JPH10280101A - Heat resisting and wear resisting member and its production - Google Patents

Heat resisting and wear resisting member and its production

Info

Publication number
JPH10280101A
JPH10280101A JP9086584A JP8658497A JPH10280101A JP H10280101 A JPH10280101 A JP H10280101A JP 9086584 A JP9086584 A JP 9086584A JP 8658497 A JP8658497 A JP 8658497A JP H10280101 A JPH10280101 A JP H10280101A
Authority
JP
Japan
Prior art keywords
steel
hardness
carbides
speed steel
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9086584A
Other languages
Japanese (ja)
Inventor
Akira Ito
彰 伊藤
Masatoshi Ayagaki
昌俊 綾垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9086584A priority Critical patent/JPH10280101A/en
Publication of JPH10280101A publication Critical patent/JPH10280101A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a material excellent in heat resistance and wear resistance by providing a two-layer structure where a HIP treated layer of an alloy, consisting of a high speed steel of a specific composition and one or more kinds among the carbides, nitrides, oxides, and borides of metals, is formed on a base material composed of carbon steel. SOLUTION: Powders of one or more kinds among the carbides, nitrides, oxides, and borides of metals, in the amount of 5-45 vol.% in total, and alloyed, by mechanical alloying, with a powder of a high speed steel having a composition consisting of, by weight, 0.9-2.5% C, 0.5-1.5% S, 0.3-2.0% Mn, 0.5-12.0% Cr, 3.0-10.0% Mo, 0.8-8.0% V, 1.0-10.0% W, and the balance Fe. Then, HIP treatment of the resultant alloy is applied to the surface of a base material composed of carbon steel at 1000-1200 deg.C for 2-5 hr under >=100 MPa pressure, by which a two-layer structure is formed. By this procedure, the structure, where the carbides, nitride, etc., of metals, hard and chemically stable, are finely dispersed in high speed steel, is formed, and hardness can be obtained without causing deterioration in toughness.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、製鉄分野などにお
いて、例えば線材工場等で使用されているガイドローラ
ーなどのように高温材料と接触する耐熱耐摩耗部材及び
その製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant and wear-resistant member which comes into contact with a high-temperature material such as a guide roller used in, for example, a wire rod factory in the field of steel making, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】耐熱耐摩耗部材には、高硬度が要求さ
れ、かつ熱衝撃や機械的衝撃に十分耐え得る強度、靱性
が要求されるため、従来、工具鋼や高速度鋼などが用い
られて来た。これらの部材は、通常は鋳造にて製造され
るがこれらは鉄を主成分とするマトリックスに溶湯から
熱平衡則に従って晶出または析出した合金炭化物により
構成される組織となっている。また粉末を加圧、焼結し
た粉末冶金法もその製造に利用されてきているが、前者
に比して結晶粒は小さいものの同様の組織構成となる。
2. Description of the Related Art Since heat-resistant and wear-resistant members are required to have high hardness and to have sufficient strength and toughness to withstand thermal shocks and mechanical shocks, tool steels and high-speed steels are conventionally used. I came. These members are usually manufactured by casting, but they have a structure composed of an alloyed carbide crystallized or precipitated from a molten metal in a matrix containing iron as a main component in accordance with the thermal equilibrium law. Powder metallurgy, in which powder is pressed and sintered, has also been used for its production. However, although the crystal grains are smaller than the former, they have the same structure.

【0003】[0003]

【発明が解決しようとする課題】従来の製法、例えば鋳
造や粉末冶金によるものは、合金元素と製造時の熱平衡
によって決まる炭化物の晶出、析出と、焼入により硬化
したマトリックスによって構成される組織となる。硬度
向上に極めて有効な炭化物以外の硬質粒子の析出は困難
であった。このため硬度を向上させるには多量の炭化物
及び炭化物生成合金元素を混入する必要があるが、多量
に投入した場合、炭化物が粗大化し耐衝撃性が低下する
ため、硬度向上には限界があった。
Conventional manufacturing methods, for example, by casting or powder metallurgy, have a structure composed of a matrix which is hardened by crystallization and precipitation of carbides determined by alloy elements and thermal equilibrium at the time of manufacturing, and hardening. Becomes Precipitation of hard particles other than carbide, which is extremely effective for improving hardness, was difficult. For this reason, in order to improve the hardness, it is necessary to mix a large amount of carbides and carbide-forming alloy elements.However, when a large amount is added, the carbides are coarsened and the impact resistance is reduced, so that there is a limit in improving the hardness. .

