JPH10284744A - Compound semiconductor solar cell, and manufacture - Google Patents

Compound semiconductor solar cell, and manufacture

Info

Publication number
JPH10284744A
JPH10284744A JP9090638A JP9063897A JPH10284744A JP H10284744 A JPH10284744 A JP H10284744A JP 9090638 A JP9090638 A JP 9090638A JP 9063897 A JP9063897 A JP 9063897A JP H10284744 A JPH10284744 A JP H10284744A
Authority
JP
Japan
Prior art keywords
film
cadmium sulfide
solar cell
heat treatment
cadmium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9090638A
Other languages
Japanese (ja)
Inventor
Miwa Tsuji
美輪 辻
Satoshi Shibuya
聡 澁谷
Takeshi Nishio
剛 西尾
Takeshi Hibino
武司 日比野
Mikio Murozono
幹夫 室園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Battery Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Battery Industrial Co Ltd filed Critical Matsushita Battery Industrial Co Ltd
Priority to JP9090638A priority Critical patent/JPH10284744A/en
Publication of JPH10284744A publication Critical patent/JPH10284744A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To stably produce a solar cell high in conversion efficiency by performing heat treatment after the formation of cadmium sulfide film on a substrate, thereby reforming the crystal property of the film. SOLUTION: A cadmium sulfide film 3 is made on, for example, an ITO film 2 which is a transparent conductive film made on a glass substrate 1. A cadmium telluride film 4 a p-type semiconductor is made on this cadmium sulfide. Next, a carbon film 5 is made on the cadmium telluride film 4, and after this, for example, AgIn electrodes 6 are made on the cadmium sulfide film 3 and the carbon film layer 5, so as to manufacture a solar cell. In this manufacture, heat treatment is performed after the formation of the cadmium sulfide film on the substrate. Hereby, the impurities in the cadmium sulfide film and at the surface can be removed, and the interior of the crystal of the film is made superior, and a close packed cadmium sulfide film good in permeability can be obtained. Manufacturing a solar cell by the use of this will enable a superior solar cell of high conversion efficiency to be produced stably.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、化合物半導体太陽
電池およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compound semiconductor solar cell and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来より、化合物半導体、特に硫化カド
ミウム、硫化亜鉛、硫化鉛、硫化銅等の硫化物薄膜は光
電変換素子材料として光電子産業分野で幅広く用いられ
てきた。これらの化合物の多くは従来、スパッタリング
法、蒸着法、化学気相成長法(Cemical Vaper Depositio
n、以降CVD法と記す)などによって製造されてき
た。これらの手法により製膜された薄膜は光電変換素子
材料として所望の膜質を有するものであるが、何れも真
空装置を必要とするため、大面積均一製膜、高速連続製
膜等が困難であったり、もしくはできたとしても装置が
非常に高価になる等の問題があった。
2. Description of the Related Art Conventionally, compound semiconductors, particularly sulfide thin films such as cadmium sulfide, zinc sulfide, lead sulfide, and copper sulfide, have been widely used as photoelectric conversion element materials in the field of optoelectronics. Many of these compounds have traditionally been prepared by sputtering, evaporation, and chemical vapor deposition (Chemical Vapor Depositio).
n, hereinafter referred to as a CVD method). Although the thin films formed by these methods have the desired film quality as a photoelectric conversion element material, all require a vacuum apparatus, and thus it is difficult to form a large-area uniform film, high-speed continuous film formation, and the like. However, there is a problem that the device becomes very expensive even if it can be made.

【0003】大面積薄膜の形成をより安価に行う方法と
して溶液成長法がある。この方法は基板を溶液中に浸す
ことによって、液中に存在する物質を基板表面に析出さ
せるものである。しかし、この手法を用いたとしても、
確かに装置およびプロセスは安価であるが、化合物半導
体薄膜の大面積製膜において、膜質の均一性および再現
性に大きな問題があった。
As a method of forming a large-area thin film at lower cost, there is a solution growth method. In this method, a substance existing in the liquid is deposited on the surface of the substrate by immersing the substrate in the solution. However, even with this approach,
Although the apparatus and the process are inexpensive, there is a great problem in the uniformity and reproducibility of the film quality in forming a large area compound semiconductor thin film.

【0004】そこで、化合物半導体薄膜の大面積製膜を
安価な装置で再現性良く行う手法として塗布・焼結法が
提案された。これは、化合物半導体の微粉末分散ペース
トを基板上にスクリーン印刷し連続ベルト炉で焼結する
ものであり、すでに、同手法による硫化カドミウム焼結
膜上に、同じくテルル化カドミウム焼結膜を積層形成し
たテルル化カドミウム太陽電池の製造方法として開示さ
れている(特公昭56−28386号公報)。
Therefore, a coating and sintering method has been proposed as a technique for producing a large area of a compound semiconductor thin film with good reproducibility using an inexpensive apparatus. In this method, a fine powder dispersion paste of a compound semiconductor is screen-printed on a substrate and sintered in a continuous belt furnace, and a cadmium telluride sintered film is also formed on a cadmium sulfide sintered film by the same method. It is disclosed as a method for manufacturing a cadmium telluride solar cell (JP-B-56-28386).

