 250 = 6250 unit capacitors. Considering the voltage imbalance and the current imbalance of the unit capacitors, it is expected that the number will increase further. The total volume of the 6250 capacitors will be quite large. It is assumed that this capacitor is commonly connected to the three phases of the valve via a current limiting circuit. FIG.
1 shows a configuration of a conventional valve. The arms 21, 22, 23, 31, 32, and 33 constituting the three-phase converter are GTO
Are connected in series to increase the voltage. The DC smoothing capacitor 400 is composed of unit capacitors 411, 412, 413, 4
21, 422, 423, etc. connected in series and parallel
Increase the voltage. In the figure, six unit capacitors are shown as a representative, but actually they are further connected in series and parallel.
The current limiting circuit 11 is connected between the condenser 400 and the valves 21, 22, 23. Since the current limiting circuit 11 is provided in common for the three phases, the wiring of the A, B, and C parts shown in the drawing is considerably long.
Further, the wiring length differs depending on each phase. In some phases, the distance from the capacitor to the valve is considerably long, and the wiring inductance of the DC circuit is large. Then, since the voltage jump when the switch element constituting the arm is turned off becomes large, the current that can be cut off is restricted due to the element withstand voltage. To reduce the wiring inductance, consider distributing the unit capacitors so as to be as uniform as possible for three phases. However, since the current limiting circuit is used in common for the three phases, the current is branched from the distributed capacitors to the arm of each phase through the current limiting circuit. Also in this case, the wiring inductance of the DC circuit increases. SUMMARY OF THE INVENTION An object of the present invention is to provide a power converter capable of reducing DC wiring inductance and reliably protecting an overcurrent caused by arm short-circuit.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、単位直流コンデンサを各相にとって容量が均等にす
るような構造を前提に、各相ごとに限流回路を設ける。
こうすることで、体積の大きな直流コンデンサから一旦
共通の限流回路を通って各相のアームへ再び分岐するよ
うな配線インダクタンスの大きくなる構造を避けること
が可能となる。
In order to achieve the above-mentioned object, a current limiting circuit is provided for each phase on the premise that a unit DC capacitor has the same capacity for each phase.
By doing so, it is possible to avoid a structure in which the wiring inductance becomes large, such as a branch from a large-capacity DC capacitor to the arm of each phase once through a common current limiting circuit.

【0005】[0005]

【発明の実施の形態】以下、本発明の実施の形態を図を
用いて説明する。ここでは、自己消弧型スイッチング素
子としてはIGBT,GTO(ゲートターンオフサイリ
スタ)などが考えられるがここではGTOを例にとり説
明する。
Embodiments of the present invention will be described below with reference to the drawings. Here, IGBT, GTO (gate turn-off thyristor) and the like can be considered as the self-extinguishing type switching element. Here, GTO will be described as an example.

