JPH10287882A - Previous treatment of raw coal for coke production and production of coke - Google Patents

Previous treatment of raw coal for coke production and production of coke

Info

Publication number
JPH10287882A
JPH10287882A JP9396197A JP9396197A JPH10287882A JP H10287882 A JPH10287882 A JP H10287882A JP 9396197 A JP9396197 A JP 9396197A JP 9396197 A JP9396197 A JP 9396197A JP H10287882 A JPH10287882 A JP H10287882A
Authority
JP
Japan
Prior art keywords
coal
gas
drying
coke
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9396197A
Other languages
Japanese (ja)
Inventor
Atsushi Kumagai
淳 熊谷
Yukihiko Maeno
幸彦 前野
Noboru Kamata
昇 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP9396197A priority Critical patent/JPH10287882A/en
Publication of JPH10287882A publication Critical patent/JPH10287882A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for previously treating raw coal for producing cokes, by which raising dust and carryover are prevented when charging the coal, and the use of much amount of coal having low caking property with good quality coking coal substantially becomes possible. SOLUTION: This method for previously treating raw coal for producing cokes is carried out by dividing a fluidized bed drier 2 by partition boards 6 at the right angle to the traveling direction of a raw coal 1, introducing a high temperature gas for drying from under part of a raw material coal 1 layer traveling on a gas-dispersing plate 3 in each divided room without the final room 11 to dry the raw coal to almost finish the constant rate drying period and to reach a state substantially having no surface water, and introducing a low temperature gas into the final room 11 to carry out a fractionation finishing of dust coal from the raw coal 1. The fractionated dust coal 20 is mixed and kneaded with a binder 21, formed into briquet, mixed with coarse coal 25, inserted to a carbonizing room in a coke oven and carbonized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はコークス製造用原料
炭の事前処理方法に関し、特にコークス製造用原料炭を
流動層乾燥機にて乾燥する際に、コークス炉への装炭時
の発塵やキャリーオーバー現象を起こし易い微粉炭の分
離効率を著しく高める乾燥・分級による事前処理方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for pre-treating coking coal for coke production, and more particularly to a method of drying coking coal for coking in a coke oven when drying the coking coal in a fluidized bed dryer. The present invention relates to a pre-treatment method by drying and classification that remarkably enhances the separation efficiency of pulverized coal that easily causes a carryover phenomenon.

【0002】[0002]

【従来の技術】高炉用コークス製造のための原料炭の事
前処理として、原料炭を乾燥することは従来から行われ
ている。例えばコークス製造に不可欠な良質粘結炭(強
粘結炭および弱粘結炭)は世界的に不足しており、コー
クス製造業界では、粘結性の低い石炭(非微粘結炭)を
使用して、コークス強度の高いコークス製造法の技術開
発が進められている。この技術開発の一つの方向とし
て、乾燥炭又は予熱炭装入法が既に開発され一部で実施
されたことがある。
2. Description of the Related Art Drying of coking coal has been conventionally performed as pretreatment of coking coal for producing coke for blast furnaces. For example, there is a worldwide shortage of high-quality caking coal (strong caking coal and weak caking coal) that is essential for coke production, and the coke manufacturing industry uses low-coking coal (non-coking coal). Then, technical development of a coke manufacturing method having high coke strength is being promoted. As one direction of this technology development, the dry coal or preheated coal charging method has already been developed and partially implemented.

【0003】しかし、この方法は乾燥炭中の水分を通常
6重量%以下に設定しているため、装入炭の輸送工程及
びコークス炉への装入時において粉塵の発生が著しく、
作業環境を劣悪にし、またコークス炉中での乾溜時に発
生するコールタールガス(COG)やタールに微粉が同
伴されてコークス炉ガス導管に流れ込む、いわゆるキャ
リーオーバー現象を増大させる問題があった。このキャ
リーオーバーされた石炭粉は、最終的にはタール中のス
ラッジ分を増大させ、さらにはコークス炉におけるカー
ボントラブルも発生させ、未だ普及するに至っていな
い。
[0003] However, in this method, the moisture in the dry coal is usually set to 6% by weight or less, so that dust is remarkably generated in the transporting process of the charged coal and during charging into the coke oven.
There has been a problem that the working environment is deteriorated, and a so-called carryover phenomenon, that is, a so-called carryover phenomenon, in which fine powder is entrained in coal tar gas (COG) or tar generated during dry distillation in a coke oven and flows into a coke oven gas conduit. The carry-over coal powder eventually increases the amount of sludge in the tar, and further causes carbon troubles in the coke oven, and has not yet spread.

【0004】そこでかかる粉塵の発生原因となっている
微粉炭を乾燥後に細粒炭(粗粒炭)から分級し、この微
粉炭部分に結合剤を加えて塊成化して、細粒炭部分と混
合するコークス製造用装入炭の調整方法が、例えば特開
昭55−149382号、特開昭55−48284号、
特開昭57−53587号、特開昭57−73074
号、、特開昭58−21948号公報等でそれぞれ提案
されている。しかしこれらの方法はいずれも原料炭を気
流乾燥装置で乾燥するものであって、気流乾燥の滞留時
間が比較的短いことから、かなり高温度の気流ガス(6
00〜700℃)を使用して急速乾燥するものであり、
乾燥炭中の水分をあまりに下げ過ぎる(乾燥しすぎる)
と高温度の気流ガスに接する微粉炭の着火現象や原料炭
の劣化で、コークス品質を低下させる恐れがある。
[0004] Then, the pulverized coal causing the dust is dried and then classified from the fine coal (coarse coal), and a binder is added to the pulverized coal to form an agglomerate. Methods for adjusting the charged coal for coke production to be mixed are described in, for example, JP-A-55-149382, JP-A-55-48284,
JP-A-57-53587, JP-A-57-73074
And Japanese Patent Application Laid-Open No. 58-21948. However, all of these methods dry coking coal with a flash drying device, and the residence time of flash drying is relatively short.
(200-700 ° C.).
Too low moisture in dry charcoal (too dry)
There is a possibility that the quality of coke will be reduced due to the ignition phenomenon of pulverized coal in contact with high temperature airflow gas and the deterioration of coking coal.

【0005】そこで通常は原料炭の表面付着水分がかな
り残留した状態迄の恒率乾燥域内に停まることから微粉
炭を完全分離できない。しかも原料炭の全てを気流搬送
する必要上、ブロアー動力費用が相当かかること、後工
程に別途サイクロン分級器や重力分級器を設ける必要が
あること等の設備上の制約がある。一方特開昭62−1
92486号公報には、原料炭中の100μm以下の微
粒子部の疑似粒子化物を完全破壊して分級した後、これ
にバインダーを加え、転動または圧縮により100μm
以上の疑似粒子化物を形成して、細粒炭部分と混合する
コークス製造用装入炭の調整方法が提案されている。こ
の方法では原料炭を流動層乾燥機を用いて乾燥する一例
として、乾燥機の流動層内に撹拌翼を設けて、前段階で
は石炭の乾燥を、後段階では主として疑似粒子化物の破
壊・分級を行うゾーンに分けている。
[0005] Therefore, pulverized coal cannot be completely separated because the coal usually stops in a constant-rate drying zone until a considerable amount of moisture adhered to the surface of the raw coal remains. In addition, there are restrictions on facilities such as the necessity of transporting all of the coking air by air flow, considerable blower power costs, and the necessity of separately providing a cyclone classifier and a gravity classifier in a subsequent process. On the other hand, JP-A-62-1
No. 92486 discloses that, after completely breaking and classifying pseudo-granules of fine particles having a particle size of 100 μm or less in the raw coal, a binder is added thereto, and the mixture is tumbled or compressed to 100 μm.
There has been proposed a method for adjusting the charged coal for coke production in which the above pseudo-granulated material is formed and mixed with the fine-grained coal portion. In this method, as an example of drying raw coal using a fluidized bed dryer, a stirrer is provided in the fluidized bed of the dryer to dry the coal in the previous stage, and mainly to destroy and classify pseudo-particles in the later stage. Is divided into zones.

