JPH10287833A - Production of insulating varnish and multi-layered printed wiring board using the insulating varnish - Google Patents

Production of insulating varnish and multi-layered printed wiring board using the insulating varnish

Info

Publication number
JPH10287833A
JPH10287833A JP9630197A JP9630197A JPH10287833A JP H10287833 A JPH10287833 A JP H10287833A JP 9630197 A JP9630197 A JP 9630197A JP 9630197 A JP9630197 A JP 9630197A JP H10287833 A JPH10287833 A JP H10287833A
Authority
JP
Japan
Prior art keywords
resin
insulating
circuit
wiring board
varnish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9630197A
Other languages
Japanese (ja)
Inventor
Kazunori Yamamoto
和徳 山本
Akishi Nakaso
昭士 中祖
Kazuhito Kobayashi
和仁 小林
Yasushi Kamishiro
恭 神代
Atsushi Takahashi
敦之 高橋
Kouji Morita
高示 森田
Shigeharu Ariga
茂晴 有家
Kazuhisa Otsuka
和久 大塚
Naoyuki Urasaki
直之 浦崎
Daisuke Fujimoto
大輔 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP9630197A priority Critical patent/JPH10287833A/en
Priority to US09/057,522 priority patent/US6197149B1/en
Priority to EP19980106742 priority patent/EP0873047B1/en
Priority to DE69839104T priority patent/DE69839104D1/en
Publication of JPH10287833A publication Critical patent/JPH10287833A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an insulating varnish capable of giving adhesive films inhibited in the contamination of whisker aggregates and high in insulating reliability by stirring electrically insulating whiskers in a resin varnish and subsequently kneading the prepared slurry by the use of a bead mill. SOLUTION: This method for producing an insulating varnish comprises stirring electrically insulating ceramic whiskers having an average diameter of 0.3-3 μm and an average length of 3-50 μm in a resin varnish, and subsequently kneading the prepared slurry by the use of a bead mill. Thereby, the insulating varnish giving printed wiring boards flat in surfaces, good in circuit processability, high in rigidity, hence high in mounting reliability, high in surface hardness, good in thermal expansion coefficient, and hence good in dimensional stability is obtained. A multi-layered printed wiring board is obtained by coating the varnish on a copper foil, etc., laminating the obtained insulating material to an inner layer wiring board having an inner circuit thereon, forming an outer layer surface circuit on the laminate, and subsequently electrically connecting the outer layer circuit to the inner layer circuit.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子部品を実装す
るプリント配線板の薄型化及び高密度化への要求に対応
できるプリント配線板用の絶縁材料に適用する絶縁ワニ
スの製造方法と、このワニスから得られる絶縁材料を用
いた多層プリント配線板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an insulating varnish applied to an insulating material for a printed wiring board which can meet the demand for thinner and higher density printed wiring boards on which electronic components are mounted, and a method for manufacturing the same. The present invention relates to a multilayer printed wiring board using an insulating material obtained from varnish.

【0002】[0002]

【従来の技術】プリント配線板は、通常、銅箔とプリプ
レグを積層、熱圧成形して得た銅張積層板に回路加工し
て得られる。また、多層プリント配線板は、これれらの
プリント配線板同士をプリプレグを介して熱圧成形する
か又は、これれらのプリント配線板と銅箔とをプリプレ
グを介して熱圧成形して一体化して得た内層回路入り多
層銅張積層板の表面に回路を形成して得られる。
2. Description of the Related Art A printed wiring board is usually obtained by laminating a copper foil and a prepreg, and performing circuit processing on a copper-clad laminate obtained by hot pressing. The multilayer printed wiring board is formed by hot-pressing these printed wiring boards via a prepreg, or by hot-pressing these printed wiring boards and copper foil via a prepreg. A circuit is formed on the surface of the multilayer copper-clad laminate containing the inner layer circuit obtained by the formation.

【0003】プリント配線板用のプリプレグには、従
来、ガラスクロスに樹脂を含浸・乾燥し、樹脂を半硬化
状態にしたガラスクロスプリプレグが用いられ、多層プ
リント配線板には、該ガラスクロスプリプレグの他に、
特開平6−200216号公報や特開平6−24246
5号公報に記載されているような、ガラスクロスを用い
ないプリプレグであるフィルム形成能を有する樹脂を半
硬化状態にした接着フィルムや、特開平6−19686
2号公報に記載されているような、接着フィルムを銅箔
の片面に形成した銅箔付き接着フィルムが使用されてい
る。なお、ここでいうフィルム形成能とは、プリプレグ
の搬送、切断及び積層等の工程中において、樹脂の割れ
や欠落等のトラブルを生じにくく、その後の熱圧成形時
に層間絶縁層が内層回路存在部等で異常に薄くなったり
層間絶縁抵抗の低下やショートというトラブルを生じに
くい性能を意味する。
As a prepreg for a printed wiring board, a glass cloth prepreg obtained by impregnating a glass cloth with a resin and drying the resin to make the resin semi-cured has been used. For a multilayer printed wiring board, the prepreg of the glass cloth prepreg has been used. other,
JP-A-6-200216 and JP-A-6-24246
Japanese Patent Application Laid-Open No. 6-19686, which describes a prepreg that does not use a glass cloth and is made of a resin having a film forming ability in a semi-cured state.
An adhesive film with a copper foil having an adhesive film formed on one side of a copper foil, as described in Japanese Patent Publication No. 2 (JP-A) No. 2 (1994), is used. The film-forming ability referred to here means that troubles such as cracking or chipping of the resin hardly occur during the steps of transporting, cutting, and laminating the prepreg, and the interlayer insulating layer is formed in the portion where the inner layer circuit exists at the time of subsequent hot pressing. It means performance that is unlikely to cause troubles such as abnormal thinning, reduction in interlayer insulation resistance and short circuit.

【0004】[0004]

【発明が解決しようとする課題】近年、電子機器の小型
軽量化、高性能化、低コスト化が進行し、プリント配線
板には高密度化、薄型化、高信頼性化、低コスト化が要
求されている。高密度化のためには、微細配線が必要で
あり、そのためには表面の平坦性が良好でかつ、寸法安
定性が良好でなくてはならない。さらに微細なスルーホ
ールやインターステーシャルバイアホール(IVH)が
必要であり、ドリル加工性、レーザ穴加工性が良好であ
ることが要求されている。表面の平坦性を良好にするた
めには、多層化積層成形時の樹脂の流動性を高くする必
要があり、これにはエポキシ樹脂等の熱硬化性樹脂の適
用が望ましい。
In recent years, electronic devices have been reduced in size, weight, performance, and cost, and printed wiring boards have been required to have higher density, thinner, higher reliability, and lower cost. Has been requested. For high density, fine wiring is required, and for that purpose, the surface must have good flatness and good dimensional stability. Further, fine through holes and interstitial via holes (IVH) are required, and good drill workability and laser hole workability are required. In order to improve the flatness of the surface, it is necessary to increase the fluidity of the resin at the time of multilayer lamination molding, and it is desirable to use a thermosetting resin such as an epoxy resin.

【0005】ところが、エポキシ樹脂は、成形前の段階
の分子量が低いために高い流動性を示しており、シート
状の絶縁材料を形成する性質を有していない。そこで、
従来はガラスクロス等の補強基材に絶縁樹脂を含浸させ
たプリプレグをあらかじめ作製し、これを絶縁層に用い
てきたが、従来のプリプレグでは上記の要求への対応が
困難になってきた。
However, the epoxy resin has high fluidity due to its low molecular weight before molding, and does not have the property of forming a sheet-like insulating material. Therefore,
Conventionally, a prepreg in which an insulating resin is impregnated into a reinforcing base material such as a glass cloth has been prepared in advance and used as an insulating layer. However, it has become difficult to respond to the above requirements with the conventional prepreg.

【0006】現在、プリプレグ用に一般的に使用されて
いるガラスクロスは、その厚みが薄くなるに従いヤーン
(ガラス繊維束)同士の間の隙間が大きくなる。そのた
め、厚みが薄いクロスほど目曲がり(ヤーンが曲がった
り、本来直角に交差すべき縦糸と横糸が直角でなく交差
する現象)が発生しやすくなる。この目曲がりが原因と
なり、熱圧成形後に異常な寸法変化やそりを生じやすく
なる。さらに薄いガラスクロスほどヤーン間の隙間が大
きいためプリプレグの繊維の体積分率が低くなるため層
間絶縁層の剛性が低下する。そのため外層の回路を加工
した後の部品実装工程等においてたわみが大きくなりや
すく問題となっている。
At present, in the glass cloth generally used for the prepreg, the gap between the yarns (glass fiber bundles) increases as the thickness decreases. For this reason, the thinner the cloth, the more the curling (the phenomenon that the yarn is bent or the warp and the weft, which should intersect at right angles, intersect at right angles rather than at right angles) is more likely to occur. Due to this bending, abnormal dimensional changes and warpage tend to occur after hot pressing. Further, the thinner the glass cloth is, the larger the gap between the yarns is, the lower the volume fraction of the fibers of the prepreg becomes, and the lower the rigidity of the interlayer insulating layer becomes. For this reason, there is a problem in that the deflection is likely to increase in a component mounting step or the like after processing the circuit in the outer layer.

【0007】現在、一般に使用されているガラスクロス
で最も薄いのは30μmのクロスであり、これを使用し
たプリプレグの厚さは40μm程度になる。これ以上に
プリプレグの厚さを薄くするために、樹脂分を減らすと
内層回路の凹凸への樹脂による穴埋め性が低下しボイド
が発生する。またこれ以上にガラスクロスを薄くすると
クロス自体の強度が低下するためガラスクロスに樹脂を
含浸する工程でガラスクロスが破断しやすなりプリプレ
グの製造が困難になる。さらに、これらのガラスクロス
を使用したプリプレグを用いて作製した多層プリント配
線板は、小径ドリル加工時に偏在するガラスクロスによ
って芯ぶれがしやすく、ドリルを折りやすい。また、ガ
ラス繊維の存在のため、レーザによる穴あけ性が悪く、
内層回路の凹凸が表面に現れやすく表面平坦性が悪い。
したがって、現状のガラスクロス基材のプリプレグを使
用しては、高まる多層プリント配線板の高密度化、薄型
化の要求に対応出来ない状況にある。
At present, the thinnest glass cloth generally used is a 30 μm cloth, and the thickness of a prepreg using the cloth is about 40 μm. If the resin content is reduced in order to further reduce the thickness of the prepreg, the ability to fill holes in the unevenness of the inner layer circuit with the resin is reduced, and voids are generated. Further, if the glass cloth is made thinner than this, the strength of the cloth itself is reduced, so that the glass cloth is easily broken in the step of impregnating the glass cloth with a resin, and it becomes difficult to manufacture a prepreg. Furthermore, a multilayer printed wiring board manufactured using a prepreg using these glass cloths is easily misaligned by a glass cloth unevenly distributed during small-diameter drilling, and the drill is easily folded. In addition, due to the presence of glass fibers, laser drilling is poor,
The unevenness of the inner layer circuit easily appears on the surface, and the surface flatness is poor.
Therefore, it is not possible to meet the increasing demand for higher density and thinner multilayer printed wiring boards using the current glass cloth base material prepreg.

【0008】一方、ガラスクロスのないプリプレグであ
る接着フィルムや銅箔付き接着フィルムは、厚さをより
薄くでき、小径ドリル加工性、レーザ穴加工性及び表面
平坦性に優れる。しかしながら、これらのプリプレグで
作製した多層プリント配線板は、外層絶縁層にガラスク
ロス基材がないため、剛性が極めて低い。この剛性の低
さは、高温下において極めて顕著であり、部品実装工程
においてたわみが生じやすく、ワイヤーボンディング性
も極めて悪い。また外層絶縁層にガラスクロス基材がな
く熱膨張係数が大きいため実装部品との熱膨張の差が大
きく、実装部品との接続信頼性が低く、加熱冷却の熱膨
張収縮によるはんだ接続部にクラックや破断が起こり易
い等多くの問題を抱える。したがって、現状のガラスク
ロスのないプリプレグである接着フィルムや銅箔付き接
着フィルムを使用しては、高まる多層プリント配線板の
高密度化、薄型化の要求に対応出来ない状況にある。
On the other hand, an adhesive film which is a prepreg without a glass cloth or an adhesive film with a copper foil can be made thinner, and is excellent in small diameter drill workability, laser hole workability and surface flatness. However, the multilayer printed wiring boards made with these prepregs have extremely low rigidity because the outer insulating layer does not have a glass cloth base material. This low rigidity is extremely remarkable at a high temperature, and is likely to bend in the component mounting process, and the wire bonding property is extremely poor. In addition, there is no glass cloth substrate in the outer insulating layer and the coefficient of thermal expansion is large because the thermal expansion coefficient is large, the reliability of connection with the mounted component is low, and cracks in the solder connection due to the thermal expansion and contraction of heating and cooling And many problems such as easy breakage. Therefore, it is not possible to meet the increasing demand for higher density and thinner multilayer printed wiring boards by using an adhesive film which is a prepreg without a glass cloth or an adhesive film with a copper foil.