【0005】この塗布・焼結法は、前記した通り安価な
装置で、均一にかつ再現性良く化合物半導体薄膜大面積
製膜を連続して行え、かつ製膜と同時にパタ−ンニング
が可能であるという極めて優れた特徴がある。しかし、
塗布・焼結法にも幾つかの問題があった。それらは、焼
結温度が約700℃と高温であるため基板として低価格
の並ガラスが使えないこと、2時間以上の長時間の焼結
反応を必要とするため高速・大量生産に不向きなこと、
焼結時に融点降下剤の蒸発を制御するためのセラミック
製の高価な焼結ケースが必要であること、焼結時に窒素
等の不活性雰囲気が必要であること、原材料の粒径(通
常2〜4μm)よりも薄い膜ができないこと、さらに、
同焼結膜中には多数の空隙があり膜質が均一でないこと
等であるが、これらの問題は金属化合物の微粉末を原材
料とする塗布・焼結法では解決が極めて難しい、とされ
ていた。
In this coating and sintering method, as described above, a large-area compound semiconductor thin film can be continuously formed uniformly and with good reproducibility with an inexpensive apparatus, and patterning can be performed simultaneously with the film formation. There is an extremely excellent feature. But,
The coating and sintering method also had some problems. They have a high sintering temperature of about 700 ° C, making it impossible to use inexpensive regular glass as a substrate, and require a long sintering reaction of 2 hours or more, making them unsuitable for high-speed and mass production. ,
An expensive ceramic sintering case is required to control the evaporation of the melting point depressant during sintering, an inert atmosphere such as nitrogen is required during sintering, 4 μm) cannot be formed,
Although there are many voids in the sintered film and the film quality is not uniform, it has been said that these problems are extremely difficult to solve by a coating and sintering method using a fine powder of a metal compound as a raw material.

【0006】最近、塗布・焼結法の特徴を生かしこれら
の諸問題を解決する手法として、金属−硫黄結合を少な
くとも一つ内部に有する有機金属化合物を含む溶液を基
板上に塗布し、酸化雰囲気中で 上記有機金属化合物を
熱分解して金属の硫化物薄膜を形成する、という提案が
なされている(特公平6−99809号公報)。
Recently, as a method of solving these problems by making use of the characteristics of the coating and sintering method, a solution containing an organometallic compound having at least one metal-sulfur bond therein is applied on a substrate, and an oxidizing atmosphere Among them, it has been proposed to thermally decompose the organometallic compound to form a metal sulfide thin film (Japanese Patent Publication No. 6-99809).

【0007】[0007]

【発明が解決しようとする課題】現在、硫化カドミウム
膜を薄膜化し、硫化カドミウム膜の光吸収端を従来の4
00nmからさらに短波長域にまで広げることにより、
太陽光スペクトルの300nm〜400nm付近の光を
透過させ、この波長領域の光を発電に寄与させる研究が
なされているが、そのためには硫化カドミウム膜の厚み
を少なくとも100μm以下にする必要がある。しか
し、安定した膜厚および特性の硫化カドミウム膜を得る
ためには幾つかの課題が残されている。
At present, the cadmium sulfide film is made thinner, and the light absorption edge of the cadmium sulfide film is set to the conventional value.
By expanding from 00 nm to a shorter wavelength range,
Research has been made to transmit light in the vicinity of 300 nm to 400 nm of the solar spectrum and contribute light in this wavelength region to power generation. For that purpose, the thickness of the cadmium sulfide film must be at least 100 μm or less. However, some problems remain to obtain a cadmium sulfide film having a stable film thickness and characteristics.

【0008】その課題の一つとして、硫化カドミウム膜
の形成時に膜中および膜表面に取り込まれるカーボン等
の不純物の除去が挙げられる。硫化カドミウム膜の形成
時の温度が高温になった場合、膜中および膜表面にカー
ボン等の不純物が取り込まれてしまう。このような不純
物は硫化カドミウム膜の結晶性を悪化させ、太陽電池素
子としての特性を低下させるものである。
One of the problems is removal of impurities such as carbon taken in the film and on the film surface when the cadmium sulfide film is formed. When the temperature at the time of forming the cadmium sulfide film becomes high, impurities such as carbon are taken into the film and into the film surface. Such impurities deteriorate the crystallinity of the cadmium sulfide film and deteriorate the characteristics as a solar cell element.

【0009】本発明はこのような従来の課題を解決する
ものであり、硫化カドミウム膜中および膜表面に取り込
まれる不純物を取り除き、膜の結晶性を改質させること
により、高い変換効率の太陽電池素子を安定して生産す
ることを目的とするものである。
The present invention solves such a conventional problem, and removes impurities taken into the cadmium sulfide film and into the film surface to modify the crystallinity of the film, thereby providing a high conversion efficiency solar cell. The purpose is to stably produce the element.