【0006】この流動層の具体的な運転条件としては、
乾燥ゾーンで風速を低めに、破壊、分級ゾーンでは風速
を若干高めに設定することが記載されているが、疑似粒
子化物の破壊は撹拌翼で行わせるものであって、熱風温
度や乾燥炭中の水分含有率等の配慮については全く開示
されていない。一般的な従来の流動層式の乾燥機では撹
拌翼は設けずに単一の熱風源を使用しており、乾燥が完
結する付近での流動層での滞留時間が長くなる特質があ
る。従って原料炭等を乾燥する場合には、乾燥が完結す
る付近での熱風温度が気流乾燥のように高過ぎると微粉
炭の自然発火や着火現象が生じる危険性が高く、しかも
石炭品質が低下する欠点がある。これを防止するために
は、単一の熱風源自体の温度を下げ、しかも表面付着水
分がかなり残留した状態(恒率乾燥期間)に停める必要
がある。その結果、乾燥効率が低下したり、微粉炭が粗
粒子表面に付着したまま、或いは疑似粒子化物のままで
残留し分級されないことになる。
The specific operating conditions of the fluidized bed are as follows:
It is described that the wind speed is set lower in the drying zone and the wind speed is set slightly higher in the destruction and classification zones.However, the destruction of pseudo-particles is performed by stirring blades, No consideration is given to the considerations such as the water content of the product. In a general conventional fluidized bed dryer, a single hot air source is used without providing a stirring blade, and there is a characteristic that the residence time in the fluidized bed near the completion of drying is long. Therefore, when the raw coal is dried, if the hot air temperature near the completion of the drying is too high as in flash drying, there is a high risk of spontaneous ignition or ignition of the pulverized coal, and the quality of the coal deteriorates. There are drawbacks. In order to prevent this, it is necessary to lower the temperature of the single hot air source itself, and to stop it in a state where a large amount of moisture attached to the surface remains (constant rate drying period). As a result, the drying efficiency is reduced, or the pulverized coal remains adhered to the coarse particle surface or remains as a pseudo-particulate, and is not classified.

【0007】[0007]

【発明が解決しようとする課題】上記の特開昭62−1
92486号公報の場合、流動層内に特別に設けた撹拌
翼によって疑似粒子化物の破壊、付着微粉の分離・分級
を促進させる方法を採用したものと考えられる。このよ
うに、従来から提案されている種々の方法では、特に粘
結性の低い石炭(非微粘結炭)を良質粘結炭(強粘結炭
および弱粘結炭)の一部に置き換えて乾燥炭装入法を採
用する場合、乾燥過程での微粉炭やその疑似粒子化物の
分離・分級処理方法が完全ではなく、その結果乾燥炭の
輸送工程での発塵防止及びコークス炉での乾溜時のキャ
リーオーバー現象を確実に防止するには、未だ改善の必
要があり、かつ、高強度生成コークスの開発も強く求め
られている。
The above-mentioned JP-A-62-1
In the case of Japanese Patent No. 92486, it is considered that a method of promoting the destruction of pseudo-particulates and the separation and classification of adhered fine powder by a stirring blade specially provided in the fluidized bed is adopted. As described above, according to the various methods conventionally proposed, particularly low-coking coal (non-fine caking coal) is replaced with a part of high-quality caking coal (strong caking coal and weak caking coal). When the dry coal charging method is adopted, the method of separating and classifying pulverized coal and its quasi-particulates during the drying process is not perfect, resulting in prevention of dust generation in the dry coal transportation process and prevention of coke ovens. In order to reliably prevent the carryover phenomenon during dry distillation, there is still a need for improvement, and there is also a strong demand for the development of a high-strength coke.

【0008】従ってかかる現状から、本発明の課題は、
粘結性の低い石炭(非微粘結炭)を世界的に不足してい
る良質粘結炭(強粘結炭および弱粘結炭)とともに使用
した場合であっても、石炭輸送過程での発塵防止、また
特に炭化室への石炭装入の際のキャリーオーバー現象の
防止対策を万全なものにするとともに、もって多量の非
微粘結炭を高炉用コークスを製造するための原料として
使用することを実用上可能にするコークス製造用原料炭
の事前処理方法及びコークスの製造方法を提供すること
を目的とするものである。
[0008] Under such circumstances, the object of the present invention is to provide:
Even when low-coking coal (non-coking coal) is used together with a worldwide lack of good-quality coking coal (strong and weak caking coal), Thorough measures to prevent dust generation, especially to prevent carryover when charging coal into the coking chamber, and to use a large amount of non-fine caking coal as a raw material to produce coke for blast furnaces It is an object of the present invention to provide a method for pre-treating coking coal for coke production and a method for producing coke, which make it practically possible to do so.

【0009】[0009]

【課題を解決するための手段】本発明者等は上記課題を
解決するために、先ず乾燥炭操業において見られる発塵
源やキャリーオーバー源となる微粉炭の粒径を調べた。
発塵源については、コークス炉への輸送過程での発塵粉
を採取し、キャリーオーバー源については、炭化室への
石炭装入中に上昇管立管部で飛散粉を採取しそれらの粒
度分布を測定した結果を、夫々図1(発塵源)、図2
(キャリーオーバー源)に示す。これらの図1、2から
明らかなように、発塵性粒子の大部分は0.1mm以下
(100μm以下)、特に70μm以下(99.6%)
であるが、キャリーオーバーダストの大部分は0.3m
m以下(99%)であることが判明した。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors first examined the particle size of pulverized coal serving as a dust source and a carry-over source found in dry coal operation.
For dust sources, collect dust particles during the transportation process to the coke oven, and for carryover sources, collect scattered powder at the riser at the riser while charging coal into the coking chamber, and measure their particle size. The results of the distribution measurement are shown in FIG. 1 (dust generation source) and FIG.
(Carry-over source). As is clear from FIGS. 1 and 2, most of the dust-forming particles are 0.1 mm or less (100 μm or less), particularly 70 μm or less (99.6%).
However, most of the carryover dust is 0.3m
m (99%) or less.

【0010】本発明者等は、こうした知見に基づき種々
検討の結果、石炭の表面水分が実質上なくなるまで乾燥
することで発塵源やキャリーオーバー源となる0.3m
m以下の微粉部分が分離し易くなること、流動層式の乾
燥機で原料炭の乾燥・分級を同時処理する場合、分級ゾ
ーンでは低温度ガスを使用することによって微粉炭の自
然発火や着火現象の生じない効率的な乾燥・分級処理が
可能となること等を見いだし本発明方法を完成した。
The present inventors have conducted various studies based on these findings and found that the coal was dried until the surface moisture of the coal was substantially reduced to 0.3 m, which became a dust generation source and a carry-over source.
m is easy to separate, and in the case of simultaneous drying and classification of coking coal with a fluidized bed dryer, low temperature gas is used in the classification zone to spontaneously ignite or ignite the pulverized coal. It has been found that efficient drying / classification can be performed without generation of cracks, and the method of the present invention has been completed.

【0011】即ち本発明のコークス製造用原料炭の事前
処理方法は、微粉炭を含むコークス製造用原料炭を、流
動層乾燥機にて乾燥する際に、流動層乾燥機内を原料炭
の移動方向に直角な仕切り板で複数室に分割し、最終室
を除く各分割室にはガス分散板上を移動する原料炭層に
下方から乾燥用高温ガスを導入して最終室直前迄に原料
炭の恒率乾燥期間がほぼ完結し実質上表面水分がなくな
るまで乾燥させるとともに、最終室には分級用低温ガス
を導入することにより原料炭からの微粉炭の分級仕上げ
を行うことを特徴とするものである。又本発明のコーク
スの製造方法は、上記の分級された微粉炭に歴青物のバ
インダーを混練し、ブリケット化して粗粉炭に混合して
事前処理された原料炭を、コークス炉装入炭槽に貯蔵し
た後、コークス炉の炭化室に装入して乾留することを特
徴とするものである。
That is, in the method for pre-treating coking coal of the present invention, when the coking coal containing pulverized coal is dried by a fluidized bed drier, the moving direction of the coking coal in the fluidized bed drier. Is divided into a plurality of chambers by a partition plate at right angles to each other, and in each of the divided chambers except the final chamber, high-temperature gas for drying is introduced from below into the coking coal layer moving on the gas dispersion plate, and the The drying is performed until the rate drying period is almost completed and the surface moisture substantially disappears, and the classification and finishing of the pulverized coal from the raw coal is performed by introducing a low-temperature gas for classification into the final chamber. . Further, the method for producing coke of the present invention is characterized in that a bituminous binder is kneaded with the classified pulverized coal, briquetted and mixed with coarse coal, and the pretreated raw coal is supplied to a coke oven charging coal tank. After storage, it is charged into a carbonization chamber of a coke oven and carbonized.

【0012】以下本発明の構成について、詳細に説明す
る。本発明の微粉炭を含むコークス製造用原料炭として
は、特に限定されないが、好ましくは良質粘結炭よりも
入手が容易でかつ安価な非微粘結炭と良質粘結炭を併用
したものである。ここで非微粘結炭とは、良質粘結炭
(強粘結炭および弱粘結炭)に該当しないものであり、
それ単独では高炉用コークスに不向きな低品位コークス
しか得られないコークス化性の低い(又は粘結性の低
い)石炭である。
Hereinafter, the configuration of the present invention will be described in detail. The raw coal for coke production including the pulverized coal of the present invention is not particularly limited, but is preferably obtained by using a combination of non-fine caking coal and good quality caking coal which are more easily available and cheaper than good quality caking coal. is there. Here, non-slightly caking coal does not correspond to high-quality caking coal (strong caking coal and weak caking coal),
It is a low-coking (or low-caking) coal which can only obtain low-grade coke unsuitable for blast furnace coke by itself.