【0009】そこで、従来のプリプレグでは解決できな
い多層プリント配線板に対する高密度化、薄型化、高信
頼性化、低コスト化という課題を解決するための新規絶
縁材料として、ガラスクロス等の基材を含まず、形状保
持のための電気絶縁性ウイスカーを絶縁樹脂中に分散さ
せることにより得られるワニスをキャリア基材に流延し
て得られるシート状の絶縁材料が有効であることを見出
した。しかし、電気絶縁性ウイスカーは乾燥状態で凝集
する性質が有り、電気絶縁性ウイスカーを絶縁樹脂中に
分散させるためには、特殊な混練設備が必要であった
り、電気絶縁性ウイスカーの表面処理を適切に行うこと
が必要になるが、そのような対策を施しても電気絶縁性
ウイスカーの凝集体を皆無にすることができない。とこ
ろで、多層配線板材料は、内層回路充填性確保のために
絶縁層厚を内層回路厚以上に設定しているが、多層配線
板の全体厚を薄くするために、絶縁性を確保できる範囲
で可能な限り薄くすることが望まれている。そこで、絶
縁層厚は通常25〜100μmで、少なくとも25μm
を確保している。ところが、電気絶縁性のウイスカーの
凝集体のサイズ(長さ)は、50μmを超え、中には3
00μmを超えるものもあった。この電気絶縁性ウイス
カーの凝集体を含んだワニスを用いて作製したシート状
絶縁材料を多層配線板に適用した場合には、導体間に電
気絶縁性ウイスカーの凝集体が接触し、CAF(Conduc
tive Anodic Filament)に類似した絶縁不良を起こす
ことがある。
Therefore, a base material such as glass cloth is used as a new insulating material for solving the problems of high density, thinness, high reliability, and low cost for a multilayer printed wiring board that cannot be solved by a conventional prepreg. It was found that a sheet-like insulating material obtained by casting a varnish obtained by dispersing an electrically insulating whisker for maintaining shape in an insulating resin on a carrier substrate was effective. However, electrical insulating whiskers have the property of agglomerating in a dry state, and special kneading equipment is required to disperse the electrical insulating whiskers in the insulating resin. However, even if such measures are taken, the aggregates of the electrically insulating whiskers cannot be completely eliminated. By the way, in the multilayer wiring board material, the insulating layer thickness is set to be equal to or greater than the inner layer circuit thickness in order to ensure the filling property of the inner layer circuit. It is desired to be as thin as possible. Therefore, the thickness of the insulating layer is usually 25 to 100 μm, and at least 25 μm
Is secured. However, the size (length) of the aggregate of electrically insulating whiskers exceeds 50 μm, and some
Some of them exceeded 00 μm. When a sheet-like insulating material produced using a varnish containing an aggregate of electrically insulating whiskers is applied to a multilayer wiring board, the aggregate of electrically insulating whiskers comes into contact between conductors, and CAF (Conducer)
tive Anodic Filament).

【0010】本発明者、電気絶縁性に優れた絶縁ワニス
の製造方法を提供することを目的とする。
An object of the present invention is to provide a method for producing an insulating varnish having excellent electrical insulation properties.

【0011】[0011]

【課題を解決するための手段】本発明の絶縁ワニスの製
造方法は、電気絶縁性ウイスカーを、樹脂ワニス中で撹
拌してスラリーを調製し、このスラリーをビーズミルで
混練することを特徴とする
The method for producing an insulating varnish of the present invention is characterized in that a slurry is prepared by stirring an electrically insulating whisker in a resin varnish, and the slurry is kneaded with a bead mill.

【0012】スラリーを調製する前の電気絶縁性ウイス
カーには、セラミックウイスカーであって、該ウイスカ
ーの平均直径が0.3〜3.0μmの範囲にあり、平均
長さが3〜50μmの範囲にあるものを用いることがで
きる。
The electrically insulating whiskers before the preparation of the slurry include ceramic whiskers having an average diameter of 0.3 to 3.0 μm and an average length of 3 to 50 μm. Some can be used.

【0013】このような絶縁ワニスを、銅箔またはキャ
リアフィルムに塗布して得た絶縁材料を、内層回路を形
成した内層配線板と積層し、外層面の回路を形成し、内
層回路と電気的に接続することによって多層配線板とす
ることができる。
An insulating material obtained by applying such an insulating varnish to a copper foil or a carrier film is laminated on an inner wiring board on which an inner circuit is formed, and a circuit on an outer layer is formed. To form a multilayer wiring board.

【0014】[0014]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(ビーズミル)本発明に用いるビーズミルは、セラミッ
ク製であることが好ましく、電気絶縁性のセラミックウ
イスカーを配合した絶縁ワニスの混練工程で異物が混入
しないことが必要である。セラミック製のビーズミルと
しては、硬度の高いジルコニアで内面をコートした設備
にジルコニアのビーズを組み合わせたものが、電気絶縁
性のセラミックウイスカーを混練する場合にも傷や剥離
を起こしにくく、絶縁ワニス中に異物を混入させにくい
ために好ましい。また、ビーズのサイズは、特に限定さ
れるものではないが、直径300μm〜2mmの範囲に
あるものが好ましい。直径が、300μm未満である
と、フィルターで絶縁ワニスと分離する際の効率が低
く、絶縁ワニスのロスが大きく、分離速度が小さくな
る。直径が2mmを超えると、電気絶縁性ウイスカへの
衝突頻度が小さくなり、混練効率が低下する。
(Bead Mill) The bead mill used in the present invention is preferably made of ceramic, and it is necessary that no foreign matter is mixed in the kneading step of the insulating varnish containing the electrically insulating ceramic whisker. As a ceramic bead mill, one that combines zirconia beads with equipment coated on the inner surface with high hardness zirconia hardly causes scratches and peeling even when kneading an electrically insulating ceramic whisker, it is used in insulating varnish. This is preferable because foreign substances are hardly mixed. Further, the size of the beads is not particularly limited, but is preferably in the range of 300 μm to 2 mm in diameter. When the diameter is less than 300 μm, the efficiency of separation from the insulating varnish by the filter is low, the loss of the insulating varnish is large, and the separation speed is low. When the diameter exceeds 2 mm, the frequency of collision with the electrically insulating whisker decreases, and the kneading efficiency decreases.

【0015】(ウィスカー)本発明に用いるウィスカー
としては、電気絶縁性のセラミックウィスカーであり、
弾性率が200GPa以上であるものが好ましく、20
0GPa未満では、多層プリント配線板としたときに十
分な剛性が得られない。ウィスカーの種類としては、例
えば、硼酸アルミニウム、ウォラストナイト、チタン酸
カリウム、塩基性硫酸マグネシウム、窒化けい素、α−
アルミナの中から選ばれた1以上のものを用いることが
できる。その中でも、硼酸アルミニウムウィスカーは、
弾性率が約400GPaとガラスよりも遥かに高く、熱
膨張係数も小さく、しかも比較的安価である。この硼酸
アルミニウムウィスカーを用いた本発明のプリプレグを
使用して作製したプリント配線板は、従来のガラスクロ
スを用いたプリント配線板よりも、常温及び高温下にお
ける剛性が高く、ワイヤーボンディング性に優れ、熱膨
張係数が小さく、寸法安定性にすぐれる。したがって、
本発明に用いるウィスカーの材質としては、硼酸アルミ
ニウムが最適である。ウィスカーの平均直径は、0.3
μm未満であると樹脂ワニスへの混合が難しくなるとと
もに塗工作業性が低下し、3μmを超えると、表面の平
坦性に悪影響がでるとともにウィスカーの微視的な均一
分散性が損なわれる。したがって、ウィスカーの平均直
径は0.3μm〜3μmの範囲であることが好ましい。
さらに同様の理由と塗工性が良い(平滑に塗りやすい)
ことから平均直径は0.5μm〜1μmの範囲であるこ
とが最も好ましい。このような直径のウィスカーを選択
することにより、従来のガラスクロスを基材としたプリ
プレグを使用するよりも表面平坦性に優れたプリント配
線板を得ることができる。
(Whisker) The whisker used in the present invention is an electrically insulating ceramic whisker.
It is preferable that the elastic modulus is 200 GPa or more.
If it is less than 0 GPa, sufficient rigidity cannot be obtained when a multilayer printed wiring board is formed. Examples of whisker types include aluminum borate, wollastonite, potassium titanate, basic magnesium sulfate, silicon nitride, α-
One or more materials selected from alumina can be used. Among them, aluminum borate whiskers are
It has a modulus of elasticity of about 400 GPa, much higher than that of glass, a small coefficient of thermal expansion, and is relatively inexpensive. The printed wiring board manufactured using the prepreg of the present invention using the aluminum borate whisker has higher rigidity at room temperature and high temperature than the conventional printed wiring board using glass cloth, and has excellent wire bonding properties. Low thermal expansion coefficient and excellent dimensional stability. Therefore,
As a material of the whisker used in the present invention, aluminum borate is optimal. The average diameter of the whiskers is 0.3
If it is less than μm, mixing with the resin varnish becomes difficult and the coating workability deteriorates. If it exceeds 3 μm, the flatness of the surface is adversely affected and the microscopic uniform dispersion of whiskers is impaired. Therefore, the average diameter of the whiskers is preferably in the range of 0.3 μm to 3 μm.
Furthermore, the same reason and good coatability (easy to apply smoothly)
Therefore, the average diameter is most preferably in the range of 0.5 μm to 1 μm. By selecting a whisker having such a diameter, a printed wiring board having more excellent surface flatness than using a prepreg using a conventional glass cloth as a base material can be obtained.

【0016】またウィスカーの平均長さは、平均直径の
10倍以上であることが好ましい。10倍未満である
と、繊維としての補強効果が僅かになると同時に、後述
するウィスカーの樹脂層中での2次元配向が困難になる
ため、配線板にしたときに十分な剛性が得られない。し
かしウィスカーが長すぎる場合は、ワニス中への均一分
散が難しくなる、塗工性が低下する。また、ある一つの
導体回路間と接触したウィスカーが他の導体回路と接触
する確率が高くなり、繊維に沿って移動する傾向にある
銅イオンのマイグレーションによる回路間短絡事故を起
こす可能性があるという問題がある。従ってウィスカー
の平均長さは50μm以下が好ましい。このような長さ
のウィスカーを使用した本発明の絶縁材料を用いて作製
したプリント配線板は、従来のガラスクロスを基材にし
たプリプレグを使用したプリント配線板よりも耐マイグ
レーション性に優れる。
The average length of the whiskers is preferably at least 10 times the average diameter. If the ratio is less than 10 times, the reinforcing effect as a fiber becomes small, and at the same time, it becomes difficult to perform two-dimensional orientation in the resin layer of the whisker described later, so that sufficient rigidity cannot be obtained when the wiring board is used. However, if the whiskers are too long, it becomes difficult to uniformly disperse them in the varnish, and the coatability decreases. In addition, the probability that a whisker in contact with one conductor circuit comes into contact with another conductor circuit increases, and there is a possibility of causing an inter-circuit short circuit accident due to migration of copper ions that tend to move along the fiber. There's a problem. Therefore, the average length of the whiskers is preferably 50 μm or less. A printed wiring board manufactured using the insulating material of the present invention using a whisker having such a length has better migration resistance than a conventional printed wiring board using a prepreg based on a glass cloth.

【0017】また、プリント配線板の剛性及び耐熱性を
さらに高めるのに、シランカップリング剤で表面処理し
たウィスカーを使用することも有効である。カップリン
グ剤で表面処理したウィスカーは、樹脂との濡れ性、結
合性がすぐれ剛性及び耐熱性を向上させることができ
る。このとき使用するカップリング剤は、シリコン系、
チタン系、アルミニウム系、ジルコニウム系、ジルコア
ルミニウム系、クロム系、ボロン系、リン系、アミノ酸
系等の公知のものを使用できる。
In order to further increase the rigidity and heat resistance of the printed wiring board, it is effective to use whiskers whose surfaces have been treated with a silane coupling agent. Whiskers surface-treated with a coupling agent are excellent in wettability and bonding with a resin, and can improve rigidity and heat resistance. The coupling agent used at this time is silicon-based,
Known materials such as titanium, aluminum, zirconium, zirconaluminium, chromium, boron, phosphorus, and amino acids can be used.

【0018】(樹脂)本発明で使用する樹脂は、従来の
ガラスクロスを基材としたプリプレグに使用されている
樹脂及びガラスクロス基材を含まない接着フィルムある
いは銅箔付き接着フィルムに使用されている熱硬化性樹
脂を使用することが出来る。ここでいう樹脂とは、樹
脂、硬化剤、硬化促進剤、カップリング剤(必要に応じ
て)、希釈剤(必要に応じて)を含むものを意味する。
従来のガラスクロスを基材としたプリプレグに使用され
ている樹脂は、それ単独では、フィルム形成能がないた
め、銅箔の片面に塗工により接着剤層として形成し、加
熱により溶剤除去し樹脂を半硬化した場合、搬送、切断
及び積層等の工程中において、樹脂の割れや欠落等のト
ラブルを生じやすく、その後の熱圧成形時に層間絶縁層
が内層回路存在部等で異常に薄くなり層間絶縁抵抗の低
下やショートというトラブルを生じやすかったため、従
来、銅箔付き接着フィルム用途に使用することが困難で
あった。しかし、本発明では、樹脂中にはウィスカーが
分散され、該樹脂はウィスカーにより補強されているた
め、本発明の樹脂とウィスカーからなるプリプレグ層に
はフィルム形成能が発現し、搬送、切断及び積層等の工
程中において、樹脂の割れや欠落等のトラブルを生じに
くく、またウィスカーが存在するため熱圧成形時の層間
絶縁層が異常に薄くなる現象の発生を防止できる。ま
た、従来接着フィルムや銅箔付き接着フィルムに使用さ
れている樹脂を用いることも効果的である。これらの樹
脂は、高分子量成分等を含むことにより、樹脂単独でも
フィルム形成能があるが、本発明によりウィスカーをそ
の樹脂中に分散することにより、いっそうフィルム形成
能が高められ取扱性が向上し、さらに絶縁信頼性もより
高めることが可能となる。またウィスカーの分散により
フィルム形成能を高めた分だけ高分子量成分の添加量を
減らすことも可能であり、それによって樹脂の耐熱性や
接着性等を改善できる場合もある。
(Resin) The resin used in the present invention is a resin used for a conventional prepreg using a glass cloth as a base material and an adhesive film not containing a glass cloth base material or an adhesive film with a copper foil. Thermosetting resin can be used. The term “resin” as used herein means a resin containing a resin, a curing agent, a curing accelerator, a coupling agent (if necessary), and a diluent (if necessary).
The resin used in conventional prepregs based on glass cloth has no film-forming ability by itself, so it is formed as an adhesive layer on one side of copper foil by coating, and the solvent is removed by heating. When semi-cured, during transporting, cutting and laminating processes, troubles such as cracking or chipping of the resin are likely to occur, and during subsequent hot pressing, the interlayer insulating layer becomes abnormally thin at the inner layer circuit existing part etc. Conventionally, it has been difficult to use for an adhesive film with a copper foil because it is easy to cause a trouble such as a decrease in insulation resistance or a short circuit. However, in the present invention, whiskers are dispersed in the resin, and the resin is reinforced by the whiskers. Therefore, the prepreg layer composed of the resin of the present invention and the whiskers exhibits film forming ability, and is transported, cut, and laminated. During the steps such as those described above, troubles such as cracking or chipping of the resin hardly occur, and the occurrence of the phenomenon that the interlayer insulating layer becomes abnormally thin during hot pressing due to the presence of whiskers can be prevented. It is also effective to use a resin conventionally used for an adhesive film or an adhesive film with a copper foil. These resins have a film forming ability even when used alone by containing a high molecular weight component and the like.However, by dispersing whiskers in the resin according to the present invention, the film forming ability is further enhanced and the handleability is improved. In addition, the insulation reliability can be further improved. It is also possible to reduce the amount of the high molecular weight component to be added by the amount of the film forming ability enhanced by the dispersion of the whiskers, thereby improving the heat resistance and adhesiveness of the resin in some cases.