【0004】[0004]

【課題を解決するための手段】本発明は上記の課題を解
決するために発明されたもので、炭素鋼からなる母材
に、重量%でC:0.9〜2.5%、Si:0.2〜
1.5%、Mn:0.3〜2.0%、Cr:3.5〜1
2.0%、Mo:3.0〜10.0%、V:0.8〜
8.0%、W:1.0〜10.0%、残部Feからなる
ハイスと、1種以上の、金属の炭化物、窒化物、酸化
物、ホウ化物からなる合金のHIP処理層を形成し、2
層構造としたことを特徴とする耐熱耐摩耗部材を供する
ものである。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it has been proposed that carbon: 0.9 to 2.5% by weight, Si: 0.2 ~
1.5%, Mn: 0.3 to 2.0%, Cr: 3.5 to 1
2.0%, Mo: 3.0 to 10.0%, V: 0.8 to
HIP processing layer of 8.0%, W: 1.0 to 10.0%, balance of high-speed steel composed of Fe and one or more alloys composed of metal carbides, nitrides, oxides, and borides. , 2
A heat-resistant and wear-resistant member having a layer structure is provided.

【0005】また、予め重量%で、C:0.9〜2.5
%、Si:0.2〜1.5%、Mn:0.3〜2.0
%、Cr:3.5〜12.0%、Mo:3.0〜10.
0%、V:0.8〜8.0%、W:1.0〜10.0
%、残部Feからなるハイス粉末に合計体積で5〜45
%の金属の炭化物、窒化物、酸化物、ホウ化物のうちの
1種以上の粉末をメカニカルアロイングにより合金化
し、その後、炭素鋼からなる母材の表面へ温度1000
〜1200℃、圧力100MPa以上、2〜5時間のH
IP処理を行い2層構造としたことを特徴とする耐熱耐
摩耗部材の製造方法にある。
Further, C: 0.9 to 2.5% by weight in advance
%, Si: 0.2 to 1.5%, Mn: 0.3 to 2.0
%, Cr: 3.5 to 12.0%, Mo: 3.0 to 10%.
0%, V: 0.8 to 8.0%, W: 1.0 to 10.0
%, 5 to 45 in total volume in high-speed steel powder composed of the balance Fe
% Of a metal carbide, nitride, oxide, or boride is alloyed by mechanical alloying, and then applied to a surface of a carbon steel base material at a temperature of 1000%.
H1200 ° C., pressure 100 MPa or more, H for 2 to 5 hours
A method for producing a heat-resistant and wear-resistant member, wherein the member is subjected to IP processing to form a two-layer structure.

【0006】以下、本発明について詳細に説明する。耐
摩耗性の向上には硬度の向上が極めて有効であることが
知られている。本発明では従来用いられてきたハイス材
に、硬質でかつ化学的に安定な炭化物、窒化物、酸化
物、ホウ化物を微細に分散させた組織を形成させ、靱性
を損なうこと無く、従来法では得られなかった材料硬度
を得ることができる。図1に具体例として金属酸化物で
あるアルミナの混合量に対する硬度の増加を示す。この
傾向は他の炭化物、窒化物、酸化物、ホウ化物でも同様
である。また数種類の硬質化合物を混合しても同様の効
果が得られる。
Hereinafter, the present invention will be described in detail. It is known that improvement in hardness is extremely effective in improving wear resistance. In the present invention, a hard and chemically stable carbide, nitride, oxide, and a boride are finely dispersed in a conventionally used high-speed steel material to form a microstructure, without impairing the toughness. Material hardness that could not be obtained can be obtained. FIG. 1 shows, as a specific example, an increase in hardness with respect to the mixing amount of alumina as a metal oxide. This tendency is the same for other carbides, nitrides, oxides, and borides. Similar effects can be obtained by mixing several types of hard compounds.