【0013】かかる非微粘結炭に関しては、鉄鋼業界を
含めたコークス業界で一般化した定義はなされていな
い。そこで本発明者等が各種の非微粘結炭を分析した結
果で示せば、石炭化度Roと最高流動度MF(JIS M8801
)の関係では、Ro≦1.0で、かつ MF(=logD
DPM)≦3.0の範囲(但しDDPMはDial Deviati
on per Minute の略)であり、或いは、石炭化度Ro
全膨張率TD(JIS M8801 )の関係では、Ro≦1.0
で、かつTD≦50の範囲に該当するものと概略的に定
義することができるが、この定義に制限するものではな
く、この範囲外であっても上記したコークス化性の低い
(又は粘結性の低い)石炭であれば本発明の非微粘結炭
に含めるものとする。
With respect to such non-coking coal, there is no generalized definition in the coke industry including the steel industry. Therefore if Shimese the result of the present inventors have analyzed the various non-fine viscosity coals, coal degree R o and maximum fluidity degree MF (JIS M8801
), R o ≦ 1.0 and MF (= logD
DPM) ≦ 3.0 (where DDPM is Dial Deviati)
It is an abbreviation) of on per Minute, or in relation to coal degree R o and the total expansion ratio TD (JIS M8801) is, R o ≦ 1.0
Can be roughly defined as falling within the range of TD ≦ 50, but is not limited to this definition. If the coal is low in coal, it is included in the non-coking coal of the present invention.

【0014】原料炭中の非微粘結炭の配合量も特に限定
するものではないが、好ましくは60重量%以下の範囲
内で使用することが可能である。ただし非微粘結炭の量
を60重量%以上に増やした場合、高炉用コークスとし
ては強度が不足する可能性がある。これらの原料炭は、
良質粘結炭や非微粘結炭等の銘柄毎に所定の粒度に粉砕
後に配合する。あるいは、ヤードブレンディングを行っ
た後、粉砕する方法を採ってもよい。コークス製造にお
いて原料炭の粉砕は不可欠であり、分級の後工程として
粉砕することは再度微粉を発生することから、本発明の
目的を達成できず粉砕後の乾燥・分級が必須である。
The blending amount of the non-fine caking coal in the raw coal is not particularly limited, but it can be preferably used within the range of 60% by weight or less. However, when the amount of the non-coking coal is increased to 60% by weight or more, the strength of the blast furnace coke may be insufficient. These coking coals are
It is blended after being ground to a predetermined particle size for each brand such as high-quality caking coal or non-fine caking coal. Alternatively, a method of grinding after yard blending may be employed. Crushing of raw coal is indispensable in coke production, and pulverization as a post-classification step generates fine powder again, so that the object of the present invention cannot be achieved, and drying and classification after pulverization are essential.

【0015】粉砕工程において、特に非微粘結炭と良質
粘結炭で目標粒度を変えて粉砕する場合、例えば非微粘
結炭をより細かく、良質粘結炭を粗くすることが最適で
ある。一般に非微粘結炭は、良質粘結炭に比べて硬く粗
炭粒度が粗い一方、非微粘結炭は粘結性が低いため多量
使用するためにはタールによる改質がより有効であるた
めである。具体的には、良質粘結炭については粒度3m
m以下を50〜70重量%程度とする一方、非微粘結炭
については粒度3mm以下を80〜95重量%程度とす
ることが好ましい。なお、石炭をグループ毎に粉砕後、
良質粘結炭と非微粘結炭とを配合する場合には、非微粘
結炭のみを粉砕強化できるように、非微粘結炭を一つの
粉砕機の系列に集めることが好ましい。
In the pulverizing step, particularly when pulverizing the non-fine caking coal and the high-quality caking coal with different target particle sizes, for example, it is optimal to make the non-fine caking coal finer and the good quality caking coal coarse. . In general, non-fine caking coal is harder and coarser in grain size than good-quality caking coal, while non-micro caking coal has low caking properties, so it is more effective to modify with tar in order to use it in large quantities. That's why. Specifically, for high quality caking coal, the particle size is 3m.
m or less is set to about 50 to 70% by weight, and for non-finely caking coal, the particle size of 3 mm or less is preferably set to about 80 to 95% by weight. After crushing coal for each group,
When blending good-quality caking coal and non-fine caking coal, it is preferable to collect the non-micro caking coal into one series of pulverizers so that only the non-micro caking coal can be pulverized and strengthened.

【0016】かかる粉砕後の原料炭には、通常水分が7
〜10wt%程度含まれているため、熱風による流動層
乾燥機に連続的に供給し、ここで原料炭の恒率乾燥期間
がほぼ完結し実質上表面水分がなくなるまで乾燥し、最
終室で仕上げ分級処理する。ここで本発明で使用する流
動層乾燥機とは、多孔板などのガス分散板(又は整流
板)上に供給された原料炭層に下方から熱風を送って流
動層を形成させつつ出口方向へ移動させながら乾燥する
装置であって、通常はガス分散板自体が移動方向に下向
きに僅かに傾斜する方式か、或いはガス分散板自体は水
平でもその熱風吹き出し方向を垂直ではなく移動方向に
傾斜させる方式等がありいずれでも使用可能である。こ
の場合、特に最終室の仕上げ分級を行う流動部には適宜
整流板を設けて、下流側への石炭のショートパスを防止
することが好ましい。その場合の多孔板などのガス分散
板と整流板との隙間、整流板間の間隔等は最大粒径の2
〜3倍程度が望ましい。
The pulverized raw coal usually has a water content of 7
Because it contains about 10 wt%, it is continuously supplied to a fluidized bed dryer with hot air, where it is dried until the constant rate drying period of the raw coal is almost completed and the surface moisture is substantially eliminated, and finished in the final chamber Classify. Here, the fluidized-bed dryer used in the present invention means that a hot air is sent from below to a raw coal bed supplied on a gas dispersion plate (or a flow straightening plate) such as a perforated plate to form a fluidized bed and move in an outlet direction. An apparatus that dries while drying, usually a method in which the gas distribution plate itself is slightly inclined downward in the moving direction, or a method in which the gas distribution plate itself is horizontal but the hot air blowing direction is inclined not in the vertical direction but in the moving direction. And any of them can be used. In this case, it is preferable to appropriately provide a flow straightening plate in the fluidizing section for performing the final classification in the final chamber to prevent a short path of coal to the downstream side. In this case, the gap between the gas distribution plate such as a perforated plate and the straightening plate, the interval between the straightening plates, and the like are set to the maximum particle size of 2
Desirably about 3 times.

【0017】また、この流動層乾燥機内は、原料炭流動
層の移動方向に直角方向でガス分散板上に隙間を残して
設けた仕切り板で多室化する。この際、ガス分散板の下
方からの乾燥用高温ガス導入室も上部の仕切り室に対応
して設けた仕切り板で多室化するのが好ましい。なお流
動層上の仕切り室は、予備乾燥領域と恒率乾燥領域及び
仕上げ分級領域を形成させることの必要上から少なくと
も2室以上、好ましくは3〜4室を形成させることが望
ましい。
Further, the inside of the fluidized bed dryer is divided into multiple chambers by a partition plate provided with a gap on the gas dispersion plate in a direction perpendicular to the moving direction of the raw coal fluidized bed. At this time, it is preferable that the high-temperature gas introduction chamber for drying from below the gas dispersion plate is also multi-chambered by the partition plate provided corresponding to the upper partition room. It is desirable that at least two chambers, preferably three to four chambers, be formed from the necessity of forming a preliminary drying area, a constant rate drying area, and a finishing classification area on the fluidized bed.

【0018】また本発明で原料炭の恒率乾燥期間とは、
材料への流入熱量が全て水分蒸発に費やされて材料温度
がほぼ一定(熱風乾燥の場合には接する熱風の湿球温度
に一致)の期間を言う。一般に材料の乾燥特性として、
十分に湿った材料を定常乾燥条件下で乾燥した場合にお
いて、材料温度が表面付着水分の蒸発温度迄次第に上昇
する予熱期間、材料温度がほぼ一定である本発明で言う
恒率乾燥(速度)期間及び材料温度が上昇し材料内部に
温度分布を生じる減率乾燥(速度)期間の3期間が存在
することは周知である。本発明では原料炭の恒率乾燥期
間がほぼ完結し実質上表面水分がなくなるまで乾燥す
る。ここで実質上表面水分がなくなるまで乾燥するとは
原料炭の表面水分が0.5重量%以下、最適には少なく
とも表面水分がなくなる(表面水分≒0%)まで乾燥す
ることを意味する。
In the present invention, the constant-rate drying period of the raw coal is defined as
This is a period in which the amount of heat flowing into the material is entirely spent on water evaporation and the material temperature is substantially constant (in the case of hot air drying, it matches the wet-bulb temperature of the hot air in contact). Generally, the drying properties of the material
When a sufficiently wet material is dried under a steady drying condition, a preheating period in which the material temperature gradually rises to an evaporation temperature of the moisture attached to the surface, and a constant rate drying (speed) period in the present invention in which the material temperature is almost constant. It is well known that there are three periods of lapse rate drying (speed) in which the material temperature rises and a temperature distribution occurs inside the material. In the present invention, the raw coal is dried until the constant-rate drying period is almost completed and the surface moisture substantially disappears. Here, "drying until the surface moisture substantially disappears" means that the raw coal is dried until the surface moisture is 0.5% by weight or less, optimally at least the surface moisture is eliminated (surface moisture ≒ 0%).