【0019】樹脂の種類としては、例えばエポキシ樹
脂、ビスマレイミドトリアジン樹脂、ポリイミド樹脂、
フェノール樹脂、メラミン樹脂、けい素樹脂、不飽和ポ
リエステル樹脂、シアン酸エステル樹脂、イソシアネー
ト樹脂、またはこれらのの種々の変性樹脂類が好適であ
る。この中で、プリント配線板特性上、特にビスマレイ
ミドトリアジン樹脂、エポキシ樹脂が好適である。その
エポキシ樹脂としては、ビスフェノールA型エポキシ樹
脂、ビスフェノールF型エポキシ樹脂、ビスフェノール
S型エポキシ樹脂、フェノールノボラック型エポキシ樹
脂、クレゾールノボラック型エポキシ樹脂、ビスフェノ
ールAノボラック型エポキシ樹脂、サリチルアルデヒド
ノボラック型エポキシ樹脂、ビスフェノールFノボラッ
ク型エポキシ樹脂、脂環式エポキシ樹脂、グリシジルエ
ステル型エポキシ樹脂、グリシジルアミン型エポキシ樹
脂、ヒダントイン型エポキシ樹脂、イソシアヌレート型
エポキシ樹脂、脂肪族環状エポキシ樹脂及びそれらのハ
ロゲン化物、水素添加物、及び前記樹脂の混合物が好適
である。なかでもビスフェノールAノボラック型エポキ
シ樹脂またはサリチルアルデヒドノボラック型エポキシ
樹脂は耐熱性に優れ好ましい。
As the type of the resin, for example, epoxy resin, bismaleimide triazine resin, polyimide resin,
Phenol resins, melamine resins, silicon resins, unsaturated polyester resins, cyanate ester resins, isocyanate resins, or various modified resins thereof are suitable. Among them, bismaleimide triazine resin and epoxy resin are particularly preferable in terms of printed wiring board characteristics. As the epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, bisphenol A novolak type epoxy resin, salicylaldehyde novolak type epoxy resin, Bisphenol F novolak type epoxy resin, alicyclic epoxy resin, glycidyl ester type epoxy resin, glycidylamine type epoxy resin, hydantoin type epoxy resin, isocyanurate type epoxy resin, aliphatic cyclic epoxy resin and their halides and hydrogenated products And mixtures of the above resins. Among them, bisphenol A novolak type epoxy resin or salicylaldehyde novolak type epoxy resin is preferable because of its excellent heat resistance.

【0020】(硬化剤)このような樹脂の硬化剤として
は、従来使用しているものが使用でき、樹脂がエポキシ
樹脂の場合には、例えばジシアンジアミド、ビスフェノ
ールA、ビスフェノールF、ポリビニルフェノール、フ
ェノールノボラック樹脂、ビスフェノールAノボラック
樹脂及びこれらのフェノール樹脂のハロゲン化物、水素
化物等を使用できる。なかでも、ビスフェノールAノボ
ラック樹脂は耐熱性に優れ好ましい。この硬化剤の前記
樹脂に対する割合は、従来使用している割合でよく、樹
脂100重量部に対して、2〜100重量部の範囲が好
ましく、さらには、ジシアンジアミドでは、2〜5重量
部、それ以外の硬化剤では、30〜80重量部の範囲が
好ましい。2重量部未満では、十分な硬化が得られず、
100重量部を超えると、余剰の硬化剤が残存し、硬化
物の電気特性等を低下させるおそれがある。
(Curing agent) As the curing agent for such a resin, those conventionally used can be used. When the resin is an epoxy resin, for example, dicyandiamide, bisphenol A, bisphenol F, polyvinyl phenol, phenol novolak Resins, bisphenol A novolak resins, and halides and hydrides of these phenolic resins can be used. Among them, bisphenol A novolak resin is preferable because of its excellent heat resistance. The ratio of the curing agent to the resin may be a conventionally used ratio, and is preferably in the range of 2 to 100 parts by weight with respect to 100 parts by weight of the resin. Further, in the case of dicyandiamide, 2 to 5 parts by weight, For other curing agents, the range is preferably 30 to 80 parts by weight. If it is less than 2 parts by weight, sufficient curing cannot be obtained,
If the amount exceeds 100 parts by weight, an excessive curing agent may remain, and the electric properties and the like of the cured product may be deteriorated.

【0021】(硬化促進剤)硬化促進剤としては、樹脂
がエポキシ樹脂の場合、イミダゾール化合物、有機リン
化合物、第3級アミン、第4級アンモニウム塩などを使
用する。この硬化促進剤の前記樹脂に対する割合は、従
来使用している割合でよく、樹脂100重量部に対し
て、0.01〜20重量部の範囲が好ましく、0.1〜
10重量部の範囲がより好ましい。0.01重量部未満
であると、硬化が著しく遅くなり、20重量部を超える
と、硬化反応の制御ができないほど硬化速度が大きくな
る。
(Curing Accelerator) When the resin is an epoxy resin, an imidazole compound, an organic phosphorus compound, a tertiary amine, a quaternary ammonium salt, or the like is used as the curing accelerator. The ratio of the curing accelerator to the resin may be a conventionally used ratio, and is preferably in the range of 0.01 to 20 parts by weight, more preferably 0.1 to 20 parts by weight, based on 100 parts by weight of the resin.
A range of 10 parts by weight is more preferred. If the amount is less than 0.01 part by weight, the curing will be remarkably slow, and if it exceeds 20 parts by weight, the curing rate will be so high that the curing reaction cannot be controlled.

【0022】(希釈剤)本発明の熱硬化性樹脂は、溶剤
で希釈して樹脂ワニスとして使用することもできる。こ
のような溶剤には、アセトン、メチルエチルケトン、ト
ルエン、キシレン、メチルイソブチルケトン、酢酸エチ
ル、エチレングリコールモノメチルエーテル、メタノー
ル、エタノール、N,N−ジメチルホルムアミド、N,N
−ジメチルアセトアミド等を使用できる。この希釈剤の
前記樹脂に対する割合は、従来使用している割合でよ
く、樹脂100重量部に対して1〜200重量部の範囲
が好ましく、30〜100重量部の範囲がさらに好まし
い。1重量部未満であると、希釈剤としての効果がな
く、200重量部を超えると、樹脂組成物の粘度が低す
ぎて、銅箔やキャリアフィルムに塗布するのが困難とな
る。
(Diluent) The thermosetting resin of the present invention can be diluted with a solvent and used as a resin varnish. Such solvents include acetone, methyl ethyl ketone, toluene, xylene, methyl isobutyl ketone, ethyl acetate, ethylene glycol monomethyl ether, methanol, ethanol, N, N-dimethylformamide, N, N
-Dimethylacetamide and the like can be used. The ratio of the diluent to the resin may be a conventionally used ratio, and is preferably in the range of 1 to 200 parts by weight, more preferably 30 to 100 parts by weight, per 100 parts by weight of the resin. If the amount is less than 1 part by weight, there is no effect as a diluent, and if it exceeds 200 parts by weight, the viscosity of the resin composition is too low, and it is difficult to apply the resin composition to a copper foil or a carrier film.

【0023】(その他の配合剤)さらに本発明において
は、樹脂中に上記した各成分の他に、必要に応じて従来
より公知のカップリング剤、充填材等を適宜配合しても
よい。
(Other Compounding Agents) Further, in the present invention, conventionally known coupling agents, fillers and the like may be appropriately added to the resin, if necessary, in addition to the above-mentioned components.

【0024】(樹脂とウィスカーの割合)樹脂への電気
絶縁性ウィスカーの配合量は、樹脂固形分100重量部
に対し5重量部未満であるとこのプリプレグは切断時に
樹脂が細かく砕けて飛散しやすくなる等の取り扱い性が
悪くなるとともに配線板にしたときに十分な剛性が得ら
れない。一方ウィスカーの配合量が350重量部以上で
あると、熱圧成形時の内層回路の穴埋め性や回路間への
樹脂充填性が損なわれ、熱圧成形後のウィスカー複合樹
脂層中にボイドやかすれが発生しやすくなり、配線板特
性を損なう恐れがある。したがって、ウィスカーの配合
量は、樹脂固形分100重量部に対し5〜350重量部
が好ましい。さらに、内層回路の穴埋め性や回路間への
樹脂充填性に優れ、なおかつ、製造した配線板が従来の
ガラスクロス使用のプリプレグを用いて製造した配線板
と比較し、同等または同等以上の剛性と寸法安定性とワ
イヤボンディング性を持つことが出来る理由から、ウィ
スカーの配合量は、樹脂固形分100重量部に対し30
〜230重量部であることがより好ましい。
(Proportion of Resin and Whisker) If the amount of the electrically insulating whisker in the resin is less than 5 parts by weight based on 100 parts by weight of the resin solid content, the prepreg is liable to be finely broken at the time of cutting and to be easily scattered. In addition, the handleability is deteriorated, and sufficient rigidity cannot be obtained when the wiring board is used. On the other hand, if the mixing amount of the whisker is 350 parts by weight or more, the filling property of the inner layer circuit and the resin filling property between the circuits at the time of hot pressing are impaired, and the whisker composite resin layer after the hot pressing is voids or faint. Is likely to occur, and the characteristics of the wiring board may be impaired. Therefore, the amount of the whisker is preferably 5 to 350 parts by weight based on 100 parts by weight of the resin solids. In addition, it has excellent fillability of the inner layer circuit and resin filling between the circuits, and the manufactured wiring board has the same or higher rigidity as compared to the wiring board manufactured using the prepreg using the conventional glass cloth. The amount of the whisker is 30 parts by weight based on 100 parts by weight of the resin solid content because the whisker can have dimensional stability and wire bonding properties.
More preferably, it is 230 parts by weight.

【0025】(キャリアフィルム)本発明において、絶
縁層であるウィスカー複合樹脂層(Bステージ状態)を
その片面に形成する対象であるキャリアフィルムとして
は、銅箔、アルミ箔等の金属箔、ポリエステルフィル
ム、ポリイミドフィルム、あるいは前記金属箔及びフィ
ルムの表面を離型剤により処理したものを使用する。
(Carrier Film) In the present invention, the carrier film on which the whisker composite resin layer (B-stage state), which is an insulating layer, is formed on one surface thereof is a metal foil such as a copper foil or an aluminum foil, or a polyester film. , A polyimide film, or a film obtained by treating the surfaces of the metal foil and the film with a release agent.

【0026】(ウィスカーの配向)本発明の電気絶縁性
ウィスカーとBステージ状態の樹脂とから構成される絶
縁材料の中のウィスカーは、2次元配向に近い状態(ウ
ィスカーの軸方向が絶縁材料層の形成する面と平行に近
い状態)にさせることが好ましい。このようにウィスカ
ーを配向させることにより、本発明の絶縁材料は良好な
取り扱い性が得られると同時に配線板にしたときに高い
剛性と良好な寸法安定性及び表面平坦性が得られる。
(Whisker Orientation) Whisker in the insulating material composed of the electrically insulating whisker of the present invention and the resin in the B-stage state is in a state close to two-dimensional orientation (whisker is in the axial direction of the insulating material layer). (A state close to being parallel to the surface to be formed). By orienting the whiskers in this manner, the insulating material of the present invention can obtain good handleability and, at the same time, high rigidity, good dimensional stability and surface flatness when formed into a wiring board.

【0027】(塗工方式)上記のようにウィスカーを配
向させるには、前述した好ましい範囲の繊維長のウィス
カーを使用すると同時に、銅箔にウィスカーを配合した
樹脂ワニスを塗工する際に、ブレードコータ、ロッドコ
ータ、ナイフコータ、スクイズコータ、リバースロール
コータ、トランスファロールコータ等の銅箔と平行な面
方向にせん断力を負荷できるかあるいは、銅箔の面に垂
直な方向に圧縮力を負荷できる塗工方式を採用すればよ
い。
(Coating method) In order to orient the whiskers as described above, a whisker having a fiber length in the above-described preferred range is used, and at the same time, when a resin varnish obtained by mixing whiskers with a copper foil is coated, a blade is used. A coating that can apply a shearing force in the direction parallel to the copper foil such as a coater, rod coater, knife coater, squeeze coater, reverse roll coater, transfer roll coater, etc., or can apply a compressive force in the direction perpendicular to the copper foil surface. The construction method may be adopted.

【0028】本発明は、樹脂ワニスを用いてスラリー状
に調製した電気絶縁性ウイスカーをビーズミルを用いて
混練することにより製造する絶縁ワニスの製造方法であ
って、絶縁ワニス中の電気絶縁性ウイスカーの分散性を
向上させるとともに電気絶縁性ウイスカーの平均長さを
短くすることにより電気絶縁性ウイスカー同士の絡み合
いを少なくし、絶縁ワニス中に電気絶縁性ウイスカー凝
集体を含まないために、電気絶縁性ウイスカーを複合化
させた絶縁材料の絶縁信頼性を高めることができる。ま
た、本発明の絶縁材料を使用して作製した絶縁層は、基
材がガラスよりレーザに対し被加工性が良好でしかも微
細なウィスカーであるため、従来のガラスクロスプリプ
レグを使用した絶縁層では困難であったレーザ穴あけが
容易にできる。そのため、直径100μm以下の小径の
インターステーシャルバイアホール(IVH)が容易に
作製可能となり、プリント配線板の回路を微細化でき、
電子機器の高密度化、高性能化に大きく貢献できる。
The present invention relates to a method for producing an insulating varnish by kneading an electrically insulating whisker prepared in a slurry form using a resin varnish using a bead mill. By improving the dispersibility and shortening the average length of the electrically insulating whiskers, the entanglement between the electrically insulating whiskers is reduced, and the electrically insulating whiskers are not included in the insulating varnish to contain the electrically insulating whisker aggregates. The insulation reliability of the insulating material obtained by compounding the above can be improved. In addition, the insulating layer manufactured using the insulating material of the present invention has good workability with respect to laser light and is a fine whisker than glass, so that the insulating layer using the conventional glass cloth prepreg is not used. Difficult laser drilling can be done easily. Therefore, a small-diameter interstitial via hole (IVH) having a diameter of 100 μm or less can be easily formed, and the circuit of the printed wiring board can be miniaturized.
It can greatly contribute to higher density and higher performance of electronic equipment.