【0006】図1に本発明の第1の実施例を示す。三相
変換器を構成する各アーム21,22,23,31,3
2,33はGTOを複数個直列接続して高電圧化する。
直流平滑コンデンサ400は単位コンデンサ411,4
12,413,421,422,423などを直並列に
接続して大容量,高電圧化する。図では6個の単位コン
デンサで代表して示しているが、実際にはさらに直並列
に接続している。コンデンサ400とバルブ21,2
2,23の間に限流回路11,12,13を接続する。
各相ごとに分散配置した単位コンデンサに対応させて限
流回路を設けている。限流後のゲートブロック信号を発
生させるため、各相ごとに電流検出器111,121,
131を限流回路とバルブの間に挿入する。限流回路1
1から13はリアクトルとダイオードの並列接続体で構
成する。この限流回路の動作を図3を用いて説明する。
限流回路13はリアクトル1302とダイオード1301を
並列接続した回路で構成し、通常の運転状態ではアーム
23のオン,オフに伴い、リアクトル1302とダイオ
ード1301を環流する電流IDCLが常時流れてい
る。リアクトル1302のインダクタンスを大きく選べ
ば、IDCLはほぼ一定の電流で環流させることができ
る。この状態の時、アーム短絡が発生したとすると単位
コンデンサ413の放電電流IS′が図示のように流れ
ようとする。コンデンサの初期電圧が高いため、電流I
S′の立ち上がりは急峻で時間T1後には過電流レベル
IOCに達する。通常このT1は数μs以下であり、検
出遅れなどによりゲートブロックが間に合わない。とこ
ろが、限流回路を接続しておくと電流は途中でISのよ
うに傾きが抑制される。これは、環流電流IDCLを越
えた時点でダイオード1301が逆回復し短絡電流はリ
アクトル1302を流れるようになるからである。限流
作用が効き始めると過電流レベルIOCまでの時間はT
2となりゲートブロックが十分間に合うようになる。こ
の限流回路は短絡電流が流れる可能性のある回路に全て
接続しておく必要がある。本実施例では限流回路を直流
正極バスラインに設けているが、負極バスラインに設け
ても全く同様の効果が得られる。
FIG. 1 shows a first embodiment of the present invention. Arms 21, 22, 23, 31, 3 constituting a three-phase converter
2, 33 connect a plurality of GTOs in series to increase the voltage.
The DC smoothing capacitor 400 includes unit capacitors 411 and 4
12, 413, 421, 422, 423 and the like are connected in series and parallel to increase the capacity and the voltage. In the figure, six unit capacitors are shown as a representative, but actually they are further connected in series and parallel. Condenser 400 and valves 21 and
Current limiting circuits 11, 12 and 13 are connected between 2 and 23.
Current limiting circuits are provided corresponding to the unit capacitors dispersedly arranged for each phase. In order to generate the gate block signal after the current limit, the current detectors 111, 121,
131 is inserted between the current limiting circuit and the valve. Current limiting circuit 1
1 to 13 are constituted by a parallel connection of a reactor and a diode. The operation of the current limiting circuit will be described with reference to FIG.
The current limiting circuit 13 is configured by a circuit in which a reactor 1302 and a diode 1301 are connected in parallel. In a normal operation state, a current IDCL circulating through the reactor 1302 and the diode 1301 constantly flows with turning on and off of the arm 23. If the inductance of the reactor 1302 is selected to be large, the IDCL can be circulated with a substantially constant current. In this state, if an arm short circuit occurs, the discharge current IS 'of the unit capacitor 413 tends to flow as shown. Since the initial voltage of the capacitor is high, the current I
The rise of S 'is steep and reaches the overcurrent level IOC after the time T1. Usually, this T1 is several μs or less, and the gate block cannot keep up due to a detection delay or the like. However, if a current limiting circuit is connected, the slope of the current is suppressed like IS in the middle. This is because the diode 1301 reversely recovers when the current exceeds the freewheel current IDCL, and the short-circuit current flows through the reactor 1302. When the current limiting action starts to take effect, the time until the overcurrent level IOC is T
It becomes 2 and the gate block is in time. This current limiting circuit must be connected to all circuits in which a short-circuit current may flow. In this embodiment, the current limiting circuit is provided on the DC positive bus line, but the same effect can be obtained by providing the current limiting circuit on the negative bus line.