【0019】ここでいう表面水分とは、全水分(JIS M
8811)から包蔵水分(JIS M 8803)を差し引いたものを指
す。また、実操業においては通常使用される赤外線水分
計で直接測定することも差支えない。この場合、全水分
としては3重量%未満、好ましくは2重量%程度まで乾
燥することが好ましい。表面水分が実質上なくなるまで
乾燥することが最適であるのは、少しでも表面水分が残
存していると、微粉を粗粒部分から十分に分離できない
傾向となり、微粉炭をタール添加及び成型してブリケッ
ト化することによる発塵防止等の効果が不十分なものと
なる。
The surface moisture referred to herein is the total moisture (JIS M
It refers to the value obtained by subtracting the stored moisture (JIS M 8803) from 8811). Further, in actual operation, measurement may be directly performed by a commonly used infrared moisture meter. In this case, it is preferable to dry the total water content to less than 3% by weight, preferably to about 2% by weight. It is best to dry until the surface moisture is substantially eliminated.If any surface moisture remains, the fine powder tends to be unable to be sufficiently separated from the coarse particles, and pulverized coal is added with tar and molded. The effect of preventing dust generation by briquetting becomes insufficient.

【0020】本発明では、流動層乾燥機内の流動層上の
仕切り室へは、特に最終室直前迄は乾燥用高温ガスを仕
切り室毎に分割して供給する。この場合の乾燥用高温ガ
スとしては、特に最終室直前迄に原料炭の恒率乾燥期間
がほぼ完結できればよく特に限定しないが、ガス燃焼炉
からの熱風ガスに循環ガスの一部を配合して400〜6
00℃、好ましくは400〜500℃程度に温度調整し
たものが望ましい。また最終の仕切り室には乾燥用高温
ガスよりも低温度に調整された分級用低温ガスを供給す
る。この場合の分級用低温ガスとしては、循環ガスの一
部を主体とし適宜乾燥用高温ガスの一部を混合して調整
した100℃以下、好ましくは50〜90℃程度に調整
されたものが望ましい。
In the present invention, a high-temperature gas for drying is divided and supplied to each of the partition chambers on the fluidized bed in the fluidized bed dryer, especially until immediately before the last chamber. The high-temperature gas for drying in this case is not particularly limited as long as the constant-rate drying period of the coking coal can be almost completely completed immediately before the final chamber, but a part of the circulating gas is mixed with the hot air gas from the gas combustion furnace. 400-6
It is desirable to control the temperature to 00 ° C, preferably about 400 to 500 ° C. In addition, a low-temperature gas for classification adjusted to a lower temperature than the high-temperature gas for drying is supplied to the final partitioning chamber. As the low-temperature gas for classification in this case, a gas adjusted to 100 ° C. or less, preferably about 50 to 90 ° C., which is adjusted by mixing a part of the high-temperature gas for drying with a part of the circulating gas as a main component, is desirable. .

【0021】更に流動層乾燥機内の最終室での微粉炭の
分級仕上げ条件は、微粉炭の境界分級点は前記した理由
から0.2〜0.3mmの範囲に調整して連続的に分級
することが好ましい。このような分級点でもって微粉を
分級することにより、石炭輸送中の発塵、炭化室装入中
のキャリーオーバーの発生源をほぼ完全に除去すること
が可能である。境界分級点が0.2mm未満の場合、発
塵やキャリーオーバーの原因となる微粉が粗粒炭ととも
に輸送されてしまう。また、分級点が0.3mmを越え
ても、発塵、キャリーオーバー増減効果は小さくブリケ
ット化のためのランニングコストが高くなるだけであ
る。
Further, the classification and finishing conditions of the pulverized coal in the final chamber in the fluidized bed dryer are set such that the boundary classification point of the pulverized coal is adjusted to the range of 0.2 to 0.3 mm for the above-described reason, and the classification is continuously performed. Is preferred. By classifying the fine powder at such a classification point, it is possible to almost completely eliminate the sources of dust generation during coal transportation and carry-over during charging in the carbonization chamber. If the boundary classification point is less than 0.2 mm, fine powder causing dust generation and carryover will be transported together with the coarse coal. Further, even if the classification point exceeds 0.3 mm, the effect of increasing and decreasing the generation of dust and carryover is small, and only the running cost for briquetting is increased.

【0022】なお最終室直前の仕切り室からの乾燥用高
温ガスの排ガス温度が、原料炭の恒率乾燥期間がほぼ完
結した温度条件に対応した基準温度(恒率乾燥温度より
も0〜5℃、好ましくは0.5〜3℃程度高い温度が好
ましい)をオーバーした場合は、乾燥用高温ガスの供給
温度を下げて基準温度を維持させるようにガス燃焼炉か
らの熱風ガス又は循環ガスラインに設ける流量調整弁で
流量を制御することが好ましい。更にまた上記本発明
で、分級された微粉炭には歴青物のバインダーを混練
し、ブリケット化して粗粉炭に混合することが望まし
い。このようにしてブリケット化するのは、乾燥炭中の
微粉炭は発塵やキャリーオーバーの原因だからであり、
単にバインダーを添加混練するだけでなく、加圧成型す
ることによりブリケット化した微粉炭がコークス炉まで
の輸送過程で再度崩壊することを防止し、もって発塵や
キャリーオーバーの原因となる微粉炭の再発生防止に万
全を期すことができる。
The exhaust gas temperature of the high-temperature gas for drying from the partitioning chamber immediately before the final chamber is set at a reference temperature (0 to 5 ° C. lower than the constant-rate drying temperature) corresponding to the temperature condition at which the constant-rate drying period of the raw coal is almost completed. (Preferably, a temperature higher by about 0.5 to 3 ° C. is preferable), the hot air gas from the gas combustion furnace or the circulating gas line is supplied so as to maintain the reference temperature by lowering the supply temperature of the high-temperature gas for drying. It is preferable to control the flow rate with a flow control valve provided. Further, in the present invention, it is desirable that the classified pulverized coal is kneaded with a bituminous binder, briquetted and mixed with the coarse coal. Briquetting in this way is because pulverized coal in dry coal causes dust and carryover,
In addition to simply adding and kneading the binder, press molding prevents the pulverized coal, which has been briquetted, from collapsing again during the transportation process to the coke oven. Prevention of reoccurrence can be ensured.

【0023】この場合のブリケットの形状は、球状、方
形状、楕円状等の形状に成型されたものであればよく特
に限定されない。例えば長辺50〜70mm,短辺30
〜50mm,厚み30mm前後の方形状ブリケットが挙
げられる。またブリケット成型圧は、線圧が0.5〜
2.0t/cmの範囲とすることが好ましい。線圧が
0.5t/cm未満の場合、輸送過程でのブリケット崩
壊による微粉炭の再発生防止に不十分である一方、線圧
が2.0t/cmを越えて成型しても微粉炭の再発生防
止について効果の向上がを殆ど認められずエネルギー的
に無駄である。微粉炭に対する歴青物のバインダー添加
量としては、6〜15wt%好ましくは8〜12wt%
である。
In this case, the shape of the briquette is not particularly limited as long as it is formed into a shape such as a sphere, a square, and an ellipse. For example, long side 50-70mm, short side 30
Square briquettes having a thickness of about 50 mm and a thickness of about 30 mm. Also, briquette molding pressure is 0.5 ~
It is preferable to be in the range of 2.0 t / cm. When the linear pressure is less than 0.5 t / cm, it is insufficient to prevent the re-generation of pulverized coal due to briquette collapse in the transportation process. There is almost no improvement in the effect of preventing re-generation, which is wasteful in terms of energy. The amount of bituminous binder added to pulverized coal is 6 to 15 wt%, preferably 8 to 12 wt%.
It is.

【0024】ここで歴青物のバインダーとしては、ター
ル、重質油、ピッチ類などが利用出来るが、特にコーク
ス炉から回収される粗タールをそのまま使用できる。こ
うした粗タールとしては、デカンターに沈殿されるター
ル滓(スラッジ)を併用してもよい。また、コークス炉
上昇管からサクションメーンまでに凝縮するタール、す
なわち重質タール分が比較的多いタールを分別回収し、
この分別回収されたタールを微粉炭の塊成化に利用する
と、発塵防止やコークス強度向上により寄与できる。な
お、タールの他に、重質油やピッチ類を添加してもよ
い。本発明のコークスの製造方法では、上記のブリケッ
ト化して粗粉炭に混合した原料炭を、コークス炉装入炭
槽に貯蔵した後、通常のコークス炉の炭化室に装入し通
常の乾留条件でコークスすることができる。
Here, tar, heavy oil, pitches and the like can be used as a binder for bituminous substances, and in particular, crude tar recovered from a coke oven can be used as it is. As such a coarse tar, a tar slag (sludge) precipitated in a decanter may be used in combination. In addition, the tar condensed from the coke oven riser to the suction main, that is, the tar containing a relatively large amount of heavy tar is separated and collected,
If this separated and collected tar is used for agglomeration of pulverized coal, it can contribute to preventing dust generation and improving coke strength. In addition, heavy oil and pitches may be added in addition to tar. In the method of manufacturing coke of the present invention, the raw coal mixed into the above-described briquetted and coarse coal is stored in a coke oven charging coal tank, and then charged into a carbonization chamber of a normal coke oven under normal dry distillation conditions. Can coke.