【0029】[0029]

【実施例】【Example】

実施例1 (ワニス)ビスフェノールAノボラック型エポキシ樹脂
(分子量:1200、エポキシ当量:208)を70重
量部と、ビスフェノールAノボラック樹脂(分子量:7
00、水酸基当量:118)を30重量部と、硬化促進
剤として2−エチル−4−メチルイミダゾールを0.5
重量部と、メチルエチルケトンを70重量部からなる熱
硬化性樹脂に、平均直径0.8μm、平均繊維長20μ
mの硼酸アルミニウムウィスカーを、樹脂固形分100
重量部に対して90(重量)部になるように配合し、硼
酸アルミニウムウィスカーがスラリー状になるまで撹拌
した。このスラリーを、バッチ式のジルコニア製のビー
ズミルで90分間混練し、200メッシュのナイロンフ
ィルタを通過させてビーズを分離除去し、混練後のワニ
スを真空乾燥機で脱泡して絶縁ワニスを得た。 (接着フィルム)この絶縁ワニスを、厚さ18μm銅箔
と厚さ50μmのポリエチレンテレフタレート(以下、
PETという。)フィルムにナイフコータにて塗工し、
温度150℃で10分間加熱乾燥して、溶剤を除去する
とともに、樹脂を半硬化して、接着層の厚さが50μm
と100μmの銅箔付き接着フィルムと、接着層の厚さ
が50μmと100μmのPETフィルム付き接着フィ
ルムを作製し、PETフィルム付き接着フィルムからP
ETフィルムを剥離・除去して、ウィスカー体積分率が
30%でウィスカーと半硬化状態にあるエポキシ樹脂か
らなる、厚さが50μmと100μmの接着フィルムを
作製した。作製した銅箔付き接着フィルムは、カッター
ナイフ及びシャーにより、樹脂の飛散等なくきれいに切
断でき、接着フィルム同士のブロッキングも発生せず、
良好な取扱性であった。また、 PETフィルムに塗工
して作製した接着フィルムは、PETフィルムの剥離時
や通常の取り扱い時に割れる等のトラブルはなく、また
カッターナイフ及びシャーにより、樹脂の飛散等なくき
れいに切断でき、接着フィルム同士のブロッキングも発
生せず、良好な取扱性であった。
Example 1 70 parts by weight of (varnish) bisphenol A novolak type epoxy resin (molecular weight: 1200, epoxy equivalent: 208) and bisphenol A novolak resin (molecular weight: 7)
00, hydroxyl equivalent: 118) and 30 parts by weight, and 0.5% of 2-ethyl-4-methylimidazole as a curing accelerator.
Parts by weight and a thermosetting resin consisting of 70 parts by weight of methyl ethyl ketone, an average diameter of 0.8 μm and an average fiber length of 20 μm.
m of aluminum borate whisker with a resin solid content of 100
It was blended so as to be 90 parts by weight with respect to parts by weight, and stirred until the aluminum borate whisker became a slurry. This slurry was kneaded with a batch-type zirconia bead mill for 90 minutes, passed through a 200-mesh nylon filter to separate and remove the beads, and the kneaded varnish was defoamed with a vacuum dryer to obtain an insulating varnish. . (Adhesive film) This insulating varnish was coated with 18 μm thick copper foil and 50 μm thick polyethylene terephthalate (hereinafter, referred to as
It is called PET. ) Coat the film with a knife coater,
Heat drying at a temperature of 150 ° C. for 10 minutes to remove the solvent and semi-curing of the resin, so that the thickness of the adhesive layer is 50 μm.
And an adhesive film with a copper foil of 100 μm, and an adhesive film with a thickness of 50 μm and 100 μm with a PET film.
The ET film was peeled off and removed to prepare adhesive films having a whisker volume fraction of 30% and an epoxy resin in a semi-cured state with the whiskers and having a thickness of 50 μm and 100 μm. The produced adhesive film with copper foil can be cut cleanly without scattering of resin by a cutter knife and shear, without blocking between adhesive films,
The handling was good. In addition, the adhesive film produced by coating the PET film has no troubles such as cracking during peeling of the PET film or normal handling, and can be cut cleanly with a cutter knife and shear without scattering of resin. There was no blocking between them, and the handling was good.

【0030】(電食試験)つぎに、厚さ0.8mmのガ
ラスエポキシ両面銅張積層板の銅箔表面に、電食試験の
内層面の電極となる形状にエッチングレジストパターン
を形成し、不要な箇所の銅箔をエッチング除去し、この
上下に上記で作製した絶縁層の厚さ50μmの銅箔付き
接着フィルムを接着フィルムが電食試験の内層面の電極
となるパターンと接するように重ね合せて積層し、17
5℃、2MPa、60分間の条件で熱圧成形した。得られ
た積層板の、内層の電極となる電食試験パターンの位置
に合わせた部分に、外層の電極となる形状に、エッチン
グレジストパターンを形成し、不要な箇所の銅箔をエッ
チング除去し、電食試験片を得た。この内層と外層の電
極間に50Vの電圧を印加し、85℃、85%RHの雰
囲気下で1000時間経過後の絶縁抵抗値を測定した結
果、109Ω以上の良好な値を示し、接着フィルムが耐
電食性に優れていることを確認した。
(Electrolytic corrosion test) Next, an etching resist pattern was formed on the copper foil surface of the glass-epoxy double-sided copper-clad laminate having a thickness of 0.8 mm so as to be an electrode on the inner surface of the electrolytic corrosion test. The copper foil in the various places is removed by etching, and the adhesive film with the copper foil having a thickness of 50 μm of the insulating layer prepared above is overlapped on the upper and lower sides so that the adhesive film is in contact with the pattern serving as the electrode on the inner surface of the electrolytic corrosion test. And stack 17
Hot pressing was performed under the conditions of 5 ° C., 2 MPa and 60 minutes. In the obtained laminate, a portion corresponding to the position of the electrolytic corrosion test pattern serving as the inner layer electrode, an etching resist pattern was formed in a shape serving as the outer layer electrode, and copper foil in unnecessary portions was removed by etching. An electrolytic corrosion test piece was obtained. The inner layer and a voltage of 50V was applied between the outer electrodes, 85 ° C., a result of measuring the insulation resistance value after 1000 hours passed in an atmosphere of RH 85%, showed good values of more than 10 9 Omega, adhesive It was confirmed that the film had excellent corrosion resistance.

【0031】(曲げ弾性率)また、作製した厚さ100
μmの接着フィルムの上下に厚さ18μmの片面粗化銅
箔を、該粗化面が接着フィルムに向き合うように積層
し、熱圧成形した。得られた銅張積層板の銅箔をエッチ
ング除去し、曲げ弾性率を三点曲げで測定したところ2
0GPa(銅箔なし、たてよこ平均)であった。 (穴あけ精度)また、直径0.3mmのドリルにてこの
銅張積層板を10枚重ねて穴あけしたときの最上板と最
下板の穴位置のずれ量を測定したところ20μm以下で
あった。
(Bending elastic modulus) Further, the prepared thickness 100
A single-sided roughened copper foil having a thickness of 18 μm was laminated on and under the μm adhesive film so that the roughened surface faced the adhesive film, and was subjected to hot pressing. The copper foil of the obtained copper-clad laminate was removed by etching, and the flexural modulus was measured by three-point bending.
It was 0 GPa (no copper foil, vertical average). (Drilling Accuracy) When the copper-clad laminates were drilled by stacking ten copper-clad laminates with a diameter of 0.3 mm, the amount of displacement between the uppermost plate and the lowermost plate was measured to be 20 μm or less.

【0032】(多層プリント配線板)この銅張積層板の
両面の銅箔の不要な箇所をエッチング除去して回路を形
成し、その両面に先に作製した厚さ50μmの接着フィ
ルムを重ね、そのさらに外側に厚さ18μmの片面粗化
銅箔を、粗化面が接着フィルムに向き合うように積層
し、175℃、2MPa、60分間の条件で熱圧成形し、
内層回路入り多層銅張積層板を作製した。この内層回路
入り多層銅張積層板の表面粗さを触針式表面粗さ計にて
測定した結果、測定箇所がその直下に内層回路のある部
分とない部分とを含む長さ25mmの一直線上の外層表面
で、内層回路のある部分とない部分の段差の10点平均
は、3μm以下であり、回路加工に支障のない良好な表
面平坦性であった。さらにこの内層回路入り多層銅張積
層板の表面銅箔の所定位置をエッチング除去して直径7
5μmの穴をあけ、その穴に住友重機械工業(株)製イン
パクトレーザを用いて穴あけを行い、過マンガン酸によ
るデスミア処理を行い、無電解メッキを行った後、エッ
チングレジストパターンを焼き付け・現像して、不要な
銅をエッチング除去して回路を形成した。この多層プリ
ント配線板の両面に、先に作製した厚さ50μmの接着
フィルムを重ね、そのさらに外側に厚さ18μmの片面
粗化銅箔を、粗化面が接着フィルムに向き合うように積
層し、175℃、2MPa、60分間の条件で、熱圧成形
し、内層回路入り多層銅張積層板を作製し、所定位置を
エッチング除去して直径75μmの穴をあけ、その穴に
住友重機械工業(株)製インパクトレーザを用いて穴あけ
を行い、過マンガン酸によるデスミア処理を行い、無電
解メッキを行った後、エッチングレジストパターンを焼
き付け・現像して形成し、不要な箇所の銅をエッチング
除去して回路を形成した。以上の工程をくり返して10
層プリント配線板を作製した。
(Multilayer Printed Wiring Board) Unnecessary portions of the copper foil on both sides of the copper-clad laminate are etched and removed to form a circuit, and a 50 μm-thick adhesive film previously produced is laminated on both sides thereof. Further, a single-sided roughened copper foil having a thickness of 18 μm is laminated on the outside so that the roughened surface faces the adhesive film, and is hot-pressed at 175 ° C., 2 MPa, and 60 minutes,
A multilayer copper-clad laminate with an inner circuit was prepared. As a result of measuring the surface roughness of the multilayer copper-clad laminate containing the inner layer circuit with a stylus type surface roughness meter, the measurement location was on a straight line having a length of 25 mm including a portion with and without an inner layer circuit immediately below. On the surface of the outer layer, the average of 10 points of the level difference between the portion having the inner layer circuit and the portion not having the inner layer circuit was 3 μm or less, and the surface flatness was satisfactory without any trouble in circuit processing. Further, a predetermined position of the surface copper foil of the multilayer copper-clad laminate containing the inner layer circuit was removed by etching to remove
Drill a hole of 5μm, make a hole using an impact laser manufactured by Sumitomo Heavy Industries, Ltd., perform desmear treatment with permanganic acid, perform electroless plating, then print and develop an etching resist pattern. Then, unnecessary copper was removed by etching to form a circuit. On both sides of this multilayer printed wiring board, the adhesive film having a thickness of 50 μm previously prepared is laminated, and further on the outside thereof, a 18 μm-thick one-side roughened copper foil is laminated so that the roughened surface faces the adhesive film, At 175 ° C., 2 MPa, 60 minutes, hot-press molding is performed to prepare a multilayer copper-clad laminate with an inner layer circuit, a predetermined position is etched away, a hole having a diameter of 75 μm is formed, and a hole is formed in the hole by Sumitomo Heavy Industries, Ltd. Drilling using Impact Laser Co., Ltd., performing desmear treatment with permanganic acid, performing electroless plating, baking and developing an etching resist pattern, etching away unnecessary copper To form a circuit. Repeat the above steps for 10
A layer printed wiring board was produced.

【0033】(多層プリント配線板の試験)この多層プ
リント配線板の一部を切り取り、その熱膨張率と曲げ弾
性率を測定した。熱膨張率はTMAにて、曲げ弾性率
は、DMAの曲げモードにて測定した。たてよこ方向の
平均の熱膨張係数は、10ppm/℃(常温下)であ
り、たてよこ方向の平均の曲げ弾性率は常温下で60G
Pa、高温下(200℃)で40GPaであった。ま
た、バーコル硬度計による表面硬度は、常温下で65、
高温下(200℃)で50であった。 (ワイヤボンディング性)さらに、この10層プリント
配線板の一部にベアチップを実装し、ワイヤボンディン
グで表面回路と接続した。ワイヤボンディング条件は、
超音波出力を1W、超音波出力時間を50μs、ボンド
荷重を100g、ワイヤボンディング温度を180℃と
したところ、良好にワイヤボンディングできた。 (熱衝撃試験)また、この10層プリント配線板に寸法
8mm×20mmのICチップ(TSOP)をはんだを
介して表面回路と接続し、このICチップ(TSOP)
を実装した基板を、−65℃で30分と150℃で30
分の環境に晒すことを1サイクルとする熱衝撃試験で評
価したところ、2,000サイクル後もはんだ接続部に
断線等の不良は発生していなかった。また、この基板の
内部のインターステーシャルバイアホールを含む回路の
導通試験を行ったが断線等のトラブルの発生はなかっ
た。
(Test of Multilayer Printed Wiring Board) A part of the multilayer printed wiring board was cut out, and its coefficient of thermal expansion and flexural modulus were measured. The coefficient of thermal expansion was measured by TMA, and the flexural modulus was measured by a bending mode of DMA. The average coefficient of thermal expansion in the vertical direction is 10 ppm / ° C. (at room temperature), and the average bending elastic modulus in the vertical direction is 60 G at room temperature.
Pa and 40 GPa at high temperature (200 ° C.). The surface hardness measured by a Barcol hardness meter is 65 at room temperature,
It was 50 at high temperature (200 ° C.). (Wire bonding property) Further, a bare chip was mounted on a part of the 10-layer printed wiring board, and connected to a surface circuit by wire bonding. The wire bonding conditions are
When the ultrasonic output was 1 W, the ultrasonic output time was 50 μs, the bond load was 100 g, and the wire bonding temperature was 180 ° C., the wire bonding was successfully performed. (Thermal shock test) Also, an IC chip (TSOP) having a size of 8 mm × 20 mm was connected to the surface circuit via solder on this 10-layer printed wiring board, and this IC chip (TSOP)
Is mounted at -65 ° C for 30 minutes and 150 ° C for 30 minutes.
As a result of evaluation by a thermal shock test in which exposure to the environment for one minute was one cycle, no defect such as disconnection occurred in the solder connection even after 2,000 cycles. A continuity test was performed on a circuit including an interstitial via hole inside the substrate, but no trouble such as disconnection occurred.