【0007】図4には、限流回路を含めたバルブの実装
例を示す。バルブは各相ごとに縦に積み重ね、下に限流
回路を置く。直流平滑コンデンサ400を下段にしかも
単位コンデンサを各相ごとに分散して配置する。限流回
路を各相ごとに設けることにより、各相ごとの直流配線
インダクタンスを最短にすることができる。インダクタ
ンスを支配する配線バー513,523,533,54
3の合計の長さが最短であることがわかる。また、この
長さは各相において均等にすることができる。図5に本
発明の第2の実施例を示す。本実施例は、図1の実施例
を三相多重の自励式変換器に適用した例である。変換器
容量を増加させるため通常、図5に示すようにバルブ5
1から54を変圧器80を使用して多重接続する。この
例では単位変換器の4倍の容量の変換器を実現すること
が可能となる。直流平滑コンデンサとバルブの間の配線
インダクタンスを低減するために直流平滑コンデンサを
4分割し、71から74のように配置する。コンデンサ
71〜74も高電圧,大容量となるため体積が非常に大
きくなる。したがって、実施例1と同様の理由により、
各変換器においても各相ごとに限流回路を接続する。こ
れにより、どのバルブのどの相がアーム短絡しても対応
する限流回路が動作するので、確実に過電流保護が可能
となる。また、各バルブの各相において、配線インダク
タンスを最小にかつ均等にすることが可能となる。
FIG. 4 shows an example of mounting a valve including a current limiting circuit. The valves are stacked vertically for each phase, with a current limiting circuit below. The DC smoothing capacitor 400 is arranged at the lower stage, and the unit capacitors are dispersedly arranged for each phase. By providing the current limiting circuit for each phase, the DC wiring inductance for each phase can be minimized. Wiring bars 513, 523, 533, 54 that control the inductance
It can be seen that the total length of 3 is the shortest. Also, this length can be made uniform in each phase. FIG. 5 shows a second embodiment of the present invention. This embodiment is an example in which the embodiment of FIG. 1 is applied to a three-phase multiplexing self-excited converter. In order to increase the capacity of the converter, a valve 5 is usually used as shown in FIG.
1 to 54 are multiplexed using a transformer 80. In this example, it is possible to realize a converter having a capacity four times that of the unit converter. In order to reduce the wiring inductance between the DC smoothing capacitor and the valve, the DC smoothing capacitor is divided into four parts and arranged as 71 to 74. The capacitors 71 to 74 also have a very large volume because of high voltage and large capacity. Therefore, for the same reason as in Example 1,
In each converter, a current limiting circuit is connected for each phase. Thus, even if any phase of any valve is arm-shortened, the corresponding current limiting circuit operates, so that overcurrent protection can be ensured. Further, it is possible to minimize and equalize the wiring inductance in each phase of each valve.

【0008】[0008]

【発明の効果】本発明により、過電流保護が可能でかつ
直流回路配線インダクタンスを低減することが可能な大
容量自励式電力変換器を提供できる。
According to the present invention, it is possible to provide a large-capacity self-excited power converter capable of protecting an overcurrent and reducing a DC circuit wiring inductance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例を示す。FIG. 1 shows a first embodiment of the present invention.

【図2】従来例の説明図を示す。FIG. 2 shows an explanatory diagram of a conventional example.

【図3】本発明の第1の実施例の動作を示す。FIG. 3 shows the operation of the first embodiment of the present invention.

【図4】本発明の第1の実施例の構造を示す。FIG. 4 shows the structure of the first embodiment of the present invention.

【図5】本発明の第2の実施例を示す。FIG. 5 shows a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11,12,13,61,62,63,64…限流回
路、21,22,23,31,32,33…バルブアー
ム、51,52,53,54…単位変換器、80…多重
変圧器、111,121,131,611〜613,6
21〜623,631〜633,641〜643…電流
検出器、400…直流平滑コンデンサ、411,41
2,413,421,422,423…単位直流平滑コ
ンデンサ、513,523,533…配線バー、P…直
流正極端子、N…直流負極端子、IOC…過電流設定
値。
11, 12, 13, 61, 62, 63, 64 ... current limiting circuit, 21, 22, 23, 31, 32, 33 ... valve arm, 51, 52, 53, 54 ... unit converter, 80 ... multiple transformer , 111, 121, 131, 611-613, 6
21 to 623, 631 to 633, 641 to 643: current detector, 400: DC smoothing capacitor, 411, 41
2,413,421,422,423 ... unit DC smoothing capacitor, 513, 523, 533 ... wiring bar, P ... DC positive terminal, N ... DC negative terminal, IOC ... overcurrent set value.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】自己消弧型スイッチング素子で構成するバ
ルブと直流平滑コンデンサからなる自励式電力変換器に
おいて、アーム短絡保護用限流回路を前記バルブと前記
直流平滑コンデンサの間に、全ての相に接続したことを
特徴とする電力変換装置。
In a self-excited power converter comprising a valve constituted by a self-extinguishing type switching element and a DC smoothing capacitor, an arm short-circuit protection current limiting circuit is provided between the valve and the DC smoothing capacitor. A power converter, wherein the power converter is connected to a power converter.
【請求項2】自己消弧型スイッチング素子で構成するバ
ルブと直流平滑コンデンサからなる単位自励式電力変換
器を複数台設け、交流端子側で変圧器を使用して多重接
続した電力変換器において、アーム短絡保護用限流回路
を前記バルブと前記直流平滑コンデンサの間に、全ての
単位変換器の全ての相に接続したことを特徴とする電力
変換装置。
2. A power converter in which a plurality of unit self-excited power converters each comprising a valve constituted by a self-extinguishing type switching element and a DC smoothing capacitor are provided, and the AC terminals are multiplex-connected by using a transformer. A power converter, wherein an arm short-circuit protection current limiting circuit is connected to all phases of all unit converters between the valve and the DC smoothing capacitor.
【請求項3】請求項1または2において、アーム短絡保
護用限流回路はリアクトルとダイオードの並列接続体で
構成したことを特徴とする電力変換装置。
3. The power converter according to claim 1, wherein the current limiting circuit for protecting the short-circuit of the arm comprises a parallel connection of a reactor and a diode.
JP9095548A 1997-04-14 1997-04-14 Power converter Pending JPH10290572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9095548A JPH10290572A (en) 1997-04-14 1997-04-14 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9095548A JPH10290572A (en) 1997-04-14 1997-04-14 Power converter