【0007】1種以上の金属の炭化物、窒化物、酸化
物、ホウ化物の混合率の合計を体積で5〜45%とした
理由は、混合率が増加するにつれて硬度は増加し、耐摩
耗性の向上が期待できるが、図2にアルミナを用いて例
示したように45%を越えると、いづれの化合物につい
ても強度が低下するため、衝撃による欠損の恐れがあり
好ましくないためである。
The reason that the total mixing ratio of one or more metal carbides, nitrides, oxides, and borides is 5 to 45% by volume is that as the mixing ratio increases, the hardness increases and the wear resistance increases. However, if the content exceeds 45%, as exemplified by using alumina in FIG. 2, the strength of any of the compounds is reduced, and there is a risk of damage due to impact, which is not preferable.

【0008】次に本発明で用いたメカニカルアロイング
法について説明する。メカニカルアロイングは鋼球やセ
ラミックス製のボールによって、図3に示すように、混
合粉末の粉砕、固着を繰り返すことによって異種材料を
原子レベルで合金化することができる。一般に金属化合
物は化学的に安定で、従来の熱平衡則を用いた製造プロ
セスではハイスと合金化できなかったものが、メカニカ
ルアロイング法を用いることによって原子レベルで結合
させることが可能である。
Next, the mechanical alloying method used in the present invention will be described. In mechanical alloying, as shown in FIG. 3, different materials can be alloyed at the atomic level by repeatedly crushing and fixing the mixed powder using steel balls or ceramic balls. Generally, metal compounds are chemically stable, and those that could not be alloyed with high-speed steel by a conventional manufacturing process using the thermal equilibrium law can be bonded at the atomic level by using a mechanical alloying method.

【0009】本発明では従来の鋳造法に変えて粉末冶金
法を用いている。一般に粉末を用いた場合、鋳造材に比
べて高コストとなるので、極力、その使用量を抑えるこ
とが重要である。そこで本発明では実際の使用時に相手
材と接触し耐摩耗性、耐衝撃性が必要な外層にのみ粉末
冶金材料を用い、耐摩耗性の必要が無い母材には安価で
高靱性の炭素鋼を用いた2重構造とすることによってコ
スト低減を実現している。
In the present invention, a powder metallurgy method is used in place of the conventional casting method. Generally, when powder is used, the cost is higher than that of a cast material, so it is important to minimize the amount of powder used. Therefore, in the present invention, powder metallurgical material is used only for the outer layer that needs to have abrasion resistance and impact resistance in contact with the counterpart material during actual use, and a low-cost, high-toughness carbon steel A cost reduction is realized by adopting a double structure using the same.

【0010】また、粉末の焼結にはHIP法を用いてい
るが、これはHIPでは、高温高圧下による粉末の塑性
変形によって粉末間の間隙をつぶすため、通常の焼結助
剤を用いた焼結法に比して、極めて欠陥の少ない強度特
性に優れた材料の製造が可能となる。さらに焼結と同時
に外層材料と母材との境界に原子拡散を生じせしめ冶金
的結合を形成し、強固な密着力を得ることが可能であ
る。
The HIP method is used for sintering the powder. In the HIP, an ordinary sintering aid is used because the gap between the powders is crushed by plastic deformation of the powder under high temperature and pressure. As compared with the sintering method, it is possible to produce a material having few defects and excellent strength characteristics. Further, at the same time as sintering, atomic diffusion is caused at the boundary between the outer layer material and the base material to form a metallurgical bond, so that a strong adhesion can be obtained.

【0011】HIP温度が1000℃未満の場合は焼結
時間が長くなり過ぎコストが増加したり、気孔が残り好
ましくない。また1200℃を越えると、粒子が粗大化
し強度が減少するので上限を1200℃とした。圧力は
100MPa以上であれば気孔を消失せしめるには十分
である。また処理時間は2時間以上で十分密な焼結組織
が得られるが5時間を越えると組織が粗大化するため好
ましくない。
When the HIP temperature is lower than 1000 ° C., the sintering time becomes too long, and the cost increases, and pores remain unpreferably. If the temperature exceeds 1200 ° C., the particles become coarse and the strength decreases, so the upper limit was set to 1200 ° C. A pressure of 100 MPa or more is sufficient to eliminate pores. If the treatment time is 2 hours or more, a sufficiently dense sintered structure can be obtained, but if it exceeds 5 hours, the structure becomes coarse, which is not preferable.