【0034】実施例2 (ワニス)サリチルアルデヒドノボラック型エポキシ樹
脂(分子量:1000、エポキシ当量:180)を70
重量部と、ビスフェノールAノボラック樹脂(分子量:
700、水酸基当量:118)を30重量部と、硬化促
進剤としてN−メチルイミダゾールを0.5重量部と、
メチルエチルケトンを70重量部からなる熱硬化性樹脂
に、平均直径0.8μm、平均繊維長20μmの硼酸ア
ルミニウムウィスカーを、樹脂固形分100重量部に対
して90重量部になるように配合し、硼酸アルミニウム
ウィスカーがスラリー状になるまで撹拌した。このスラ
リーを、バッチ式のジルコニア製のビーズミルで90分
間混練し、200メッシュのナイロンフィルタを通過さ
せてビーズを分離除去し、混練後のワニスを真空乾燥機
で脱泡して絶縁ワニスを得た。 (接着フィルム)この絶縁ワニスを、厚さ18μmの銅
箔と厚さ50μmのPETフィルムにナイフコータにて
塗工し、温度150℃で10分間加熱乾燥して、溶剤を
除去するとともに、樹脂を半硬化して、接着層の厚さが
50μmと100μmの銅箔付き接着フィルムと、接着
層の厚さが50μmと100μmのPETフィルム付き
接着フィルムを作製し、PETフィルム付き接着フィル
ムからPETフィルムを剥離・除去して、ウィスカー体
積分率が30%でウィスカーと半硬化状態にあるエポキ
シ樹脂からなる、厚さが50μmと厚さが100μmの
接着フィルムを作製した。作製した銅箔付き接着フィル
ムは、カッターナイフ及びシャーにより、樹脂の飛散等
なくきれいに切断でき、接着フィルム同士のブロッキン
グも発生せず、良好な取扱性であった。また、 PET
フィルムに塗工して作製した接着フィルムは、PETフ
ィルムの剥離時や通常の取り扱い時に割れる等のトラブ
ルはなく、またカッターナイフ及びシャーにより、樹脂
の飛散等なくきれいに切断でき、接着フィルム同士のブ
ロッキングも発生せず、良好な取扱性であった。
Example 2 A (varnish) salicylaldehyde novolak type epoxy resin (molecular weight: 1000, epoxy equivalent: 180) was mixed with 70
Parts by weight and bisphenol A novolak resin (molecular weight:
700, hydroxyl equivalent: 118), 30 parts by weight, and N-methylimidazole as a curing accelerator, 0.5 part by weight,
An aluminum borate whisker having an average diameter of 0.8 μm and an average fiber length of 20 μm was mixed with a thermosetting resin composed of 70 parts by weight of methyl ethyl ketone so as to be 90 parts by weight based on 100 parts by weight of the resin solid content. The whiskers were stirred until they became a slurry. This slurry was kneaded with a batch-type zirconia bead mill for 90 minutes, passed through a 200-mesh nylon filter to separate and remove the beads, and the kneaded varnish was defoamed with a vacuum dryer to obtain an insulating varnish. . (Adhesive film) This insulating varnish was applied to a copper foil of 18 μm thickness and a PET film of 50 μm thickness by a knife coater, and was heated and dried at a temperature of 150 ° C. for 10 minutes to remove the solvent and to remove the resin. Cured to produce an adhesive film with a copper foil with an adhesive layer thickness of 50 μm and 100 μm, and an adhesive film with a PET film with an adhesive layer thickness of 50 μm and 100 μm. Peel the PET film from the adhesive film with a PET film Removal was performed to produce an adhesive film having a whisker volume fraction of 30% and a thickness of 50 μm and a thickness of 100 μm comprising a whisker and an epoxy resin in a semi-cured state. The produced adhesive film with a copper foil was cut cleanly by a cutter knife and a shear without scattering of a resin, etc., and there was no blocking between the adhesive films, and the handleability was good. Also, PET
The adhesive film produced by coating the film has no trouble such as cracking during peeling of the PET film or normal handling, and can be cut cleanly with a cutter knife and shear without scattering of resin, and blocking between adhesive films. No problem occurred, and the handleability was good.

【0035】(電食試験)つぎに、厚さ0.8mmのガ
ラスエポキシ両面銅張積層板の銅箔表面に、電食試験の
内層面の電極となるパターンをエッチングにより作製
し、この上下に上記で作製した絶縁層の厚さ50μmの
銅箔付き接着フィルムを接着フィルムが電食試験の内層
面の電極となるパターンと接するように重ね合せて積層
し、175℃、2MPa、60分の条件で熱圧成形した。
得られた積層板の、内層の電極となる電食試験パターン
の位置に合わせた部分に外層の電極となるパターンをエ
ッチングで作製し、電食試験片を得た。この内層と外層
の電極間に50Vの電圧を印加し、85℃、85%RH
の雰囲気下で1000時間経過後の絶縁抵抗値を測定し
た結果、109Ω以上の良好な値を示し、接着フィルム
が耐電食性に優れていることを確認した。 (曲げ弾性率)また、 作製した厚さ100μmの接着
フィルムの上下に厚さ18μmの片面粗化銅箔を、該粗
化面が接着フィルムに向き合うように積層し、175
℃、2MPa、60分の条件で熱圧成形した。得られた銅
張積層板の銅箔をエッチング除去し、曲げ弾性率を三点
曲げで測定したところ20GPa(銅箔なし、たてよこ
平均)であった。 (穴あけ精度)また、直径0.3mmのドリルにてこの
銅張積層板を10枚重ねて穴あけしたときの最上板と最
下板の穴位置のずれ量を測定したところ20μm以下で
あった。
(Electro-corrosion test) Next, a pattern to be an electrode of the inner layer surface of the electro-corrosion test was formed on the copper foil surface of the glass epoxy double-sided copper clad laminate having a thickness of 0.8 mm by etching. The adhesive film with a copper foil having a thickness of 50 μm of the insulating layer prepared above was laminated and laminated so that the adhesive film was in contact with the pattern to be the electrode on the inner surface of the electrolytic corrosion test, and the conditions were 175 ° C., 2 MPa, and 60 minutes. And hot pressing.
An outer layer electrode pattern was formed by etching on a portion of the obtained laminated board corresponding to the position of the inner layer electrode electrolytic corrosion test pattern, thereby obtaining an electrolytic corrosion test piece. A voltage of 50 V is applied between the electrodes of the inner layer and the outer layer, and 85 ° C., 85% RH
As a result of measuring the insulation resistance value after 1000 hours under the atmosphere, a good value of 10 9 Ω or more was confirmed, and it was confirmed that the adhesive film was excellent in electric corrosion resistance. (Flexural Modulus) Further, a 18 μm-thick roughened copper foil having a thickness of 18 μm was laminated above and below the prepared adhesive film having a thickness of 100 μm so that the roughened surface faced the adhesive film.
Thermocompression molding was performed at 2 ° C. for 60 minutes. When the copper foil of the obtained copper-clad laminate was removed by etching, and the flexural modulus was measured by three-point bending, it was 20 GPa (no copper foil, average vertical length). (Drilling Accuracy) When the copper-clad laminates were drilled by stacking ten copper-clad laminates with a diameter of 0.3 mm, the amount of displacement between the uppermost plate and the lowermost plate was measured to be 20 μm or less.

【0036】(多層プリント配線板)この銅張積層板の
両面の銅箔の不要な箇所をエッチング除去して回路を形
成し、その両面に先に作製した厚さ50μmの本発明の
接着フィルムを重ね、そのさらに外側に厚さ18μmの
片面粗化銅箔を粗化面が接着フィルムに向き合うように
積層し、175℃、2MPa、60分間の条件で熱圧成形
し、内層回路入り多層銅張積層板を作製した。この内層
回路入り多層銅張積層板の表面粗さを、触針式表面粗さ
計にて測定した結果、測定箇所がその直下に内層回路の
ある部分とない部分とを含む長さ25mmの一直線上の外
層表面で、内層回路のある部分とない部分の段差の10
点平均は、3μm以下であり、回路加工に支障のない良
好な表面平坦性であった。さらにこの内層回路入り多層
銅張積層板の表面銅箔の所定位置をエッチング除去して
直径75μmの穴をあけ、その穴に住友重機械工業(株)
製インパクトレーザを用いて穴あけを行い、過マンガン
酸によるデスミア処理を行い、無電解メッキを行った
後、エッチングレジストパターンを焼き付け・現像して
形成し、不要な箇所の銅をエッチング除去して回路を形
成した。この多層プリント配線板の両面に、先に作製し
た厚さ50μmの接着フィルムを重ね、そのさらに外側
に厚さ18μmの片面粗化銅箔を、粗化面が接着フィル
ムに向き合うように積層し、175℃、2MPa、60分
間の条件で熱圧成形し、内層回路入り多層銅張積層板を
作製し、その銅箔の所定位置をエッチング除去して直径
75μmの穴をあけ、その穴に住友重機械工業(株)製イ
ンパクトレーザを用いて穴あけを行い、過マンガン酸に
よるデスミア処理を行い、無電解メッキを行った後、エ
ッチングレジストパターンを焼き付け・現像して形成
し、不要な箇所の銅をエッチング除去して回路を形成し
た。以上の工程をくり返して10層プリント配線板を作
製した。
(Multilayer Printed Wiring Board) Unnecessary portions of the copper foil on both sides of the copper-clad laminate are etched and removed to form a circuit, and the adhesive film of the present invention having a thickness of 50 μm previously prepared on both sides thereof. Laminated copper foil with a thickness of 18 μm is laminated on the outside so that the roughened surface faces the adhesive film, and is hot-pressed at 175 ° C., 2 MPa for 60 minutes to form a multilayer copper clad with an inner circuit. A laminate was prepared. The surface roughness of the multilayer copper-clad laminate containing the inner layer circuit was measured with a stylus type surface roughness meter. As a result, the measurement point was a straight line having a length of 25 mm including a portion with and without an inner layer circuit immediately below. On the surface of the outer layer on the line, the level difference of 10
The point average was 3 μm or less, and good surface flatness that did not hinder circuit processing was obtained. Further, a predetermined position of the surface copper foil of the multilayer copper-clad laminate containing the inner layer circuit was removed by etching to form a hole having a diameter of 75 μm, and the hole was formed by Sumitomo Heavy Industries, Ltd.
Drilling using an impact laser made, performing desmear treatment with permanganic acid, performing electroless plating, baking and developing an etching resist pattern, etching away unnecessary copper, and removing the circuit Was formed. On both sides of this multilayer printed wiring board, the adhesive film having a thickness of 50 μm previously prepared is stacked, and further on the outside thereof, a 18 μm-thick roughened copper foil is laminated so that the roughened surface faces the adhesive film, It is hot-pressed under the conditions of 175 ° C., 2 MPa and 60 minutes to prepare a multilayer copper-clad laminate with an inner layer circuit, and a predetermined position of the copper foil is removed by etching to make a hole of 75 μm in diameter. Drilling is performed using an impact laser manufactured by Machine Industry Co., Ltd., desmearing with permanganic acid is performed, electroless plating is performed, and an etching resist pattern is baked and developed to form unnecessary portions of copper. A circuit was formed by etching away. The above steps were repeated to produce a 10-layer printed wiring board.

【0037】(多層プリント配線板の試験)この多層プ
リント配線板の一部を切り取り、その熱膨張率と曲げ弾
性率を測定した。熱膨張率はTMAにて、曲げ弾性率
は、DMAの曲げモードにて測定した。たてよこ方向の
平均の熱膨張係数は、10ppm/℃(常温下)であ
り、たてよこ方向の平均の曲げ弾性率は常温下で60G
Pa、高温下(200℃)で50GPaであった。ま
た、バーコル硬度計による表面硬度は、常温下で65、
高温下(200℃)で55であった。 (ワイヤボンディング性)さらに、この10層プリント
配線板の一部にベアチップを実装し、ワイヤボンディン
グで表面回路と接続した。ワイヤボンディング条件は、
超音波出力を1W、超音波出力時間を50μs、ボンド
荷重を100g、ワイヤボンディング温度を180℃と
したところ、良好にワイヤボンディングできた。 (熱衝撃試験)また、この10層プリント配線板に寸法
8mm×20mmのICチップ(TSOP)をはんだを
介して表面回路と接続し、このICチップ(TSOP)
を実装した基板を、−65℃で30分と150℃で30
分の環境に晒すことを1サイクルとする熱衝撃試験で評
価したところ、2000サイクル後もはんだ接続部に断
線等の不良は発生していなかった。またこの基板の内部
のインターステーシャルバイアホールを含む回路の導通
試験を行ったが断線等のトラブルの発生はなかった。
(Test of Multilayer Printed Wiring Board) A part of this multilayer printed wiring board was cut out, and its coefficient of thermal expansion and flexural modulus were measured. The coefficient of thermal expansion was measured by TMA, and the flexural modulus was measured by a bending mode of DMA. The average coefficient of thermal expansion in the vertical direction is 10 ppm / ° C. (at room temperature), and the average bending elastic modulus in the vertical direction is 60 G at room temperature.
Pa and 50 GPa at high temperature (200 ° C.). The surface hardness measured by a Barcol hardness meter is 65 at room temperature,
It was 55 at high temperature (200 ° C.). (Wire bonding property) Further, a bare chip was mounted on a part of the 10-layer printed wiring board, and connected to a surface circuit by wire bonding. The wire bonding conditions are
When the ultrasonic output was 1 W, the ultrasonic output time was 50 μs, the bond load was 100 g, and the wire bonding temperature was 180 ° C., the wire bonding was successfully performed. (Thermal shock test) Also, an IC chip (TSOP) having a size of 8 mm × 20 mm was connected to the surface circuit via solder on this 10-layer printed wiring board, and this IC chip (TSOP)
Is mounted at -65 ° C for 30 minutes and 150 ° C for 30 minutes.
As a result of evaluation by a thermal shock test in which exposure to the environment for one minute was performed as one cycle, no defect such as disconnection occurred in the solder connection even after 2,000 cycles. A continuity test was performed on a circuit including an interstitial via hole inside the substrate, but no trouble such as disconnection occurred.