【0010】[0010]

【課題を解決するための手段】上記の課題を解決するた
めに本発明の化合物半導体太陽電池の形成方法は、基板
上に硫化カドミウム膜を形成した後に熱処理を行うもの
である。上記形成方法によって、硫化カドミウム膜中お
よび膜表面に取り込まれた不純物を除去し、結晶性の良
い膜が得られ、高い変換効率の化合物半導体太陽電池を
得ることができる。さらにこの加熱処理の条件を、35
0℃以上550℃以下の酸素を含むガスもしくは大気中
で、熱処理時間を5分以上25分以下とすることによ
り、より高い変換効率の化合物半導体太陽電池を得るこ
とができる。
In order to solve the above-mentioned problems, a method of forming a compound semiconductor solar cell according to the present invention is to perform a heat treatment after forming a cadmium sulfide film on a substrate. By the above formation method, impurities taken in the cadmium sulfide film and on the film surface are removed, a film having good crystallinity is obtained, and a compound semiconductor solar cell with high conversion efficiency can be obtained. Further, the conditions of this heat treatment were changed to 35
A compound semiconductor solar cell with higher conversion efficiency can be obtained by setting the heat treatment time in a gas containing oxygen at 0 ° C. or higher and 550 ° C. or lower or in the air for 5 minutes to 25 minutes.

【0011】[0011]

【発明の実施の形態】本発明の請求項1に記載の発明
は、基板上に硫化カドミウム膜を形成した後に熱処理を
行う化合物半導体太陽電池の製造方法である。これによ
り、硫化カドミウム膜中および表面の不純物を除去する
ことができ、膜の結晶性を良質にし、透過性の良い、緻
密な硫化カドミウム膜を得ることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The first aspect of the present invention is a method for manufacturing a compound semiconductor solar cell, in which a cadmium sulfide film is formed on a substrate and then heat-treated. This makes it possible to remove impurities in and on the surface of the cadmium sulfide film, improve the crystallinity of the film, and obtain a dense cadmium sulfide film with good permeability.

【0012】請求項2に記載の発明は、硫化カドミウム
膜を硫黄およびカドミウムを少なくとも一つ以上含む有
機金属化合物の熱分解によって形成するものである。こ
の方法により形成される硫化カドミウム膜は特に薄膜で
あるため不純物による影響を受けやすく、熱処理を行い
不純物を取り除くことによる効果が大きい。
According to a second aspect of the present invention, the cadmium sulfide film is formed by thermal decomposition of an organometallic compound containing at least one of sulfur and cadmium. Since the cadmium sulfide film formed by this method is particularly thin, it is easily affected by impurities, and the effect of removing the impurities by heat treatment is great.

【0013】請求項3に記載の発明は、熱処理の温度を
350℃以上550℃以下とするものである。350℃
以下では不純物の除去が不十分であるため熱処理の効果
が小さく、また、550℃以上では硫化カドミウム膜に
影響を及ぼし特性が低下する。さらに好ましくは450
℃前後であり、最大の効果が得られる。
According to a third aspect of the present invention, the temperature of the heat treatment is set to 350 ° C. or more and 550 ° C. or less. 350 ° C
In the following, the effect of the heat treatment is small due to insufficient removal of impurities, and at 550 ° C. or higher, the cadmium sulfide film is affected and the characteristics are deteriorated. More preferably 450
° C and the maximum effect is obtained.

【0014】請求項4に記載の発明は、熱処理の時間を
5分以上25分以下とするものである。5分以下では不
純物の除去が不十分であるため熱処理の効果が小さく、
また、25分以上では硫化カドミウム膜に影響を及ぼし
特性が低下する。さらに好ましくは10分前後であり、
最大の効果が得られる。
According to a fourth aspect of the present invention, the time of the heat treatment is set to 5 minutes or more and 25 minutes or less. If the time is less than 5 minutes, the effect of heat treatment is small because the removal of impurities is insufficient,
On the other hand, if the time is longer than 25 minutes, the cadmium sulfide film is affected and the characteristics are deteriorated. More preferably around 10 minutes,
The maximum effect is obtained.

【0015】請求項5に記載の発明は、熱処理の雰囲気
を少なくとも酸素を含むガスあるいは大気とするもので
あり、酸素を含まないガス中で熱処理を行っても不純物
の除去が行われ難く効果は小さい。また、熱処理の雰囲
気中に酸素を含むことにより、硫化カドミウム中の酸素
量が増加し、太陽電池素子としての特性が向上する。
According to a fifth aspect of the present invention, the atmosphere for the heat treatment is at least a gas containing oxygen or the atmosphere, and even if the heat treatment is performed in a gas containing no oxygen, the effect that impurities are not easily removed is reduced. small. In addition, when oxygen is included in the atmosphere of the heat treatment, the amount of oxygen in cadmium sulfide increases, and the characteristics of the solar cell element improve.

【0016】請求項6に記載の発明は、ガラス基板上に
透明導電膜と硫化カドミウム膜とp型半導体を順次形成
したpn接合を有する化合物半導体太陽電池であり、硫
化カドミウム膜は形成した後、熱処理をしたものであ
る。熱処理し不純物を除去した硫化カドミウム膜を用い
ることにより、高変換効率の太陽電池を得ることができ
る。
A sixth aspect of the present invention is a compound semiconductor solar cell having a pn junction in which a transparent conductive film, a cadmium sulfide film, and a p-type semiconductor are sequentially formed on a glass substrate. It has been heat-treated. By using a cadmium sulfide film from which impurities are removed by heat treatment, a solar cell with high conversion efficiency can be obtained.