【0025】本発明方法によれば、原料炭の表面水分が
実質上なくなるまで乾燥することで微粉炭が粗粒子部分
から完全に分離するとともに、微粉炭が疑似粒子集合体
となっている場合にも容易に崩壊し易くなっており、そ
の上で循環ガス主体の低温ガス導入により微粉炭の自然
発火や着火現象の生じない効率的な微粉炭の分級仕上げ
が実施できる。
According to the method of the present invention, the pulverized coal is completely separated from the coarse particle portion by drying until the surface moisture of the raw coal is substantially eliminated, and the pulverized coal is formed into a pseudo-particle aggregate. Is also easily disintegrated, and the classification of pulverized coal can be performed efficiently by introducing a low-temperature gas mainly composed of circulating gas without spontaneous ignition or ignition of the pulverized coal.

【0026】また微粉炭の限界分級点を0.2〜0.3
mmとし、かつ分離された微粉炭にはタールを添加して
混練後、成型ロールにてブリケット成型することによ
り、上記発塵及びキャリーオーバー防止に万全を期する
ことができる。又微粉炭をブリケット成型して粗粒子部
分と混合した場合には炭化室装入時点で、ブリケット間
の隙間には粗粒子部分が充填されて装入嵩密度の最大化
が図れることで、得られるコークス強度をより向上させ
ることとなる等の作用効果を奏する。
The pulverized coal has a critical classification point of 0.2 to 0.3.
In addition, tar is added to the separated pulverized coal, kneaded, and then briquette-molded with a molding roll, so that the above-mentioned dust generation and carry-over prevention can be ensured. In addition, when pulverized coal is briquetted and mixed with coarse particles, the gap between briquettes is filled with coarse particles at the time of charging the carbonization chamber to maximize the bulk density of the charged coal. This has the effect of improving the coke strength to be obtained.

【0027】[0027]

【発明の実施の形態】以下本発明の実施の形態につい
て、図3に示した全体の概略プロセスフローを用いて、
具体的に説明する。図3において粉砕後の原料炭1を、
流動層乾燥機2内のガス分散板3上に連続的に供給し、
ガス分散板3の下方から供給される乾燥用の高温ガスで
実質上表面水分がなくなるまで乾燥し、最終室で仕上げ
分級処理する。この流動層乾燥機2内は、原料炭流動層
の移動方向に直角方向で、ガス分散板3上に隙間を残し
て設けた複数の仕切り板6で乾燥室と最終の仕上げ分級
室とに多室化されている。この場合ガス分散板3の下方
から乾燥用の高温ガスが導入されるがそのガス導入室も
上部の仕切り室に対応して設けた仕切り板7で多室化さ
れている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the overall schematic process flow shown in FIG.
This will be specifically described. In FIG. 3, the raw coal 1 after pulverization is
It is continuously supplied onto the gas dispersion plate 3 in the fluidized bed dryer 2,
Drying is performed with a high-temperature gas for drying supplied from below the gas dispersion plate 3 until the surface moisture is substantially eliminated, and a finish classification process is performed in the final chamber. In the fluidized bed dryer 2, a plurality of partition plates 6 provided with a gap on the gas dispersion plate 3 in a direction perpendicular to the moving direction of the coking fluidized bed are used to form a drying room and a final finishing classifying room. Room. In this case, a high-temperature gas for drying is introduced from below the gas dispersion plate 3, and the gas introduction chamber is also multi-chambered by the partition plate 7 provided corresponding to the upper partition room.

【0028】各乾燥室の仕切り室内へは乾燥用の高温ガ
ス5が分割して供給される。乾燥用の高温ガス5は、燃
料8と空気9が供給されるガス燃焼炉10から供給され
るが、通常は適宜循環ガス17の一部を混合調整して4
00〜600℃程度に調整したものが使用される。各乾
燥室からの出口排出ガスラインには蒸発した水分と極め
て微粒子の微粉炭とが一部同伴されるが、これらは最終
の仕上げ分級室11からの排出ガスラインと共に集合管
12でまとめて後続の集塵機13で集塵される。集塵機
13から排出されるガスは排ガスブロワー14を経てス
タック(煙突)15から一部が排出されるが、残りは循
環ブロワー16を経て循環ガス17としてガス燃焼室1
0(又はその出口側)へと最終室11内へ低温ガスとし
て循環させる。
The high-temperature gas 5 for drying is divided and supplied into the partition chamber of each drying chamber. The high-temperature gas 5 for drying is supplied from a gas combustion furnace 10 to which the fuel 8 and the air 9 are supplied.
What is adjusted to about 00 to 600 ° C. is used. Evaporated moisture and extremely fine pulverized coal are partially entrained in the outlet exhaust gas line from each drying chamber, and they are collected together in the collecting pipe 12 together with the exhaust gas line from the final finishing classification chamber 11. Dust is collected by the dust collector 13. A part of the gas discharged from the dust collector 13 is discharged from a stack (chimney) 15 through an exhaust gas blower 14, but the rest passes through a circulation blower 16 and becomes a circulating gas 17 as a circulating gas 17.
0 (or its outlet side) is circulated as a low-temperature gas into the final chamber 11.

【0029】本発明では、最終室11直前の仕切り室に
おける原料炭の流動層を乾燥用の高温ガス5により乾燥
処理し、最終室11では循環ガス17を主体とする分級
用低温ガスにより原料炭の流動層からの微粉炭の分級処
理とを行うことが重要である。ここで恒率乾燥温度領域
がほぼ完結する温度領域に保持するための具体的な手段
としては、最終室直前の仕切り室からの排ガス温度T1
の検知結果を、原料炭の恒率乾燥期間がほぼ完結した温
度条件に対応した基準温度(恒率乾燥温度よりも好まし
くは0.5〜3℃程度高い温度が好ましい)と比較し
て、基準温度の管理範囲をオーバーした場合は、微粉炭
の着火を防ぐために乾燥用高温ガス5の供給温度を下げ
る。又逆に基準温度以下になった場合は乾燥用高温ガス
5の供給温度を上げることによって排ガス基準温度を維
持するように自動制御することが好ましい。この場合高
温ガスの供給温度を下げる(又は上げる)には、ガス燃
焼炉10への燃料8と空気9の供給量を制御してもよ
く、或いは低温度の循環ガス17の配合量を調節弁V1
またはV2の開閉制御で自動制御させる。場合によって
は高温ガス供給の調節弁V3で供給量を制御してもよ
い。
In the present invention, the fluidized bed of the raw coal in the partitioning chamber immediately before the final chamber 11 is subjected to the drying treatment with the high-temperature gas 5 for drying. It is important to classify the pulverized coal from the fluidized bed. Here, as a specific means for maintaining the constant rate drying temperature range in a temperature range in which the drying temperature range is almost completed, the exhaust gas temperature T 1 from the partition chamber immediately before the final chamber is used.
Is compared with a reference temperature (preferably a temperature higher than the constant rate drying temperature by about 0.5 to 3 ° C.) corresponding to a temperature condition at which the constant rate drying period of the raw coal is almost completed. When the temperature exceeds the control range, the supply temperature of the high-temperature gas for drying 5 is reduced to prevent ignition of the pulverized coal. Conversely, when the temperature becomes lower than the reference temperature, it is preferable to automatically control the supply temperature of the high-temperature gas for drying 5 to maintain the exhaust gas reference temperature by increasing the supply temperature. In this case, in order to decrease (or increase) the supply temperature of the high-temperature gas, the supply amounts of the fuel 8 and the air 9 to the gas combustion furnace 10 may be controlled, or the mixing amount of the low-temperature circulating gas 17 may be controlled by a control valve. V 1
Or it is automatically controlled by the switching control of the V 2. Sometimes it may control the supply amount regulating valve V 3 of the hot gas supply.