【0038】比較例1 (ワニス)ビスフェノールAノボラック型エポキシ樹脂
(分子量:1200、エポキシ当量:206)を70重
量部と、ビスフェノールAノボラック樹脂(分子量:7
00、水酸基当量:118)を30重量部と、2−エチ
ル−4−メチルイミダゾールを0.5重量部と、メチル
エチルケトンを70重量部からなる樹脂ワニスに、平均
直径0.8μm、平均繊維長20μmの硼酸アルミニウ
ムウィスカーを、樹脂固形分100重量部に対して90
重量部になるように配合し、硼酸アルミニウムウィスカ
ーがワニス中に均一に分散するまで撹拌した。 (接着フィルム)この絶縁ワニスを、厚さ18μmの銅
箔と厚さ50μmのPETフィルムにナイフコータにて
塗工し、温度150℃で10分間加熱乾燥して、溶剤を
除去するとともに、樹脂を半硬化して、接着層の厚さが
50μmと100μmの銅箔付き接着フィルムと、接着
層の厚さが50μmと100μmのPETフィルム付き
接着フィルムを作製し、PETフィルム付き接着フィル
ムからPETフィルムを剥離・除去して、ウィスカー体
積分率が30%でウィスカーと半硬化状態にあるエポキ
シ樹脂からなる、厚さが50μmと厚さが100μmの
接着フィルムを作製した。作製した銅箔付き接着フィル
ムは、カッターナイフ及びシャーにより、樹脂の飛散等
なくきれいに切断でき、接着フィルム同士のブロッキン
グも発生せず、良好な取扱性であった。また、 PET
フィルムに塗工して作製した接着フィルムは、PETフ
ィルムの剥離時や通常の取り扱い時に割れる等のトラブ
ルはなく、またカッターナイフ及びシャーにより、樹脂
の飛散等なくきれいに切断でき、接着フィルム同士のブ
ロッキングも発生せず、良好な取扱性であった。
Comparative Example 1 70 parts by weight of (varnish) bisphenol A novolak type epoxy resin (molecular weight: 1200, epoxy equivalent: 206) and bisphenol A novolak resin (molecular weight: 7)
00, hydroxyl equivalent: 118) in a resin varnish consisting of 30 parts by weight, 0.5 parts by weight of 2-ethyl-4-methylimidazole and 70 parts by weight of methyl ethyl ketone, having an average diameter of 0.8 μm and an average fiber length of 20 μm. Of aluminum borate whiskers of 90 parts by weight per 100 parts by weight of resin solids
It was blended so as to be parts by weight, and stirred until aluminum borate whiskers were uniformly dispersed in the varnish. (Adhesive film) This insulating varnish was applied to a copper foil of 18 μm thickness and a PET film of 50 μm thickness by a knife coater, and was heated and dried at a temperature of 150 ° C. for 10 minutes to remove the solvent and to remove the resin. Cured to produce an adhesive film with a copper foil with an adhesive layer thickness of 50 μm and 100 μm, and an adhesive film with a PET film with an adhesive layer thickness of 50 μm and 100 μm. Peel the PET film from the adhesive film with a PET film Removal was performed to produce an adhesive film having a whisker volume fraction of 30% and a thickness of 50 μm and a thickness of 100 μm comprising a whisker and an epoxy resin in a semi-cured state. The produced adhesive film with a copper foil was cut cleanly by a cutter knife and a shear without scattering of a resin, etc., and there was no blocking between the adhesive films, and the handleability was good. Also, PET
The adhesive film produced by coating the film has no trouble such as cracking during peeling of the PET film or normal handling, and can be cut cleanly with a cutter knife and shear without scattering of resin, and blocking between adhesive films. No problem occurred, and the handleability was good.

【0039】(電食試験)つぎに、厚さ0.8mmのガ
ラスエポキシ両面銅張積層板の両面の銅箔表面に、電食
試験の内層面の電極となる形状にエッチングレジストパ
ターンを形成し、不要な箇所の銅箔をエッチング除去
し、この上下に上記で作製した接着層の厚さ50μmの
接着フィルムを、接着フィルムが電食試験の内層面の電
極となるパターンと接するように重ね合せ、さらに厚さ
18μmの片面粗化銅箔を該粗化面が接着フィルムに向
き合うように積層し、175℃、2MPa、60分間の
条件で熱圧成形した。得られた積層板の銅箔の不要な箇
所をエッチング除去して、内層の電極となる電食試験パ
ターンの位置に合わせた部分に外層の電極となるパター
ンを形成し、電食試験片を得た。この内層と外層の電極
間に50Vの電圧を印加し、85℃、85%RHの雰囲
気下で経時変化を追跡した結果、250時間後の絶縁抵
抗値が109Ω未満となり、接着フィルムが耐電食性に
劣っていることがわかった。 (曲げ弾性率)作製した厚さ100μmの接着フィルム
の上下に、厚さ18μmの片面粗化銅箔を、該粗化が接
着フィルムに向き合うように積層し、175℃、2MP
a、60分の条件で熱圧成形した。得られた銅張積層板
の銅箔をエッチング除去し、曲げ弾性率を三点曲げで測
定したところ20GPa(銅箔なし、たてよこ平均)で
あった。 (穴あけ精度)また、直径0.3mmのドリルにてこの
銅張積層板を10枚重ねて穴あけしたときの最上板と最
下板の穴位置のずれ量を測定したところ20μm以下で
あった。
(Electrolytic corrosion test) Next, an etching resist pattern was formed on the copper foil surfaces on both sides of the glass epoxy double-sided copper-clad laminate having a thickness of 0.8 mm in a shape to be an electrode on the inner surface of the electrolytic corrosion test. Unnecessary portions of the copper foil are removed by etching, and an adhesive film having a thickness of 50 μm of the adhesive layer prepared above is overlapped on the upper and lower sides so that the adhesive film is in contact with a pattern serving as an electrode on the inner surface of the electrolytic corrosion test. Further, a single-sided roughened copper foil having a thickness of 18 μm was laminated so that the roughened surface faced the adhesive film, and was hot-pressed at 175 ° C., 2 MPa and 60 minutes. Unnecessary portions of the copper foil of the obtained laminated board are removed by etching, and a pattern to be an outer layer electrode is formed at a position corresponding to the position of the inner layer electrode to be an electrolytic corrosion test pattern to obtain an electrolytic corrosion test piece. Was. A voltage of 50 V was applied between the inner layer electrode and the outer layer electrode, and the change with time was tracked in an atmosphere of 85 ° C. and 85% RH. As a result, the insulation resistance value after 250 hours became less than 10 9 Ω, and the adhesive film became electrically resistant. It turned out that it was inferior in eating habits. (Bending elastic modulus) A single-sided roughened copper foil having a thickness of 18 μm is laminated on and under the prepared adhesive film having a thickness of 100 μm so that the roughening faces the adhesive film.
a, Hot-press molding was performed under the conditions of 60 minutes. When the copper foil of the obtained copper-clad laminate was removed by etching, and the flexural modulus was measured by three-point bending, it was 20 GPa (no copper foil, average vertical length). (Drilling Accuracy) When the copper-clad laminates were drilled by stacking ten copper-clad laminates with a diameter of 0.3 mm, the amount of displacement between the uppermost plate and the lowermost plate was measured to be 20 μm or less.

【0040】(多層プリント配線板)この銅張積層板に
回路加工を施し、その両面に先に作製した厚さ50μm
の本発明の接着フィルムを重ね、そのさらに外側に厚さ
18μmの片面粗化銅箔を粗化面が接着フィルムに向き
合うように積層し、175℃、2MPa、60分間の条
件で熱圧成形し、内層回路入り多層銅張積層板を作製し
た。この内層回路入り多層銅張積層板の表面粗さを触針
式表面粗さ計にて測定した結果、測定箇所がその直下に
内層回路のある部分とない部分とを含む長さ25mmの一
直線上の外層表面で、内層回路のある部分とない部分の
段差の10点平均は、3μm以下であり、回路加工に支
障のない良好な表面平坦性であった。さらにこの内層回
路入り多層銅張積層板の表面銅箔の所定位置をエッチン
グ除去して直径75μmの穴をあけ、その穴に住友重機
械工業(株)製インパクトレーザを用いて穴あけを行い、
過マンガン酸によるデスミア処理を行い、無電解メッキ
を行った後、エッチングレジストパターンを焼き付け・
現像して形成し、不要な箇所の銅をエッチング除去して
回路を形成した。この多層プリント配線板の両面に、先
に作製した厚さ50μmの接着フィルムを、そのさらに
外側に厚さ18μmの片面粗化銅箔を、粗化面が接着フ
ィルムに向き合うように積層し、175℃、2MPa、
60分間の条件で熱圧成形し、内層回路入り多層銅張積
層板を作製し、その銅箔の所定位置をエッチング除去し
て直径75μmの穴をあけ、その穴に住友重機械工業
(株)製インパクトレーザを用いて穴あけを行い、過マン
ガン酸によるデスミア処理を行い、無電解メッキを行っ
た後、エッチングレジストパターンを焼き付け・現像し
て形成し、不要な箇所の銅をエッチング除去して回路を
形成した。以上の工程をくり返して10層プリント配線
板を作製した。
(Multilayer Printed Wiring Board) The copper-clad laminate was subjected to circuit processing, and the thickness of 50 μm previously formed on both surfaces thereof
The adhesive film of the present invention is laminated, and a single-sided roughened copper foil having a thickness of 18 μm is further laminated on the outside so that the roughened surface faces the adhesive film, and is hot-pressed at 175 ° C., 2 MPa, and 60 minutes. Then, a multilayer copper-clad laminate containing an inner layer circuit was produced. As a result of measuring the surface roughness of the multilayer copper-clad laminate containing the inner layer circuit with a stylus type surface roughness meter, the measurement location was on a straight line having a length of 25 mm including a portion with and without an inner layer circuit immediately below. On the surface of the outer layer, the average of 10 points of the level difference between the portion having the inner layer circuit and the portion not having the inner layer circuit was 3 μm or less, and the surface flatness was satisfactory without any trouble in circuit processing. Further, a predetermined position of the surface copper foil of the multilayer copper-clad laminate containing the inner layer circuit was etched away to form a hole having a diameter of 75 μm, and the hole was formed using an impact laser manufactured by Sumitomo Heavy Industries, Ltd.
After performing desmear treatment with permanganate and performing electroless plating, bake the etching resist pattern.
The circuit was formed by development, and unnecessary portions of copper were removed by etching to form a circuit. On both sides of this multilayer printed wiring board, the adhesive film having a thickness of 50 μm previously prepared, and a single-sided roughened copper foil having a thickness of 18 μm on the outside thereof are further laminated so that the roughened surface faces the adhesive film. ℃, 2MPa,
It is hot-pressed under the conditions of 60 minutes to prepare a multilayer copper-clad laminate with an inner circuit, and a predetermined position of the copper foil is removed by etching to make a hole having a diameter of 75 μm.
Drilling using Impact Laser Co., Ltd., performing desmear treatment with permanganic acid, performing electroless plating, baking and developing an etching resist pattern, etching away unnecessary copper Thus, a circuit was formed. The above steps were repeated to produce a 10-layer printed wiring board.

【0041】(多層プリント配線板の試験)この多層プ
リント配線板の一部を切り取り、その熱膨張率と曲げ弾
性率を測定した。熱膨張率はTMAにて、曲げ弾性率
は、DMAの曲げモードにて測定した。たてよこ方向の
平均の熱膨張係数は、10ppm/℃(常温下)であ
り、たてよこ方向の平均の曲げ弾性率は常温下で60G
Pa、高温下(200℃)で40GPaであった。ま
た、バーコル硬度計による表面硬度は、常温下で65、
高温下(200℃)で50であった。 (ワイヤボンディング性)さらに、この10層プリント
配線板の一部にベアチップを実装し、ワイヤボンディン
グで表面回路と接続した。ワイヤボンディング条件は、
超音波出力を1W、超音波出力時間を50μs、ボンド
荷重を100g、ワイヤボンディング温度を180℃と
したところ、良好にワイヤボンディングできた。 (熱衝撃試験)また、この10層プリント配線板に寸法
8mm×20mmのICチップ(TSOP)をはんだを
介して表面回路と接続し、このICチップ(TSOP)
を実装した基板を、−65℃で30分と150℃で30
分の環境に晒すことを1サイクルとする熱衝撃試験で評
価したところ、2000サイクル後もはんだ接続部に断
線等の不良は発生していなかった。また、この基板の内
部のインターステーシャルバイアホールを含む回路の導
通試験を行ったが断線等のトラブルの発生はなかった。
(Test of Multilayer Printed Wiring Board) A part of the multilayer printed wiring board was cut out, and its coefficient of thermal expansion and flexural modulus were measured. The coefficient of thermal expansion was measured by TMA, and the flexural modulus was measured by a bending mode of DMA. The average coefficient of thermal expansion in the vertical direction is 10 ppm / ° C. (at room temperature), and the average bending elastic modulus in the vertical direction is 60 G at room temperature.
Pa and 40 GPa at high temperature (200 ° C.). The surface hardness measured by a Barcol hardness meter is 65 at room temperature,
It was 50 at high temperature (200 ° C.). (Wire bonding property) Further, a bare chip was mounted on a part of the 10-layer printed wiring board, and connected to a surface circuit by wire bonding. The wire bonding conditions are
When the ultrasonic output was 1 W, the ultrasonic output time was 50 μs, the bond load was 100 g, and the wire bonding temperature was 180 ° C., the wire bonding was successfully performed. (Thermal shock test) Also, an IC chip (TSOP) having a size of 8 mm × 20 mm was connected to the surface circuit via solder on this 10-layer printed wiring board, and this IC chip (TSOP)
Is mounted at -65 ° C for 30 minutes and 150 ° C for 30 minutes.
As a result of evaluation by a thermal shock test in which exposure to the environment for one minute was performed as one cycle, no defect such as disconnection occurred in the solder connection even after 2,000 cycles. A continuity test was performed on a circuit including an interstitial via hole inside the substrate, but no trouble such as disconnection occurred.