【0017】請求項7に記載の発明は、熱処理後の硫化
カドミウム膜の膜厚が50μm以上100μm以下であ
る。太陽電池を作製した際、膜厚が50μm以下では硫
化カドミウム膜にピンホールが発生し、太陽電池を作製
した場合に出力電圧とFFが低下し、また100μm以
上では硫化カドミウム膜の光線透過率が低下するため、
太陽電池を作製した場合に出力電流が低下してしまう。
このため熱処理の効果が得られるのは50μm以上10
0μm以下の膜厚である。
According to a seventh aspect of the present invention, the thickness of the cadmium sulfide film after the heat treatment is 50 μm or more and 100 μm or less. When a solar cell is manufactured, when the film thickness is 50 μm or less, pinholes are generated in the cadmium sulfide film, and when the solar cell is manufactured, the output voltage and the FF are reduced. To decrease,
When a solar cell is manufactured, the output current decreases.
For this reason, the effect of the heat treatment is obtained only for 50 μm or more.
The thickness is 0 μm or less.

【0018】請求項8に記載の発明は、p型半導体をテ
ルル化カドミウムとするものであり、高い変換効率の化
合物半導体太陽電池を作製できる。
According to the invention described in claim 8, the p-type semiconductor is cadmium telluride, and a compound semiconductor solar cell having high conversion efficiency can be manufactured.

【0019】以上のように、本発明を実施することによ
り、硫化カドミウム膜中および膜表面に取り込まれた不
純物量が減少し、硫化カドミウム膜の結晶性が改質さ
れ、高い変換効率の太陽電池素子を安定して生産するこ
とが可能となる。
As described above, by implementing the present invention, the amount of impurities taken into the cadmium sulfide film and on the film surface is reduced, the crystallinity of the cadmium sulfide film is modified, and a solar cell with high conversion efficiency is obtained. The device can be stably produced.

【0020】[0020]

【実施例】以下、本発明の実施例について、図面を参照
しながら説明する。 (実施例1)有機金属化合物のジエチルジチオカルバミ
ン酸カドミウムをプロピレングリコール溶媒に、1.7
5モル/リットルの割合で溶解させてペ−ストを調合し
た。前記ペースをスクリーン印刷法を用いて、ガラス基
板上に0.5g/cm2で均一に塗布し、塗布基板を1
20℃で2時間乾燥させ、溶媒を揮発させて有機金属化
合物塗布基板を作成した。薄膜形成用基板として透明導
電膜である200μmのITO膜を形成した1.1mm
厚のコーニング社製♯7059ガラスを大気中で予め4
50℃に加熱し、有機金属化合物塗布基板と並行に向き
合うように2.2mmの間隔で配置する。この有機金属
化合物塗布基板は、加熱された薄膜形成用基板〜の熱伝
導によって、約370℃まで温度が上昇する。この温度
状態を約23秒保持することにより、塗布した有機金属
化合物は全て昇華もしくは蒸発し、膜形成用基板上に膜
厚80μmの均一な硫化カドミウム膜が得られた。
Embodiments of the present invention will be described below with reference to the drawings. Example 1 Cadmium diethyldithiocarbamate as an organometallic compound was added to a propylene glycol solvent at 1.7.
A paste was prepared by dissolving at a rate of 5 mol / l. The above-mentioned pace was uniformly applied on a glass substrate at a rate of 0.5 g / cm 2 by a screen printing method.
After drying at 20 ° C. for 2 hours, the solvent was volatilized to prepare an organometallic compound-coated substrate. 1.1 mm with a 200 μm ITO film as a transparent conductive film formed as a thin film forming substrate
Thick Corning's 7059 glass is pre-
It is heated to 50 ° C. and arranged at an interval of 2.2 mm so as to face the organometallic compound-coated substrate in parallel. The temperature of the organometallic compound-coated substrate rises to about 370 ° C. due to heat conduction from the heated thin film forming substrate to the substrate. By maintaining this temperature state for about 23 seconds, all of the applied organometallic compound sublimated or evaporated, and a uniform cadmium sulfide film having a thickness of 80 μm was obtained on the film-forming substrate.

【0021】得られた硫化カドミウム膜を450℃に設
定した連続ベルト炉に入れ、約10分の熱処理を行っ
た。熱処理後の硫化カドミウム膜は78μmと膜厚が若
干薄くなり、熱処理後では重量にも若干の減少が見られ
た。
The obtained cadmium sulfide film was placed in a continuous belt furnace set at 450 ° C., and heat-treated for about 10 minutes. The thickness of the cadmium sulfide film after the heat treatment was slightly reduced to 78 μm, and a slight decrease in the weight was observed after the heat treatment.