Publications (1)

Publication Number Publication Date
JPH10290572A true JPH10290572A (en) 1998-10-27

Family

ID=14140636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9095548A Pending JPH10290572A (en) 1997-04-14 1997-04-14 Power converter

Country Status (1)

Country Link
JP (1) JPH10290572A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100326111B1 (en) * 1998-03-12 2002-03-07 니시무로 타이죠 Power converter
WO2005015726A1 (en) * 2003-08-12 2005-02-17 Hitachi, Ltd. Power conversion device using matrix converter
KR100478690B1 (en) * 2002-10-22 2005-03-23 김흥근 Method and Apparatus for Protecting against Load Short-circuit of a High Voltage Multi-level Converter
US9800171B2 (en) 2014-02-14 2017-10-24 Mitsubishi Electric Corporation Protection system for DC power transmission system, AC-DC converter, and method of interrupting DC power transmission system
US10411589B2 (en) 2014-12-22 2019-09-10 Mitsubishi Electric Corporation Power conversion apparatus and power semiconductor module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100326111B1 (en) * 1998-03-12 2002-03-07 니시무로 타이죠 Power converter
KR100478690B1 (en) * 2002-10-22 2005-03-23 김흥근 Method and Apparatus for Protecting against Load Short-circuit of a High Voltage Multi-level Converter
WO2005015726A1 (en) * 2003-08-12 2005-02-17 Hitachi, Ltd. Power conversion device using matrix converter
US9800171B2 (en) 2014-02-14 2017-10-24 Mitsubishi Electric Corporation Protection system for DC power transmission system, AC-DC converter, and method of interrupting DC power transmission system
US10411589B2 (en) 2014-12-22 2019-09-10 Mitsubishi Electric Corporation Power conversion apparatus and power semiconductor module

Similar Documents

Publication Publication Date Title
Jacobson et al. VSC-HVDC transmission with cascaded two-level converters
US9780556B2 (en) Voltage sourced converter with semiconductor modules handling a DC current fault
JP3745561B2 (en) Multi-level neutral point potential fixed power converter
EP2471164B1 (en) Converter cell module with autotransformer bypass, voltage source converter system comprising such a module and a method for controlling such a system
US11139733B2 (en) Modular multilevel converter sub-module having DC fault current blocking function and method of controlling the same
JPWO2017168519A1 (en) Power converter
CA2620100A1 (en) Inverter circuit with distributed energy stores
GB2519791A (en) Breaker circuit
JPH10243660A (en) Power converting apparatus
US10530270B2 (en) Modular isolated half-bridge based capacitor-tapped multi-module converter with inherent DC fault segregation capability
JP3226246B2 (en) High voltage self-excited converter for grid interconnection
JPH10290572A (en) Power converter
JPH03261377A (en) Protector of power converter
JPH1028319A (en) Protective device for series compensation system
JP3264632B2 (en) Power converter
WO2021111526A1 (en) Power conversion device
JPH1094249A (en) Chopper circuit
WO2021176615A1 (en) Power conversion system
JP7086298B2 (en) Power converter
JP3296408B2 (en) Power converter
JPH10112983A (en) Protecting apparatus for power converter
JPH06205587A (en) Connection circuit network to branch pair and its application
JP2812123B2 (en) Power semiconductor device protection device
JPH08196081A (en) Power converter
JP3117457B2 (en) Snubber circuit