【0042】比較例2 (プリプレグ)ビスフェノールAノボラック型エポキシ
樹脂(分子量:1200、エポキシ当量:206)を7
0重量部と、ビスフェノールAノボラック樹脂(分子
量:700、水酸基当量:118)を30重量部と、2
−エチル−4−メチルイミダゾールを0.5重量部と、
メチルエチルケトンを70重量部からなる樹脂ワニス
を、厚さ50μmと100μmのガラスクロスに含浸塗
工し、温度150℃で10分間加熱乾燥して、溶剤を除
去するとともに、樹脂を半硬化し、ガラスクロスと半硬
化状態にあるエポキシ樹脂からなる厚さが70μmと1
20μmのエポキシプリプレグを作製した。作製したプ
リプレグは、カッターナイフ及びシャーによる切断時に
樹脂が飛散した。
Comparative Example 2 (prepreg) bisphenol A novolak type epoxy resin (molecular weight: 1200, epoxy equivalent: 206) was mixed with 7
0 parts by weight, 30 parts by weight of bisphenol A novolak resin (molecular weight: 700, hydroxyl equivalent: 118), and 2 parts by weight.
0.5 parts by weight of -ethyl-4-methylimidazole;
A resin varnish consisting of 70 parts by weight of methyl ethyl ketone is impregnated onto a glass cloth having a thickness of 50 μm and 100 μm, and dried by heating at a temperature of 150 ° C. for 10 minutes to remove the solvent and semi-harden the resin. The thickness of the semi-cured epoxy resin is 70 μm and 1
A 20 μm epoxy prepreg was prepared. The resin was scattered in the prepared prepreg when cutting with a cutter knife and a shear.

【0043】(電食試験)つぎに、厚さ0.8mmのガ
ラスエポキシ両面銅張積層板の両面の銅箔表面に、電食
試験の内層面の電極となる形状にエッチングレジストパ
ターンを形成し、不要な箇所の銅箔をエッチング除去
し、この上下に絶縁層の厚さ70μmのエポキシプリプ
レグと厚さ18μmの片面粗化銅箔を、エポキシプリプ
レグが電食試験の内層面の電極となるパターンと接する
ように重ね合せて積層し、175℃、2MPa、60分
間の条件で熱圧成形した。得られた積層板の、内層の電
極となる電食試験パターンの位置に合わせた部分に外層
の電極となるパターンをエッチングで作製し、電食試験
片を得た。この内層と外層の電極間に50Vの電圧を印
加し、85℃、85%RHの雰囲気下で1000時間経
過後の絶縁抵抗値を測定した結果、109Ω以上の良好
な値を示し、エポキシプリプレグの硬化物が耐電食性に
優れていることを確認した。 (曲げ弾性率)先に作製した厚さ120μmのエポキシ
プリプレグの上下に、厚さ18μmの片面粗化銅箔を、
該粗化面がプリプレグに向き合うように積層し、175
℃、2MPa、60分間の条件で熱圧成形した。得られ
た銅張積層板の曲げ弾性率を三点曲げで測定したところ
8GPa(銅箔なし、たてよこ平均)であった。 (穴あけ精度)また、直径0.3mmのドリルにてこの
銅張積層板を10枚重ねて穴あけしたときの最上板と最
下板の穴位置のずれ量を測定したところ50μm以上あ
った。
(Electro-corrosion test) Next, an etching resist pattern was formed on the copper foil surfaces on both sides of the glass epoxy double-sided copper-clad laminate having a thickness of 0.8 mm so as to be an electrode on the inner layer surface of the electro-corrosion test. An unnecessary portion of the copper foil is removed by etching, and an epoxy prepreg having a thickness of 70 μm and a roughened single-sided copper foil having a thickness of 18 μm are formed on the upper and lower portions of the copper prepreg. And hot-pressed under the conditions of 175 ° C., 2 MPa, and 60 minutes. An outer layer electrode pattern was formed by etching on a portion of the obtained laminated board corresponding to the position of the inner layer electrode electrolytic corrosion test pattern, thereby obtaining an electrolytic corrosion test piece. The inner layer and a voltage of 50V was applied between the outer electrodes, 85 ° C., a result of measuring the insulation resistance value after 1000 hours passed in an atmosphere of RH 85%, showed good values of more than 10 9 Omega, epoxy It was confirmed that the cured product of the prepreg had excellent electric corrosion resistance. (Bending elastic modulus) A single-side roughened copper foil having a thickness of 18 μm is placed above and below the epoxy prepreg having a thickness of 120 μm prepared above.
Laminate so that the roughened surface faces the prepreg,
Thermocompression molding was performed at 2 ° C. for 60 minutes at 60 ° C. When the flexural modulus of the obtained copper-clad laminate was measured by three-point bending, it was 8 GPa (no copper foil, average lengthwise). (Drilling Accuracy) Further, when the copper-clad laminates were drilled by stacking ten copper-clad laminates with a diameter of 0.3 mm, the deviation between the hole positions of the uppermost plate and the lowermost plate was measured and found to be 50 μm or more.

【0044】(多層プリント配線板)この銅張積層板の
不要な箇所の銅箔をエッチング除去して内層回路板を作
製し、その両面に先に作製した厚さ50μmのガラスエ
ポキシプリプレグを重ね、そのさらに外側に厚さ18μ
mの片面粗化銅箔を、粗化面がプリプレグに向き合うよ
うに積層し、175℃、2MPa、60分の条件で熱圧
成形し、内層回路入り多層銅張積層板を作製した。この
内層回路入り多層銅張積層板の表面粗さを触針式表面粗
さ計にて測定した結果、測定箇所がその直下に内層回路
のある部分とない部分とを含む長さ25mmの一直線上の
外層表面で、内層回路のある部分とない部分の段差の1
0点平均は、8μm以上あった。さらに、この内層回路
入り多層銅張積層板の表面銅箔の所定位置をエッチング
除去して直径75μmの穴をあけ、その穴に住友重機械
工業(株)製インパクトレーザを用いて穴あけを試みた
が、ガラス部分が除去できなかった。
(Multilayer Printed Wiring Board) An unnecessary portion of the copper-clad laminate is removed by etching the copper foil to produce an inner layer circuit board, and a 50 μm-thick glass epoxy prepreg previously prepared is laminated on both sides thereof. 18μ thick outside
m single-sided roughened copper foil was laminated such that the roughened surface faced the prepreg, and was hot-pressed at 175 ° C., 2 MPa, and 60 minutes to produce a multilayer copper-clad laminate with an inner layer circuit. As a result of measuring the surface roughness of the multilayer copper-clad laminate containing the inner layer circuit with a stylus type surface roughness meter, the measurement location was on a straight line having a length of 25 mm including a portion with and without an inner layer circuit immediately below. Of the step between the part with and without the inner layer circuit on the outer layer surface of
The zero point average was 8 μm or more. Further, a predetermined position of the surface copper foil of the multilayer copper-clad laminate containing the inner layer circuit was removed by etching to make a hole having a diameter of 75 μm, and the hole was tried to be made by using an impact laser manufactured by Sumitomo Heavy Industries, Ltd. However, the glass part could not be removed.

【0045】比較例3 (接着フィルム)重量平均分子量が50,000の高分
子量エポキシ重合体を50重量部と、希釈剤として、
N,N−ジメチルアセトアミドを高分子量エポキシ重合
体が固形分として30重量%となるように用い、ビスフ
ェノールA型エポキシ樹脂(分子量:343、エポキシ
当量:175)を50重量部と、高分子量エポキシ重合
体の架橋剤としてフェノール樹脂マスク化ジイソシアネ
ートを0.2当量と、硬化剤として、2−エチル−4−
メチルイミダゾールを0.5重量部からなる樹脂ワニス
を、厚さ18μmの銅箔と厚さ50μmのPETフィル
ムにナイフコータにて塗工し、温度150℃で10分間
加熱乾燥して溶剤を除去するとともに、樹脂を半硬化し
て、接着層の厚さが50μmの銅箔付き接着フィルム
と、接着層の厚さが50μmのPETフィルム付き接着
フィルムを作製し、PETフィルム付き接着フィルムか
らPETフィルムを剥離・除去して、エポキシ樹脂から
なる、厚さが50μmの接着フィルムを作製した。作製
した接着フィルムは、PETフィルムの剥離時や通常の
取り扱い時に割れる等のトラブルはなく、またカッター
ナイフ及びシャーにより、樹脂の飛散等なくきれいに切
断できたが、接着フィルム同士のブロッキングが発生
し、取扱性では悪かった。
Comparative Example 3 (Adhesive Film) 50 parts by weight of a high molecular weight epoxy polymer having a weight average molecular weight of 50,000, and
N, N-dimethylacetamide was used so that the high molecular weight epoxy polymer had a solid content of 30% by weight, 50 parts by weight of a bisphenol A type epoxy resin (molecular weight: 343, epoxy equivalent: 175), and a high molecular weight epoxy resin 0.2 equivalent of a phenolic resin-masked diisocyanate as a cross-linking agent and 2-ethyl-4- as a curing agent
A resin varnish consisting of 0.5 parts by weight of methyl imidazole was applied to a copper foil of 18 μm thickness and a PET film of 50 μm thickness by a knife coater, and was heated and dried at 150 ° C. for 10 minutes to remove the solvent. Then, the resin is semi-cured to produce an adhesive film with a copper foil having an adhesive layer thickness of 50 μm and an adhesive film with a PET film having an adhesive layer thickness of 50 μm, and peeling off the PET film from the adhesive film with the PET film. Removal was performed to produce an adhesive film having a thickness of 50 μm and made of an epoxy resin. The produced adhesive film was free of troubles such as cracking during peeling of the PET film or normal handling, and could be cut cleanly without scattering of resin by a cutter knife and shear, but blocking between the adhesive films occurred. The handling was bad.

【0046】(電食試験)つぎに、厚さ0.8mmのガ
ラスエポキシ両面銅張積層板の両面の銅箔表面に、電食
試験の内層面の電極となる形状に、エッチングレジスト
パターンを形成し、不要な箇所の銅箔をエッチング除去
し、この上下に上記で作製した接着層の厚さ50μmの
銅箔付き接着フィルムを、接着フィルムが電食試験の内
層面の電極となるパターンと接するように重ね合せて積
層し、175℃、2MPa、60分間の条件で熱圧成形し
た。得られた積層板の、内層の電極となる電食試験パタ
ーンの位置に合わせた部分に外層の電極となるパターン
をエッチングで作製し、電食試験片を得た。この内層と
外層の電極間に50Vの電圧を印加し、85℃、85%
RHの雰囲気下で1000時間経過後の絶縁抵抗値を測
定した結果、109Ω以上の良好な値を示し、接着フィ
ルムが耐電食性に優れていることを確認した。
(Electrolytic corrosion test) Next, an etching resist pattern was formed on the copper foil surfaces on both sides of the glass epoxy double-sided copper-clad laminate having a thickness of 0.8 mm in a shape to be an electrode on the inner layer surface of the electrolytic corrosion test. Then, unnecessary portions of the copper foil are removed by etching, and the adhesive film with a copper foil having a thickness of 50 μm of the adhesive layer prepared above and below is brought into contact with the pattern in which the adhesive film serves as an electrode on the inner surface of the electrolytic corrosion test. And hot-pressed under the conditions of 175 ° C., 2 MPa, and 60 minutes. An outer layer electrode pattern was formed by etching on a portion of the obtained laminated board corresponding to the position of the inner layer electrode electrolytic corrosion test pattern, thereby obtaining an electrolytic corrosion test piece. A voltage of 50 V is applied between the electrodes of the inner layer and the outer layer, and 85 ° C., 85%
As a result of measuring an insulation resistance value after 1000 hours in an atmosphere of RH, a good value of 10 9 Ω or more was shown, and it was confirmed that the adhesive film was excellent in electric corrosion resistance.