【0022】また、上記と同様の方法で作成した有機金
属化合物塗布基板と薄膜形成用基板を平行に向き合うよ
うに2.2mmの間隔で配置し、薄膜形成用基板のピー
ク温度が450℃、有機金属化合物塗布基板のピーク温
度が370℃以下となるような温度プロファイルに設定
した連続ベルト炉に投入する。600mm/分の速度で
約8分間加熱すると、塗布した有機金属化合物は全て昇
華もしくは蒸発し、膜形成用基板上に膜厚83μm均一
な硫化カドミウム膜が形成された。
The substrate coated with the organometallic compound and the substrate for forming a thin film formed in the same manner as described above are arranged at an interval of 2.2 mm so as to face in parallel, and the peak temperature of the substrate for forming the thin film is 450 ° C. The substrate is put into a continuous belt furnace set to a temperature profile such that the peak temperature of the metal compound coated substrate is 370 ° C. or lower. When heated at a rate of 600 mm / min for about 8 minutes, all of the applied organometallic compound sublimated or evaporated, and a cadmium sulfide film having a uniform thickness of 83 μm was formed on the film-forming substrate.

【0023】得られた硫化カドミウム膜を450℃に設
定した連続ベルト炉に入れ、約10分の熱処理を行っ
た。熱処理の雰囲気は大気中とした。熱処理後の硫化カ
ドミウム膜は78μmと膜厚が若干薄くなり、熱処理後
では重量にも若干の減少が見られた。
The obtained cadmium sulfide film was placed in a continuous belt furnace set at 450 ° C. and subjected to a heat treatment for about 10 minutes. The heat treatment was performed in the atmosphere. The thickness of the cadmium sulfide film after the heat treatment was slightly reduced to 78 μm, and a slight decrease in the weight was observed after the heat treatment.

【0024】これらの硫化カドミウム膜表面のXPS組
成を(表1)に示す。
Table 1 shows the XPS composition of the cadmium sulfide film surface.

【0025】[0025]

【表1】 [Table 1]

【0026】(表1)より、熱処理を行った膜は、膜中
に含まれるカーボン量が減少していることがわかる。ま
た、熱処理を行った膜は酸素が増加し、カドミウムと硫
黄の比率が1対1に近い割合に変化している。これに対
して熱処理を行っていない膜は硫黄がカドミウムよりも
多く含まれている。走査電子顕微鏡(SEM)による表
面観察でも、熱処理をした膜は熱処理をしない膜に比
べ、グレンサイズが若干大きく成長していた。
Table 1 shows that the heat-treated film has a reduced amount of carbon contained in the film. Further, in the film subjected to the heat treatment, oxygen increases and the ratio of cadmium to sulfur changes to a ratio close to 1: 1. On the other hand, the film not subjected to the heat treatment contains more sulfur than cadmium. Surface observation with a scanning electron microscope (SEM) also revealed that the heat-treated film grew slightly larger in grain size than the film without heat treatment.

【0027】このことにより、硫化カドミウム膜に対し
て熱処理を行うことは特性低下の原因となるカーボンの
除去に有効であり、結晶性を良質なものに変化させる効
果がある。
Thus, performing a heat treatment on the cadmium sulfide film is effective for removing carbon which causes a deterioration in characteristics, and has an effect of changing the crystallinity to a high quality.

【0028】上記の方法で作製した硫化カドミウム膜上
にテルル化カドミウム膜を作製し、硫化カドミウム/テ
ルル化カドミウム構造の化合物半導体太陽電池を作製し
た。図1に試作した太陽電池の構造断面図を示す。図に
おいて、ガラス基板1に形成された透明導電膜であるI
TO膜2上に硫化カドミウム膜3が形成されている。こ
の硫化カドミウム膜3上に近接昇華法によりテルル化カ
ドミウム膜4を形成した。テルル化カドミウム膜は下記
の方法により作製した。
A cadmium telluride film was formed on the cadmium sulfide film prepared by the above method, and a compound semiconductor solar cell having a cadmium sulfide / cadmium telluride structure was prepared. FIG. 1 shows a cross-sectional view of the structure of the prototype solar cell. In the figure, I is a transparent conductive film formed on a glass substrate 1.
A cadmium sulfide film 3 is formed on the TO film 2. A cadmium telluride film 4 was formed on the cadmium sulfide film 3 by proximity sublimation. The cadmium telluride film was produced by the following method.

【0029】半導体材料であるテルル化カドミウムを基
板に塗布し、これを上記方法により硫化カドミウムが形
成された薄膜形成用基板と平行に向き合うように2.2
mmの間隔で配置し、石英管内に配置する。石英管内に
不活性ガスを導入しながら、基板温度を500℃、半導
体材料温度を570℃に保持し、60秒間製膜すること
によってテルル化カドミウム膜4を形成した。
Cadmium telluride, which is a semiconductor material, is applied to a substrate, and is applied to a thin film forming substrate on which cadmium sulfide is formed by the above-described method.
mm and are placed in a quartz tube. The cadmium telluride film 4 was formed by forming a film for 60 seconds while maintaining the substrate temperature at 500 ° C. and the semiconductor material temperature at 570 ° C. while introducing an inert gas into the quartz tube.