【0030】本発明では、最終室11の直前迄に原料炭
の表面水分が実質上なくなった状態まで乾燥している
が、仕上げ分級の段階では低温度ガスの導入で加熱され
ない結果微粉炭の自然発火や着火現象は完全に防止され
る。ここで最終室11では、循環ガス17を主体とする
分級用の低温度ガス(通常100℃以下)が導入されて
仕上げ分級がなされるが、この場合の最終室11の流動
層内部及び上部空間には、仕上げ分級が効率的に実施さ
れる様に、任意の形状の複数の整流板18、18’が設
けられる。例えば上昇流の上部空間通路をジグザグにす
る複数の整流板18’を設けることにより、慣性衝突や
うず流による粒子の分散と上昇流による分級が繰り返し
行われるように構成することが望ましい。この場合の境
界分級点の調整は、上昇流の上部出口付近に適宜設ける
風量調節弁19の開度によって容易に行うことができ
る。
In the present invention, the coking coal is dried to a state in which the surface moisture of the coking coal has substantially disappeared just before the final chamber 11, but is not heated by the introduction of the low-temperature gas at the stage of finishing classification, and as a result, the pulverized coal is naturally dried. Ignition and ignition phenomena are completely prevented. Here, in the final chamber 11, a low-temperature gas (typically 100 ° C. or less) for classification mainly containing the circulating gas 17 is introduced to perform the final classification. In this case, the inside of the fluidized bed and the upper space of the final chamber 11 are used. Are provided with a plurality of rectifying plates 18 and 18 'having an arbitrary shape so that the finishing classification is efficiently performed. For example, it is desirable to provide a plurality of flow straightening plates 18 'that make the upper space passage of the rising flow zigzag so that the dispersion of particles due to inertial collision or eddy flow and the classification by the rising flow are repeatedly performed. In this case, the adjustment of the boundary classification point can be easily performed by adjusting the opening of the air volume control valve 19 provided appropriately near the upper outlet of the upward flow.

【0031】本発明ではかかる流動層乾燥機2を使用す
ることにより、熱風5を床面から吹き込み原料湿炭の流
動層4に直接接触させつつ流動させながら乾燥するが、
乾燥前の原料炭1においては、微粉炭は水分のため擬似
粒子集合体を形成しており分離が困難である。しかしな
がら、移動方向の各室毎に原料炭が流動層内で撹袢され
乾燥が進み、また粒子同士の揉み洗い効果により、疑似
粒子集合体が容易に崩壊して微粉炭がより容易に分離さ
れることとなる。なお、流動層乾燥機2の前段に別途予
備乾燥工程を設け予備乾燥してもよい。本発明の流動層
乾燥機2で、粗粒部分から分級された全ての微粉炭は、
排出ガスライン12でまとめて気流とともに排出され後
続のバッグフイルター等の集塵機13にて適宜集塵し回
収することができる。
In the present invention, by using the fluidized bed dryer 2, the hot air 5 is blown from the floor surface and dried while flowing while being in direct contact with the fluidized bed 4 of the raw wet coal.
In the raw coal 1 before drying, pulverized coal forms a pseudo-particle aggregate due to moisture, and is difficult to separate. However, for each chamber in the moving direction, the raw coal is stirred in the fluidized bed and drying proceeds, and due to the effect of rubbing and washing the particles, the pseudo-particle aggregates are easily disintegrated and the pulverized coal is more easily separated. The Rukoto. Note that a preliminary drying step may be separately provided before the fluidized-bed dryer 2 to perform preliminary drying. In the fluidized bed dryer 2 of the present invention, all the pulverized coal classified from the coarse particle portion is
The exhaust gas is collectively discharged together with the airflow in the exhaust gas line 12 and can be appropriately collected and collected by a subsequent dust collector 13 such as a bag filter.

【0032】集塵機13にて回収された微粉炭20に
は、瀝青物のバインダー21等が溶融状態で添加され混
練される。分級された微粉炭20への瀝青物21等のバ
インダー添加は、任意の混合撹拌機22を使用してもよ
く限定されない。特にピン式、又はパドル式混練機等が
均一混練には好適に使用される。本発明では微粉炭とバ
インダーの混練物を、更にロール成型機23にてブリケ
ット24に加圧成型する。微粉炭のブリケット化された
成型物24は、乾燥・分級工程から出てきた乾燥粗粒炭
25と均一混合し、コークス製造用原料炭26とする。
このようにして事前処理されたコークス製造用原料炭2
6は、適宜コークス炉装入炭槽に貯蔵した後、コークス
炉の炭化室に装入される。この場合、装入条件やコーク
ス化条件等については従来からの操業条件が採用でき、
特に限定されない。
To the pulverized coal 20 collected by the dust collector 13, a bituminous binder 21 and the like are added in a molten state and kneaded. Addition of a binder such as a bituminous substance 21 to the classified pulverized coal 20 may be performed by using an arbitrary mixing stirrer 22 and is not limited. In particular, a pin type or paddle type kneader is suitably used for uniform kneading. In the present invention, the kneaded product of the pulverized coal and the binder is further pressure-molded into briquettes 24 by a roll molding machine 23. The briquetted molded product 24 of the pulverized coal is uniformly mixed with the dry coarse coal 25 coming out of the drying / classifying step to obtain a raw coal 26 for coke production.
Coking coking coal 2 pretreated in this way
6 is stored in a coke oven charging coal tank as appropriate, and then charged into the coking chamber of the coke oven. In this case, conventional operating conditions can be adopted for charging conditions, coking conditions, and the like.
There is no particular limitation.

【0033】[0033]

【実施例】以下に本発明の実施例と比較例を説明する
が、本発明はこれらに限定されるものでないことは勿論
である。
EXAMPLES Examples of the present invention and comparative examples will be described below, but it goes without saying that the present invention is not limited to these.

【0034】実施例1 非微粘結炭(石炭化度Ro;0.69,最高流動度MF
(=logDDPM);2.06,全膨張率TD;2
9)を57重量%、残りが良質粘結炭の43重量%配合
したコークス製造用原料炭(水分9.0%)を、粉砕粒
度3mm以下が85%(但し粒度0.3mm以下は30
%含有)になるように粉砕した。この原料炭を、内部が
仕切り板で4室に仕切られた流動層乾燥機を用いて、上
流側3室には熱風ガス(温度400℃,露点75℃)を
導入して流動層を形成させつつ石炭全水分含有率2重量
%(表面水分=0%)になるまで乾燥させた後、最終室
には、循環ガスからなる分級用低温ガス(温度75℃,
露点75℃)を導入して、境界分級点が0.3mmとな
るように連続的に微粉炭を仕上げ分級した後で集塵機で
回収した。こうして分級・回収された微粉炭比率は約2
9.5%であった。
Example 1 Non-coking coal (degree of coalification R o ; 0.69, maximum fluidity MF)
(= LogDDPM); 2.06, total expansion coefficient TD; 2
9) 57% by weight, the balance being 43% by weight of good-quality caking coal, raw coal for coke production (water content: 9.0%) having a pulverized particle size of 3 mm or less and 85% (however, a particle size of 0.3 mm or less is 30%).
%). A hot-air gas (temperature 400 ° C., dew point 75 ° C.) is introduced into the three upstream chambers of this raw coal using a fluidized-bed dryer in which the interior is partitioned into four chambers by a partition plate to form a fluidized bed. After drying until the total moisture content of the coal became 2% by weight (surface moisture = 0%), a low-temperature gas for classification consisting of circulating gas (temperature of 75 ° C.,
A dew point of 75 ° C) was introduced, and pulverized coal was continuously finished and classified so that the boundary classification point became 0.3 mm, and then collected by a dust collector. The ratio of pulverized coal thus classified and recovered is about 2
It was 9.5%.

【0035】この分級された微粉炭に対して粗タールを
10wt%添加・混練した後、成型機にて線圧1t/c
mで長辺65mm,短辺42mm,厚み28mm,容積
56ccのブリケットに成型した。この微粉炭のブリケ
ット成型物を粗粒炭と混合して装入炭とした。このとき
のブリケット輸送工程及び粗粒炭との混合工程並びに電
気炉への装炭時においても、粉塵の発生は全く認められ
なかった。この装入炭を電気炉(幅450mm,高さ5
00mm,長さ640mm)内に装入した時の石炭装入
嵩密度は0.88(t/m3)であった。この電気炉に
てコークス温度1050℃まで昇温し、乾留を終了し
た。得られたコークスのドラム強度DI(150/1
5)は84.5であり、反応後強度(CSR)は50.
5であった。
After adding and kneading 10 wt% of coarse tar to the classified pulverized coal, a linear pressure of 1 t / c is applied by a molding machine.
m to form a briquette having a long side of 65 mm, a short side of 42 mm, a thickness of 28 mm, and a volume of 56 cc. The briquette molded product of this pulverized coal was mixed with coarse coal to obtain charged coal. At this time, no dust was generated at all in the briquette transporting step, the mixing step with the coarse coal, and the charging of the electric furnace. This charged coal is converted into an electric furnace (width 450 mm, height 5
(00 mm, length 640 mm), the bulk density of the charged coal was 0.88 (t / m 3 ). The coke temperature was raised to 1050 ° C. in this electric furnace, and the dry distillation was completed. The obtained coke has a drum strength DI (150/1
5) was 84.5, and the post-reaction strength (CSR) was 50.50.
It was 5.