【0047】(多層プリント配線板)比較例1で作製し
た内層回路板の両面に、先に制作した厚さ50μmの接
着フィルムを重ね、そのさらに外側に厚さ18μmの片
面粗化銅箔を粗化面が接着フィルムに向き合うように積
層し、175℃、2MPa、60分間の条件で熱圧成形
し、内層回路入り多層銅張積層板を作製した。この内層
回路入り多層銅張積層板の表面粗さを、触針式表面粗さ
計にて測定した結果、測定箇所がその直下に内層回路の
ある部分とない部分とを含む長さ25mmの一直線上の外
層表面で、内層回路のある部分とない部分の段差の10
点平均は、3μm以下であり、回路加工に支障のない良
好な表面平坦性であった。さらにこの内層回路入り多層
銅張積層板の表面銅箔の所定位置をエッチング除去して
直径75μmの穴をあけ、その穴に住友重機械工業(株)
製インパクトレーザを用いて穴あけを行い、過マンガン
酸によるデスミア処理を行い、無電解メッキを行った
後、エッチングレジストパターンを焼き付け・現像して
形成し、不要な箇所の銅をエッチング除去して回路を形
成した。この多層プリント配線板の両面に、先に作製し
た厚さ50μmの接着フィルムを、そのさらに外側に厚
さ18μmの片面粗化銅箔を、粗化面が接着フィルムに
向き合うように積層し、175℃、2MPa、60分間の
条件で熱圧成形し、内層回路入り多層銅張積層板を作製
し、その銅箔の所定位置をエッチング除去して直径75
μmの穴をあけ、その穴に住友重機械工業(株)製インパ
クトレーザを用いて穴あけを行い、過マンガン酸による
デスミア処理を行い、無電解メッキを行った後、エッチ
ングレジストパターンを焼き付け・現像して形成し、不
要の箇所の銅をエッチング除去して回路を形成した。以
上の工程をくり返して10層プリント配線板を作製し
た。
(Multilayer Printed Wiring Board) A 50 μm-thick adhesive film prepared previously was laminated on both sides of the inner circuit board prepared in Comparative Example 1, and a 18 μm-thick roughened copper foil was further roughened on the outer side. The laminate was laminated so that the surface thereof faced the adhesive film, and hot-pressed at 175 ° C. and 2 MPa for 60 minutes to produce a multilayer copper-clad laminate having an inner circuit. The surface roughness of the multilayer copper-clad laminate containing the inner layer circuit was measured with a stylus type surface roughness meter. As a result, the measurement point was a straight line having a length of 25 mm including a portion with and without an inner layer circuit immediately below. On the surface of the outer layer on the line, the level difference of 10
The point average was 3 μm or less, and good surface flatness that did not hinder circuit processing was obtained. Further, a predetermined position of the surface copper foil of the multilayer copper-clad laminate containing the inner layer circuit was removed by etching to form a hole having a diameter of 75 μm, and the hole was formed by Sumitomo Heavy Industries, Ltd.
After drilling using an impact laser manufactured, performing desmear treatment with permanganic acid, performing electroless plating, baking and developing an etching resist pattern, etching away unnecessary copper, and removing the circuit Was formed. On both sides of this multilayer printed wiring board, the adhesive film having a thickness of 50 μm previously prepared, and a single-sided roughened copper foil having a thickness of 18 μm on the outside thereof are further laminated so that the roughened surface faces the adhesive film. C., 2 MPa, for 60 minutes to produce a multi-layer copper-clad laminate with an inner layer circuit.
After making a hole of μm, making a hole using an impact laser manufactured by Sumitomo Heavy Industries, Ltd., performing desmear treatment with permanganic acid, performing electroless plating, and then printing and developing the etching resist pattern. The circuit was formed by removing unnecessary portions of copper by etching. The above steps were repeated to produce a 10-layer printed wiring board.

【0048】(多層プリント配線板の試験)この多層プ
リント配線板の一部を切り取り、その熱膨張率と曲げ弾
性率を測定した。熱膨張率はTMAにて、曲げ弾性率
は、DMAの曲げモードにて測定した。たてよこ方向の
平均の熱膨張係数は、30ppm/℃(常温下)であ
り、たてよこ方向の平均の曲げ弾性率は常温下で20G
Pa、高温下(200℃)で10GPaであった。ま
た、バーコル硬度計による表面硬度は、常温下で30、
高温下(200℃)で10であった。 (ワイヤボンディング性)さらに、この10層プリント
配線板の一部にベアチップを実装し、ワイヤボンディン
グで表面回路と接続した。ワイヤボンディング条件は、
超音波出力を1W、超音波出力時間を50μs、ボンド
荷重を100gとした。ワイヤボンディング温度を10
0℃に下げてもワイヤのはがれが発生した。 (熱衝撃試験)また、この10層プリント配線板に寸法
8mm×20mmのICチップ(TSOP)をはんだを
介して表面回路と接続し、このICチップ(TSOP)
を実装した基板を、−65℃で30分と150℃で30
分の環境に晒すことを1サイクルとする熱衝撃試験で評
価したところ、100サイクル前後ではんだ接続部に断
線不良を発生した。またこの基板の内部のインターステ
ーシャルバイアホールを含む回路の導通試験を行ったと
ころ断線箇所があった。
(Test of Multilayer Printed Wiring Board) A part of this multilayer printed wiring board was cut out, and its coefficient of thermal expansion and flexural modulus were measured. The coefficient of thermal expansion was measured by TMA, and the flexural modulus was measured by a bending mode of DMA. The average coefficient of thermal expansion in the vertical direction is 30 ppm / ° C. (at room temperature), and the average bending elastic modulus in the vertical direction is 20 G at room temperature.
Pa and 10 GPa at a high temperature (200 ° C.). The surface hardness measured by a Barcol hardness tester was 30 at room temperature,
It was 10 at high temperature (200 ° C.). (Wire bonding property) Further, a bare chip was mounted on a part of the 10-layer printed wiring board, and connected to a surface circuit by wire bonding. The wire bonding conditions are
The ultrasonic output was 1 W, the ultrasonic output time was 50 μs, and the bond load was 100 g. Wire bonding temperature 10
Even when the temperature was lowered to 0 ° C., peeling of the wire occurred. (Thermal shock test) Also, an IC chip (TSOP) having a size of 8 mm × 20 mm was connected to the surface circuit via solder on this 10-layer printed wiring board, and this IC chip (TSOP)
Is mounted at -65 ° C for 30 minutes and 150 ° C for 30 minutes.
As a result of a thermal shock test in which exposure to the environment for one minute was performed as one cycle, a disconnection defect occurred in the solder connection part after about 100 cycles. Further, a continuity test of a circuit including an interstitial via hole inside the substrate revealed a broken portion.

【0049】[0049]

【発明の効果】本発明の絶縁ワニスの製造方法により、
電気絶縁性ウイスカーを複合化させた接着フィルムに電
気絶縁性ウイスカーの凝集体が混入することを絶縁ワニ
スの段階で抑制することが可能となり、接着フィルムの
絶縁信頼性を高めることができる。本発明にしたがって
製造した絶縁ワニスを用いて得られた絶縁材料は、電気
絶縁性ウイスカーの添加によりエポキシ樹脂をシート状
に形成することができたもので、これを使用したプリン
ト配線板は、表面が平坦で回路加工性が良く、剛性が高
いため実装信頼性が高く、表面硬度が高いためワイヤボ
ンド性が良く、熱膨張係数が小さいため寸法安定性が良
くなる。したがって、多層プリント配線板の高密度化、
薄型化、高信頼性化、低コスト化に多大の貢献をする。
According to the method for producing an insulating varnish of the present invention,
Mixing of the aggregate of the electrically insulating whiskers into the adhesive film in which the electrically insulating whiskers are combined can be suppressed at the stage of the insulating varnish, and the insulation reliability of the adhesive film can be increased. The insulating material obtained by using the insulating varnish manufactured according to the present invention is a material in which an epoxy resin can be formed into a sheet by adding an electrically insulating whisker. Is flat, has good circuit workability, has high rigidity, so that mounting reliability is high, surface hardness is high, wire bonding is good, and thermal expansion coefficient is small, so dimensional stability is good. Therefore, the density of the multilayer printed wiring board has been increased,
It makes a great contribution to thinning, high reliability, and low cost.

フロントページの続き (51)Int.Cl.6 識別記号 FI // C08L 63/00 C08L 63/00 C (72)発明者 神代 恭 茨城県下館市大字小川1500番地 日立化成 工業株式会社下館研究所内 (72)発明者 高橋 敦之 茨城県下館市大字小川1500番地 日立化成 工業株式会社下館研究所内 (72)発明者 森田 高示 茨城県下館市大字小川1500番地 日立化成 工業株式会社下館研究所内 (72)発明者 有家 茂晴 茨城県下館市大字小川1500番地 日立化成 工業株式会社下館研究所内 (72)発明者 大塚 和久 茨城県下館市大字小川1500番地 日立化成 工業株式会社下館研究所内 (72)発明者 浦崎 直之 茨城県下館市大字小川1500番地 日立化成 工業株式会社下館研究所内 (72)発明者 藤本 大輔 茨城県下館市大字小川1500番地 日立化成 工業株式会社下館研究所内Continuation of the front page (51) Int.Cl. 6 Identification symbol FI // C08L 63/00 C08L 63/00 C (72) Inventor Yasushi Yashiro 1500 Oji Ogawa, Shimodate-shi, Ibaraki Pref. 72) Inventor Atsuyuki Takahashi 1500 Ogawa, Shimodate, Ibaraki Pref., Shimodate Research Laboratory, Hitachi Chemical Co., Ltd. Person Shigeharu Ariya 1500 Oji Ogawa, Shimodate City, Ibaraki Pref., Shimodate Research Laboratory, Hitachi Chemical Co., Ltd. Hitachi Chemical Industry Co., Ltd., Shimodate Research Laboratory (72) Inventor Daisuke Fujimoto 1500, Oji Ogawa, Shimodate City, Ibaraki Prefecture, Hitachi Chemical Industry Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】電気絶縁性ウイスカーを、樹脂ワニス中で
撹拌してスラリーを調製し、このスラリーをビーズミル
で混練することを特徴とする絶縁ワニスの製造方法。
1. A method for producing an insulating varnish, comprising stirring an electrically insulating whisker in a resin varnish to prepare a slurry, and kneading the slurry with a bead mill.
【請求項2】スラリーを調製する前の電気絶縁性ウイス
カーが、セラミックウイスカーであって、該ウイスカー
の平均直径が0.3〜3μmの範囲にあり、平均長さが
3〜50μmの範囲にあるものを用いることを特徴とす
る請求項1に記載の絶縁ワニスの製造方法。
2. An electrically insulating whisker before preparing a slurry is a ceramic whisker having an average diameter of 0.3 to 3 μm and an average length of 3 to 50 μm. The method for producing an insulating varnish according to claim 1, wherein the insulating varnish is used.
【請求項3】請求項1又は2に記載の絶縁ワニスを、銅
箔またはキャリアフィルムに塗布して得た絶縁材料を、
内層回路を形成した内層配線板と積層し、外層面の回路
を形成し、内層回路と電気的に接続することにより作製
した多層プリント配線板。
3. An insulating material obtained by applying the insulating varnish according to claim 1 to a copper foil or a carrier film,
A multilayer printed wiring board manufactured by laminating an inner layer circuit board having an inner layer circuit formed thereon, forming a circuit on an outer layer surface, and electrically connecting to the inner layer circuit.
JP9630197A 1997-04-15 1997-04-15 Production of insulating varnish and multi-layered printed wiring board using the insulating varnish Pending JPH10287833A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9630197A JPH10287833A (en) 1997-04-15 1997-04-15 Production of insulating varnish and multi-layered printed wiring board using the insulating varnish
US09/057,522 US6197149B1 (en) 1997-04-15 1998-04-09 Production of insulating varnishes and multilayer printed circuit boards using these varnishes
EP19980106742 EP0873047B1 (en) 1997-04-15 1998-04-14 Production of insulating varnishes and multilayer printed circuit boards using these varnishes
DE69839104T DE69839104D1 (en) 1997-04-15 1998-04-14 Production of insulating lacquers and multilayer printed circuit boards using them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9630197A JPH10287833A (en) 1997-04-15 1997-04-15 Production of insulating varnish and multi-layered printed wiring board using the insulating varnish

Publications (1)

Publication Number Publication Date
JPH10287833A true JPH10287833A (en) 1998-10-27

Family

ID=14161219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9630197A Pending JPH10287833A (en) 1997-04-15 1997-04-15 Production of insulating varnish and multi-layered printed wiring board using the insulating varnish

Country Status (1)

Country Link
JP (1) JPH10287833A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202053A (en) * 2010-03-26 2011-10-13 Sumitomo Bakelite Co Ltd Resin varnish, carrier material with resin, prepreg, and laminated board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202053A (en) * 2010-03-26 2011-10-13 Sumitomo Bakelite Co Ltd Resin varnish, carrier material with resin, prepreg, and laminated board

Similar Documents

Publication Publication Date Title
EP0763562B1 (en) Prepreg for printed circuit board
JP4957552B2 (en) Manufacturing method of prepreg with carrier for printed wiring board, prepreg with carrier for printed wiring board, manufacturing method of thin double-sided board for printed wiring board, thin double-sided board for printed wiring board, and manufacturing method of multilayer printed wiring board
JP5482083B2 (en) LAMINATED BOARD FOR WIRING BOARD AND ITS MANUFACTURING METHOD, PRIMER LAYER RESIN FILM, MULTILAYER WIRING BOARD AND ITS MANUFACTURING METHOD
JP2009176889A (en) Insulating resin composition for multilayer printed wiring board, insulating film with support, multilayer printed wiring board, and manufacturing method therefor
JP3838389B2 (en) Insulating material and multilayer printed wiring board using the same
JP2001316564A (en) Electrical insulating resin composition, copper-foiled electrical insulating material and copper-clad laminated board
JP3972433B2 (en) Insulating varnish and multilayer printed wiring board using the same
JPH10287834A (en) Production of insulating varnish and multi-layered printed wiring board using the insulating varnish
JP2002212390A (en) Insulating resin composition, copper foil-attached insulating material and copper-clad laminate
JPH10287833A (en) Production of insulating varnish and multi-layered printed wiring board using the insulating varnish
JP3804812B2 (en) Method for producing insulating varnish
JP3838390B2 (en) Method for manufacturing insulating varnish and multilayer printed wiring board using the insulating varnish
JP3932635B2 (en) Insulating varnish and multilayer printed wiring board using the same
KR100187577B1 (en) Copper-clad laminate, multilayer copper-clad laminate and process for producing the same
JP3911739B2 (en) Insulation material for wiring boards
JP3343330B2 (en) Method for producing insulating varnish, insulating varnish obtained by this method, and multilayer printed wiring board using this insulating varnish
JPH09202834A (en) Prepreg for printed circuit board and its production
JP3390306B2 (en) Prepreg with carrier film for printed wiring boards
JP2000277922A (en) Multilayer printed interconnection board and manufacture thereof
JPH11140229A (en) Thermosetting resin composition, adhesive sheet using the same and metal foil having adhesive layer attached thereto
JP2000104038A (en) Composition for adhesive sheet, adhesive sheet, adhesive sheet with metal foil and laminated sheet
JP2000345103A (en) Insulation varnish and multilayered printed circuit board using the same
JPH11279493A (en) Adhesive sheet, metallic foil with adhesive, multilayer board covered with metallic foil, and layered board and printed circuit board covered with metallic foil
JP4366785B2 (en) Adhesive sheet, production method thereof, multilayer printed wiring board using the adhesive sheet, and production method thereof
JP2004134693A (en) Manufacturing method of multilayer printed circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040414

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060412

A131 Notification of reasons for refusal

Effective date: 20060420

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060816