【0030】つぎに、テルル化カドミウム膜4上に炭素
粉末と樹脂の有機溶媒溶液からなる増粘剤とを練合して
得られたカーボンペーストをスクリーン印刷法により塗
布し、乾燥後焼き付けることによりカーボン膜5を形成
する。この後、銀とインジウムとの混合粉末と樹脂の有
機溶媒溶液からなる増粘剤を練合して得られたペースト
をスクリーン印刷法により硫化カドミウム膜3とカーボ
ン層5上に塗布し、乾燥、焼付けを行いAgIn電極6
とし太陽電池を作製し、その特性を評価した。評価結果
を(表2)に示す。
Next, a carbon paste obtained by kneading a carbon powder and a thickener comprising an organic solvent solution of a resin on the cadmium telluride film 4 is applied by a screen printing method, dried and baked. The carbon film 5 is formed. Thereafter, a paste obtained by kneading a thickener comprising a mixed powder of silver and indium and an organic solvent solution of a resin is applied onto the cadmium sulfide film 3 and the carbon layer 5 by a screen printing method, and dried. AgIn electrode 6 after baking
Then, a solar cell was manufactured and its characteristics were evaluated. The evaluation results are shown in (Table 2).

【0031】[0031]

【表2】 [Table 2]

【0032】(表2)より、熱処理を行った硫化カドミ
ウム膜を用いた太陽電池のほうが変換効率が高く、太陽
電池特性が優れていた。このことから、硫化カドミウム
膜に対して熱処理を行うことにより、太陽電池の特性を
向上することができた。 (実施例2)実施例1と同様の方法で、ホットプレート
を用い、膜厚約80μmの均一な硫化カドミウム膜を形
成し、熱処理を行う際の連続ベルト炉の設定温度を30
0〜600℃の間、50℃間隔で温度を変化させ、約1
0分間の加熱処理を行った。
As shown in Table 2, the solar cell using the heat-treated cadmium sulfide film had higher conversion efficiency and better solar cell characteristics. From this, it was possible to improve the characteristics of the solar cell by performing the heat treatment on the cadmium sulfide film. (Example 2) In the same manner as in Example 1, a uniform cadmium sulfide film having a thickness of about 80 µm was formed using a hot plate, and the set temperature of the continuous belt furnace at the time of heat treatment was set at 30.
The temperature is changed at 50 ° C intervals between 0 and 600 ° C,
Heat treatment was performed for 0 minutes.

【0033】上記の方法で作製した硫化カドミウム膜を
用いて実施例1と同様にして硫化カドミウム/テルル化
カドミウム構造の化合物半導体太陽電池を作製し、その
特性を評価した。評価結果を(表3)に示す。
A compound semiconductor solar cell having a cadmium sulfide / cadmium telluride structure was produced in the same manner as in Example 1 using the cadmium sulfide film produced by the above method, and its characteristics were evaluated. The evaluation results are shown in (Table 3).

【0034】[0034]

【表3】 [Table 3]

【0035】(表3)より、熱処理温度が350℃より
低温ではほとんど効果がなく、熱処理を行わないものと
の差はほとんどなかった。また、550℃より高温にな
ると特性が低下した。これは透明導電膜が高熱でダメー
ジを受け、面抵抗が増加したために、曲線因子(FF)
の低下を引き起こしたと考えられる。また、硫化カドミ
ウム膜自身の面抵抗も増加していた。従って熱処理温度
は、350〜550℃が好ましく、より好ましくは45
0℃前後である。 (実施例3)実施例1と同様の方法で、ホットプレート
を用い、膜厚約80μmの均一な硫化カドミウム膜を形
成し、450℃下で熱処理を行う際の連続ベルト炉のベ
ルト速度を変化させ、炉内通過時間を5〜45分の間で
熱処理を行った。
As shown in Table 3, there was almost no effect when the heat treatment temperature was lower than 350 ° C., and there was almost no difference from the case where no heat treatment was performed. Further, when the temperature was higher than 550 ° C., the characteristics were deteriorated. This is because the transparent conductive film was damaged by high heat, and the sheet resistance increased, so the fill factor (FF)
Is thought to have caused a decrease in Further, the sheet resistance of the cadmium sulfide film itself also increased. Therefore, the heat treatment temperature is preferably 350 to 550 ° C., more preferably 45 to 550 ° C.
It is around 0 ° C. (Example 3) In the same manner as in Example 1, a uniform cadmium sulfide film having a thickness of about 80 µm was formed using a hot plate, and the belt speed of a continuous belt furnace when heat treatment was performed at 450 ° C was changed. Then, the heat treatment was performed within a furnace passage time of 5 to 45 minutes.

【0036】上記の方法で作製したの硫化カドミウム膜
を用いて実施例1と同様にして硫化カドミウム/テルル
化カドミウム構造の化合物半導体太陽電池を作製し、そ
の特性を評価した。評価結果を(表4)に示す。
A compound semiconductor solar cell having a cadmium sulfide / cadmium telluride structure was produced in the same manner as in Example 1 using the cadmium sulfide film produced by the above method, and its characteristics were evaluated. The evaluation results are shown in (Table 4).