【0036】比較例1 実施例1で使用したと同じ粉砕した原料炭を、同じく内
部が仕切り板で4室に仕切られた流動層乾燥機を用い
て、但し4室の全てに単一の熱風ガス(温度400℃,
露点75℃)を導入して最終室出口で石炭全水分の含有
率2重量%(表面水分=0%)になるまで乾燥させつ
つ、境界分級点が0.3mmとなるように連続的に微粉
炭を仕上げ分級した後で集塵機で回収した。こうして分
級・回収された微粉炭分級比率は約25.0%であっ
た。分級された微粉炭に対して実施例1と同様に粗ター
ルを10wt%添加・混練した後、ブリケットに成型し
粗粒炭と混合して装入炭とした。このときのブリケット
輸送工程及び粗粒炭との混合工程並びに電気炉への移送
・装炭時においては、粗粒炭に残留していたと思われる
微粉炭による粉塵とキャリーオーバー現象の発生が明ら
かに認められた。
COMPARATIVE EXAMPLE 1 The same pulverized raw coal used in Example 1 was subjected to a fluidized bed drier similarly divided into four chambers by a partition plate, except that a single hot air was supplied to all four chambers. Gas (temperature 400 ° C,
(Dew point 75 ° C), and while drying at the outlet of the final chamber until the total moisture content of the coal becomes 2% by weight (surface moisture = 0%), fine powder is continuously produced so that the boundary classification point becomes 0.3 mm. After the coal was finished and classified, it was collected by a dust collector. The pulverized coal classification ratio thus classified and recovered was about 25.0%. After adding and kneading 10 wt% of coarse tar to the classified pulverized coal in the same manner as in Example 1, briquettes were formed and mixed with coarse coal to obtain charged coal. At this time, during the briquette transportation process, the mixing process with the coarse coal, and the transfer and charging to the electric furnace, the occurrence of dust and carryover phenomena due to the pulverized coal considered to have remained in the coarse coal was clarified. Admitted.

【0037】参考例 実施例1で使用したと同じ非微粘結炭を18重量%、残
りが良質粘結炭の82重量%配合したコークス製造用原
料炭(水分9.0%)を、粉砕粒度3mm以下が85%
になるように粉砕して、この原料炭を乾燥することなく
装入炭として実施例1で使用したと同じ電気炉に装入し
た他は、実施例1と同一条件で乾留を終了してコークス
を得た。なお電気炉への移送時及び装炭時においては、
水分の影響で粉塵の発生は全く認められなかった。また
電気炉への内に装入した時の石炭装入嵩密度は0.73
(t/m3)であった。得られたコークスのドラム強度
DI(150/15)は82.7であり、反応後強度
(CSR)は47.6であった。
REFERENCE EXAMPLE A raw coal for coke production (water content: 9.0%) in which 18% by weight of the same non-coking coal as used in Example 1 and 82% by weight of the remaining good-quality caking coal were blended was ground. 85% for particle size 3mm or less
Then, the coking was completed under the same conditions as in Example 1 except that the raw coal was charged into the same electric furnace as used in Example 1 without being dried as charged coal without drying. I got In addition, at the time of transfer to the electric furnace and coal charging,
No dust was generated due to the effect of moisture. The bulk density of coal charged when charged into an electric furnace was 0.73.
(T / m 3 ). The obtained coke had a drum strength DI (150/15) of 82.7 and a post-reaction strength (CSR) of 47.6.

【0038】上記の実施例と比較例の結果から明らかな
如く乾燥炭の輸送や炭化室への装入の際に発塵及びキャ
リーオーバーの問題を解消することができるとともに、
コークス強度測定結果からも明らかな如く、実施例1で
は非微粘結炭を57重量%程度も増配合しているにもか
かわらず、コークス強度は、参考例で示した通常の湿炭
法と同等以上の操業レベルを達成でき、優れた性状を有
するコークスが得られることが分かる。
As is apparent from the results of the above Examples and Comparative Examples, the problems of dust generation and carry-over during the transportation of dry coal and the charging into the carbonization chamber can be solved, and
As is clear from the results of the coke strength measurement, the coke strength was not higher than that of the normal wet coal method shown in the reference example, even though the non-sintered coal was increased by about 57% by weight in Example 1. It can be seen that the same or higher operation level can be achieved and coke having excellent properties can be obtained.

【0039】[0039]

【発明の効果】石炭の乾燥プロセスには、乾燥炭の輸送
や炭化室への装入の際に発塵及びキャリーオーバーの問
題を少なからず付随していたが、本発明によれば流動層
乾燥機を用いて乾燥と分級を同時に実施できるととも
に、発塵等の原因となる微粉炭の自然発火や着火現象が
生じる危険性もなく完全に除去したうえで、成型物まで
加工することにより、湿炭と同等の操業レベルを達成で
きる。また、微粉炭を成型物としてブリケット化するこ
とにより、単にタール添加混練する場合に比べて、コー
クス炉までの輸送過程で再崩壊する可能性を極力抑制し
て、発塵やキャリーオーバー発生をより確実に防止でき
るとともに、炭化室での装入嵩密度を上昇できることと
も相まって、高炉用コークスの品質特にコークス強度を
より向上させ得る。即ち高炉用コークスとしての品質を
満足しつつ、劣質炭である非微粘結炭の多量使用を実用
上可能にするものであり、石炭資源の有効活用に繋がる
工業上有益な発明である。
According to the present invention, the drying process of coal was accompanied by a considerable problem of dust generation and carry-over when transporting the dried coal and charging it into the coking chamber. Drying and classification can be performed at the same time using a machine.Also, there is no danger of spontaneous ignition or ignition of pulverized coal, which may cause dust, etc. It can achieve the same operation level as charcoal. Also, by briquetting pulverized coal as a molded product, the possibility of re-collapse during the transportation process to the coke oven is suppressed as much as possible compared to the case of simply adding and kneading with tar, and the generation of dust and carryover is reduced. In addition to being able to reliably prevent this, the quality of the blast furnace coke, especially the coke strength, can be further improved in combination with the fact that the charging bulk density in the carbonization chamber can be increased. That is, it is possible to use a large amount of non-coking coal, which is inferior coal, while satisfying the quality of blast furnace coke, and it is an industrially useful invention that leads to effective utilization of coal resources.

【図面の簡単な説明】[Brief description of the drawings]

【図1】発塵源となった微粉炭の粒度分布を示す。FIG. 1 shows the particle size distribution of pulverized coal serving as a dust source.

【図2】キャリーオーバー源となった微粉炭の粒度分布
を示す。
FIG. 2 shows the particle size distribution of pulverized coal that has become a carryover source.

【図3】本発明のコークス製造用原料炭の乾燥処理方法
の全体フローシートである。
FIG. 3 is an overall flow sheet of the method for drying coking coal for coke production of the present invention.

【符号の説明】[Explanation of symbols]

1 原料炭 2 流動層乾燥機 3 ガス分散板 4 流動層 5 乾燥用高温ガス 6 流動層上部空間の仕切り板 7 乾燥用高温ガス導入室の仕切り板 8 燃料 9 空気 10 ガス燃焼炉 11 最終室 12 排出ガスライン集合管 13 集塵機 14 排ガスブロワー 15 スタック(煙突) 16 循環ブロワー 17 循環ガス 18 流動層内の整流板 18’流動層上部空間の整流板 19 風量調節弁 20 分級された微粉炭 21 バインダー 22 混合撹拌機 23 ロール成型機 24 ブリケット 25 乾燥粗粒炭 26 事前処理されたコークス製造用原料炭 REFERENCE SIGNS LIST 1 Coking coal 2 Fluidized bed dryer 3 Gas dispersion plate 4 Fluidized bed 5 High temperature gas for drying 6 Partition plate for space above fluidized bed 7 Partition plate for high temperature gas introduction chamber for drying 8 Fuel 9 Air 10 Gas combustion furnace 11 Final chamber 12 Exhaust gas line collecting pipe 13 Dust collector 14 Exhaust gas blower 15 Stack (chimney) 16 Circulating blower 17 Circulating gas 18 Rectifier plate in fluidized bed 18 'Rectifier plate in fluid bed upper space 19 Air flow control valve 20 Classified pulverized coal 21 Binder 22 Mixing stirrer 23 Roll forming machine 24 Briquette 25 Dry coarse coal 26 Pretreated raw coal for coke production

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 微粉炭を含むコークス製造用原料炭を、
流動層乾燥機にて乾燥する際に、流動層乾燥機内を原料
炭の移動方向に直角な仕切り板で複数室に分割し、最終
室を除く各分割室にはガス分散板上を移動する原料炭層
に下方から乾燥用高温ガスを導入して最終室直前迄に原
料炭の恒率乾燥期間がほぼ完結し実質上表面水分がなく
なるまで乾燥させるとともに、最終室には分級用低温ガ
スを導入して原料炭からの微粉炭の分級仕上げを行うこ
とを特徴とするコークス製造用原料炭の事前処理方法。
Claims 1. A raw coal for coke production containing pulverized coal,
When drying with a fluidized-bed dryer, the inside of the fluidized-bed dryer is divided into a plurality of chambers by a partition plate perpendicular to the moving direction of the raw coal, and the raw material moving on the gas dispersion plate in each of the divided chambers except the final chamber. A high-temperature gas for drying is introduced into the coal bed from below, and the coal is dried until the constant rate drying period of the coking coal is almost completed and the surface moisture is substantially eliminated by just before the final chamber. A method for pre-treating coking coal for coke production, wherein the pulverized coal is classified and finished from coking coal.
【請求項2】 最終室直前迄はガス燃焼炉からの熱風ガ
スに循環ガスの一部を配合した400〜600℃の乾燥
用高温ガスを仕切り室毎に分割して供給するとともに、
最終室には循環ガスを主体とする100℃以下の分級用
低温ガスを供給する請求項1記載のコークス製造用原料
炭の事前処理方法。
2. A hot gas for drying at 400 to 600 ° C. in which a part of a circulating gas is mixed with hot air gas from a gas combustion furnace until just before the final chamber is divided and supplied to each partition chamber.
The pre-treatment method of coking coal for coke production according to claim 1, wherein a low-temperature gas for classification at 100 ° C or lower mainly comprising a circulating gas is supplied to the final chamber.
【請求項3】 最終室での微粉炭の分級仕上げは、微粉
炭の境界分級点が0.2〜0.3mmの範囲に調整して
連続的に分級する請求項1又は請求項2記載のコークス
製造用原料炭の事前処理方法。
3. The classification finishing of pulverized coal in the final chamber is performed by adjusting the boundary classification point of pulverized coal to a range of 0.2 to 0.3 mm and continuously classifying. Pretreatment method for coking coal.
【請求項4】 最終室直前の仕切り室からの排ガス温度
が、原料炭の恒率乾燥期間の完結温度に対応した基準温
度をオーバーした場合は、乾燥用高温ガスの供給温度を
下げて基準温度を維持するように制御する請求項1〜3
のいずれかに記載のコークス製造用原料炭の事前処理方
法。
4. When the temperature of the exhaust gas from the partition chamber immediately before the final chamber exceeds a reference temperature corresponding to the completion temperature of the coking coal during the constant-rate drying period, the supply temperature of the high-temperature gas for drying is lowered to reduce the reference temperature. Claims 1 to 3 that are controlled to maintain
The method for pretreating coking coal for coke production according to any one of the above.
【請求項5】 請求項1〜3のいずれかに記載の分級さ
れた微粉炭には歴青物のバインダーを混練し、ブリケッ
ト化して粗粉炭に混合することを特徴とするコークス製
造用原料炭の事前処理方法。
5. A raw coal for coke production, characterized in that a bituminous binder is kneaded with the classified pulverized coal according to any one of claims 1 to 3, briquetted and mixed with coarse coal. Pre-processing method.
【請求項6】 請求項5で事前処理された原料炭を、コ
ークス炉装入炭槽に貯蔵した後、コークス炉の炭化室に
装入して乾留することを特徴とするコークスの製造方
法。
6. A method for producing coke, characterized in that the raw coal pretreated in claim 5 is stored in a coke oven charging coal tank, and then charged into a carbonization chamber of a coke oven and carbonized.
JP9396197A 1997-04-11 1997-04-11 Previous treatment of raw coal for coke production and production of coke Withdrawn JPH10287882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9396197A JPH10287882A (en) 1997-04-11 1997-04-11 Previous treatment of raw coal for coke production and production of coke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9396197A JPH10287882A (en) 1997-04-11 1997-04-11 Previous treatment of raw coal for coke production and production of coke

Publications (1)

Publication Number Publication Date
JPH10287882A true JPH10287882A (en) 1998-10-27

Family

ID=14097014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9396197A Withdrawn JPH10287882A (en) 1997-04-11 1997-04-11 Previous treatment of raw coal for coke production and production of coke

Country Status (1)

Country Link
JP (1) JPH10287882A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277764A (en) * 2002-03-25 2003-10-02 Nippon Steel Corp Method for pretreating coal in coke oven
KR100405510B1 (en) * 1999-12-24 2003-11-14 주식회사 포스코 Reducing method for tar sludge generation on the metallugical coke production
JP2007284557A (en) * 2006-04-17 2007-11-01 Nippon Steel Corp Method for pretreatment of coal for coke
JP2008138021A (en) * 2006-11-30 2008-06-19 Nippon Steel Corp Method and apparatus for pretreating coal of coke oven
JP2013245350A (en) * 2012-05-25 2013-12-09 Tianhua Inst Of Chemical Machinery & Automation Co Ltd Coal humidity conditioning method including integrated steam pipe rotary drying, sorting and granulation, and dedicated facility therefor
WO2014014092A1 (en) * 2012-07-20 2014-01-23 新日鐵住金株式会社 Coal upgrading method and coal upgrading device
CN104726121A (en) * 2015-03-20 2015-06-24 无锡亿恩科技股份有限公司 Device for high-humidity charging coking coal humidifying technology
CN105331374A (en) * 2014-08-15 2016-02-17 中国平煤神马集团许昌首山焦化有限公司 Large-scale coking coal cake tramping method
WO2017099382A1 (en) * 2015-12-10 2017-06-15 주식회사 포스코 Method and device for reforming coal
JP2020015792A (en) * 2018-07-24 2020-01-30 日本製鉄株式会社 Manufacturing method of coke oven coal charge

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100405510B1 (en) * 1999-12-24 2003-11-14 주식회사 포스코 Reducing method for tar sludge generation on the metallugical coke production
JP2003277764A (en) * 2002-03-25 2003-10-02 Nippon Steel Corp Method for pretreating coal in coke oven
JP2007284557A (en) * 2006-04-17 2007-11-01 Nippon Steel Corp Method for pretreatment of coal for coke
JP2008138021A (en) * 2006-11-30 2008-06-19 Nippon Steel Corp Method and apparatus for pretreating coal of coke oven
JP2013245350A (en) * 2012-05-25 2013-12-09 Tianhua Inst Of Chemical Machinery & Automation Co Ltd Coal humidity conditioning method including integrated steam pipe rotary drying, sorting and granulation, and dedicated facility therefor
JP5597778B2 (en) * 2012-07-20 2014-10-01 新日鐵住金株式会社 Coal reforming method and coal reforming apparatus
WO2014014092A1 (en) * 2012-07-20 2014-01-23 新日鐵住金株式会社 Coal upgrading method and coal upgrading device
US9309465B2 (en) 2012-07-20 2016-04-12 Nippon Steel & Sumitomo Metal Corporation Coal reforming method and coal reforming apparatus
CN105331374A (en) * 2014-08-15 2016-02-17 中国平煤神马集团许昌首山焦化有限公司 Large-scale coking coal cake tramping method
CN104726121A (en) * 2015-03-20 2015-06-24 无锡亿恩科技股份有限公司 Device for high-humidity charging coking coal humidifying technology
WO2017099382A1 (en) * 2015-12-10 2017-06-15 주식회사 포스코 Method and device for reforming coal
CN108368429A (en) * 2015-12-10 2018-08-03 株式会社Posco Method and apparatus for reforming coal
JP2020015792A (en) * 2018-07-24 2020-01-30 日本製鉄株式会社 Manufacturing method of coke oven coal charge

Similar Documents

Publication Publication Date Title
CN1120872C (en) Method and apparatus for drying coal
US3655518A (en) Retort system for oil shales and the like
JP5597778B2 (en) Coal reforming method and coal reforming apparatus
JP6424182B2 (en) Coke coal drying apparatus and drying method
CN110107890B (en) Method for preventing circulating fluidized bed boiler from coking
US3992266A (en) Recovery of coal fines from preheater
JPH10287882A (en) Previous treatment of raw coal for coke production and production of coke
JP5407496B2 (en) Fluidized bed drying and heating classifier and co-coking coal pretreatment method
KR100633830B1 (en) Method of reforming and pre-processing raw coal for manufacturing coke for shaft furnace
US3774315A (en) Process and apparatus for cooling hot briquettes
CA1109818A (en) Coke oven system and agglomerating carryover fines therein
CN108148610A (en) A kind of preprocess method for coking feed coal
AU636600B2 (en) A new briquette product and process
JP2016079332A (en) Fluidized bed apparatus, and method for drying/sorting coal by using the same
US4263100A (en) Method and apparatus for reducing fine dust emission while charging predried and preheated coal into coke ovens
JPH10183136A (en) Preliminary treatment of original coal for coke making and production of coke
US2773018A (en) Continuous process for drying, preheating, and devolatilization of carbonaceous materials
CN1498279A (en) Byproduct sludge recycling apparatus in ironmaking system
US4563264A (en) Method of dry distillation of volatile substances from mineral matter containing same
US4321032A (en) Process for the treatment of combustible granular and/or pulverulent material by drying and/or heating, and an installation for carrying out the process
JPH11246865A (en) Pretreatment of stock coal for coke production, and production of coke
JP3272512B2 (en) Classification drying and preheating control method for coal
US3918929A (en) Process for post-treating hot briquettes and the like
JPH10130653A (en) Method for pretreating coal for coke making and production of coke
JP3515831B2 (en) Manufacturing method of heated charging coal for coke oven

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040706