【0037】[0037]

【表4】 [Table 4]

【0038】(表4)より、熱処理時間が5分以下であ
るとほとんど効果がなく、太陽電池の特性を向上させる
には不十分であった。また、熱処理時間が25分以上に
なると特性が低下した。これは透明導電膜および硫化カ
ドミウム膜自身が、長時間の熱処理でダメージを受け、
面抵抗が増加し、曲線因子(FF)の低下を引き起こし
たためと考えられる。従って熱処理時間は、5〜25分
が好ましく、より好ましくは10分前後である。 (実施例4)実施例1と同様の方法で、ホットプレート
を用い、膜厚約80μmの均一な硫化カドミウム膜を形
成し、連続ベルト炉の内部雰囲気を酸素、窒素、大気の
3種類の条件下で熱処理を行った。熱処理温度は450
℃、熱処理時間は10分とした。
As shown in Table 4, when the heat treatment time was 5 minutes or less, there was almost no effect, and it was insufficient to improve the characteristics of the solar cell. Further, when the heat treatment time was 25 minutes or more, the characteristics were deteriorated. This is because the transparent conductive film and the cadmium sulfide film themselves are damaged by long-term heat treatment,
It is considered that the sheet resistance increased and caused the fill factor (FF) to decrease. Therefore, the heat treatment time is preferably from 5 to 25 minutes, more preferably around 10 minutes. (Example 4) In the same manner as in Example 1, a uniform cadmium sulfide film having a film thickness of about 80 μm was formed using a hot plate, and the internal atmosphere of the continuous belt furnace was subjected to three conditions of oxygen, nitrogen and air. Heat treatment was performed below. Heat treatment temperature is 450
° C and the heat treatment time were 10 minutes.

【0039】上記の方法で作製したの硫化カドミウム膜
を用いて実施例1と同様にして硫化カドミウム/テルル
化カドミウム構造の化合物半導体太陽電池を作製し、そ
の特性を評価した。評価結果を(表5)に示す。
A compound semiconductor solar cell having a cadmium sulfide / cadmium telluride structure was produced in the same manner as in Example 1 using the cadmium sulfide film produced by the above method, and its characteristics were evaluated. The evaluation results are shown in (Table 5).

【0040】[0040]

【表5】 [Table 5]

【0041】(表5)より、内部雰囲気が窒素の場合は
太陽電池特性向上の効果はなく、酸素および大気の場合
には太陽電池特性が向上した。(表1)に示す熱処理後
の硫化カドミウム膜中の酸素量が増加していたことから
も、高い特性を得るためには硫化カドミウム膜中に酸素
が多く含まれていることが望ましいと考えられる。従っ
て、熱処理の雰囲気は少なくとも酸素を含むガスあるい
は大気中で行うことが好ましい。
As shown in Table 5, when the internal atmosphere was nitrogen, there was no effect of improving the solar cell characteristics, and when oxygen and air were used, the solar cell characteristics were improved. From the fact that the amount of oxygen in the cadmium sulfide film after the heat treatment shown in Table 1 was increased, it is considered that it is desirable that the cadmium sulfide film contain a large amount of oxygen in order to obtain high characteristics. . Therefore, the heat treatment is preferably performed in a gas containing at least oxygen or in the air.

【0042】[0042]

【発明の効果】以上のように本発明は、基板上に硫化カ
ドミウム膜を形成した後、熱処理を行うことにより、膜
中および膜表面に取り込まれた不純物を減少させ、結晶
性を良質化することができ、これを用いて化合物半導体
太陽電池を作製すると、変換効率の高い、優れた太陽電
池を安定して生産することができる。
As described above, according to the present invention, by forming a cadmium sulfide film on a substrate and then performing a heat treatment, impurities incorporated in the film and on the film surface are reduced, and the crystallinity is improved. When a compound semiconductor solar cell is manufactured using this, an excellent solar cell with high conversion efficiency can be stably produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における化合物半導体太陽電池
の構成を示す断面図
FIG. 1 is a cross-sectional view illustrating a configuration of a compound semiconductor solar cell according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 透明導電膜 3 硫化カドミウム膜 4 テルル化カドミウム膜 5 カーボン膜 6 AgIn電極 Reference Signs List 1 glass substrate 2 transparent conductive film 3 cadmium sulfide film 4 cadmium telluride film 5 carbon film 6 AgIn electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 日比野 武司 大阪府守口市松下町1番1号 松下電池工 業株式会社内 (72)発明者 室園 幹夫 大阪府守口市松下町1番1号 松下電池工 業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takeshi Hibino 1-1-1, Matsushita-cho, Moriguchi-shi, Osaka Inside Matsushita Battery Industry Co., Ltd. (72) Mikio Murono 1-1-1, Matsushita-cho, Moriguchi-shi, Osaka Matsushita Battery Industrial Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】基板上に形成されたpn接合を有する化合
物半導体太陽電池の製造方法において、前記基板上に硫
化カドミウム膜層を形成した後、熱処理する工程を含む
ことを特徴とした化合物半導体太陽電池の製造方法。
1. A method of manufacturing a compound semiconductor solar cell having a pn junction formed on a substrate, comprising a step of forming a cadmium sulfide film layer on the substrate and then performing a heat treatment. Battery manufacturing method.
【請求項2】硫化カドミウム膜が、硫黄およびカドミウ
ムを少なくとも一つ以上含む有機金属化合物の熱分解に
よって形成されたものである請求項1記載の化合物半導
体太陽電池の製造方法。
2. The method according to claim 1, wherein the cadmium sulfide film is formed by thermal decomposition of an organometallic compound containing at least one of sulfur and cadmium.
【請求項3】熱処理の温度が、350℃以上550℃以
下である請求項1記載の化合物半導体太陽電池の製造方
法。
3. The method for producing a compound semiconductor solar cell according to claim 1, wherein the temperature of the heat treatment is 350 ° C. or more and 550 ° C. or less.
【請求項4】熱処理の時間が、5分以上25分以下であ
る請求項1記載の化合物半導体太陽電池の製造方法。
4. The method for manufacturing a compound semiconductor solar cell according to claim 1, wherein the heat treatment time is 5 minutes or more and 25 minutes or less.
【請求項5】熱処理の雰囲気が、酸素を含むガスもしく
は大気である請求項1に記載の化合物半導体太陽電池の
製造方法。
5. The method according to claim 1, wherein the atmosphere for the heat treatment is a gas containing oxygen or the atmosphere.
【請求項6】ガラス基板上に透明導電膜と硫化カドミウ
ム膜とp型半導体を順次形成したpn接合を有する化合
物半導体太陽電池において、硫化カドミウム膜は形成し
た後、熱処理をしたものである化合物半導体太陽電池。
6. A compound semiconductor solar cell having a pn junction in which a transparent conductive film, a cadmium sulfide film and a p-type semiconductor are sequentially formed on a glass substrate, wherein the cadmium sulfide film is formed and then heat-treated. Solar cells.
【請求項7】熱処理後の硫化カドミウム膜の膜厚が50
μm以上100μm以下である請求項6記載の化合物半
導体太陽電池。
7. A cadmium sulfide film having a thickness of 50 after the heat treatment.
7. The compound semiconductor solar cell according to claim 6, having a thickness of not less than μm and not more than 100 μm.
【請求項8】前記p型半導体がテルル化カドミウムであ
る請求項6記載の化合物半導体太陽電池。
8. The compound semiconductor solar cell according to claim 6, wherein said p-type semiconductor is cadmium telluride.
JP9090638A 1997-04-09 1997-04-09 Compound semiconductor solar cell, and manufacture Pending JPH10284744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9090638A JPH10284744A (en) 1997-04-09 1997-04-09 Compound semiconductor solar cell, and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9090638A JPH10284744A (en) 1997-04-09 1997-04-09 Compound semiconductor solar cell, and manufacture

Publications (1)

Publication Number Publication Date
JPH10284744A true JPH10284744A (en) 1998-10-23

Family

ID=14004051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9090638A Pending JPH10284744A (en) 1997-04-09 1997-04-09 Compound semiconductor solar cell, and manufacture

Country Status (1)

Country Link
JP (1) JPH10284744A (en)

Similar Documents

Publication Publication Date Title
JP3221089B2 (en) Method of manufacturing pnCdTe / CdS thin film solar cell
US5920798A (en) Method of preparing a semiconductor layer for an optical transforming device
JP3681870B2 (en) Method for producing compound semiconductor film and solar cell
KR101747395B1 (en) Molybdenum substrates for cigs photovoltaic devices
KR101583026B1 (en) A method for preparing CZTS thin film for solar cell
CN112289932A (en) Perovskite thin film and preparation method and application thereof
JP2001274176A (en) Method of manufacturing compound semiconductor film
KR20150051151A (en) A method for preparing CZTS thin film for solar cell
JPH10284744A (en) Compound semiconductor solar cell, and manufacture
JP2000174306A (en) Manufacture of compound semiconductor thin film
JPH104205A (en) Compound semiconductor solar battery and manufacture thereof
JPH104206A (en) Compound semiconductor thin film forming method and optoelectric transducer using the thin film
KR101709021B1 (en) Manufacturing method of photoelectrode for electrochemical hydrogen production
JPH0974213A (en) Manufacture of compound semiconductor thin film
JPH10303445A (en) Manufacture of cdte film and solar battery using the same
JP2726323B2 (en) Thin-film solar cell fabrication method
Kim et al. Photoactive Layer Formation with Oven Annealing for a Carbon Electrode Perovskite Solar Cell
JP2000357810A (en) Manufacture of cadmium telluride film and solar battery
JPH10183374A (en) Production of semiconductor layer for photoelectric conversion element
JPH11195658A (en) Method and device for manufacturing cadmium sulfide film and solar battery using the same
JPH1174551A (en) Production of sulfide semiconductor film and solar cell
JP3136764B2 (en) Method for producing chalcopyrite thin film
JPH11121778A (en) Manufacture of compound semiconductor film and solar cell
JPH1187748A (en) Manufacture of compound semiconductor film and solar cell
JP4243002B2 (en) Semiconductor thin film and method of forming the same, amorphous Si solar cell using semiconductor thin film