【0012】次に外層に用いるハイス鋼の成分の限定理
由について説明する。 C:0.9〜2.5% Cは焼入性を向上させ、マトリックス硬度を高くし、C
r,Mo,V,Wと高硬度の炭化物を形成し、耐摩耗性
を向上させる。0.9%未満では炭化物量が少なく、硬
度、耐摩耗性の向上は期待できない。また2.5%を越
えると、靱性が低下するため好ましくない。 Si:0.2〜1.5% Siは粉末製造の原料となる溶湯中の酸素と化合し脱酸
効果があり、清浄な粉末を製造するために必要である。
0.2%未満ではその効果がなく、1.5%を越える
と、その効果は変わらないため上限を1.5%とした。
Next, the reasons for limiting the components of the high-speed steel used for the outer layer will be described. C: 0.9 to 2.5% C improves hardenability, increases matrix hardness,
It forms carbides of high hardness with r, Mo, V, W, and improves wear resistance. If it is less than 0.9%, the amount of carbides is small, and improvement in hardness and wear resistance cannot be expected. On the other hand, if it exceeds 2.5%, the toughness is undesirably reduced. Si: 0.2 to 1.5% Si is combined with oxygen in the molten metal as a raw material for powder production, has a deoxidizing effect, and is necessary for producing clean powder.
If it is less than 0.2%, there is no effect, and if it exceeds 1.5%, the effect does not change, so the upper limit is made 1.5%.

【0013】Mn:0.3〜2.0% Mnは粉末製造の原料溶湯中のSを固定し、有害物質の
発生を防止する。また焼入性を高め、マトリックス硬度
の増加に寄与する。0.3%未満ではその効果はなく、
2.0%を越えると、その効果が変わらない。 Cr:3.5〜12.0% Crはマトリックスの焼入性を向上させ、硬度を上げる
とともに、炭化物をつくり全体硬度の向上に寄与する。
3.5%未満ではその効果は無く、12.0%を越える
と炭化物の粗大化による靱性が低下するため、耐衝撃性
が損なわれる。
Mn: 0.3 to 2.0% Mn fixes S in the raw material melt for powder production and prevents generation of harmful substances. It also enhances hardenability and contributes to an increase in matrix hardness. Less than 0.3% has no effect.
If it exceeds 2.0%, the effect does not change. Cr: 3.5 to 12.0% Cr improves the hardenability of the matrix, increases the hardness, and forms carbide to contribute to the improvement of the overall hardness.
If it is less than 3.5%, the effect is not obtained, and if it exceeds 12.0%, the toughness is reduced due to coarsening of the carbide, and the impact resistance is impaired.

【0014】Mo:3.0〜10.0% Moはマトリックスの焼入性を高めるとともに、安定な
炭化物を形成し、全体の硬度向上に寄与し耐摩耗性を向
上する。3.0%未満では効果が無く、10%を越えて
も効果は変わらないため、上限を10.0%とした。 V:0.8〜8.0% Vは炭素と化合し、高硬度の微細なVC炭化物を晶出
し、耐摩耗性向上の効果が高い元素である。0.8%未
満では効果が無く、8.0%を越えると、マトリックス
中の固溶炭化物量が減少するためマトリックス硬度を下
げるので好ましくない。
Mo: 3.0 to 10.0% Mo enhances the hardenability of the matrix, forms a stable carbide, contributes to the improvement of the overall hardness, and improves the wear resistance. If it is less than 3.0%, there is no effect, and if it exceeds 10%, the effect does not change. Therefore, the upper limit is set to 10.0%. V: 0.8 to 8.0% V is an element that combines with carbon to crystallize high-hardness fine VC carbides and has a high effect of improving wear resistance. If it is less than 0.8%, there is no effect, and if it exceeds 8.0%, the amount of solid-dissolved carbide in the matrix is reduced, so that the hardness of the matrix is undesirably lowered.

【0015】W:1.0〜10.0% Wは炭素と化合し高硬度の炭化物を形成し耐摩耗性を高
めるが1.0%未満では効果が無く、10.0%を越え
ると炭化物が粗大化し、靱性低下、耐衝撃性の低下につ
ながり好ましくない。なお、Niについては必須の成分
ではないが、焼入性を向上させ、マトリックス硬度を高
める効果がある。ただし3.0%を越えると残留オース
テナイトが増え、硬度低下を招くので好ましくない。C
oについても必須成分ではないが、炭素の固溶を促進し
マトリックスの焼入性を高め、マトリックス硬度を増加
させる効果がある。しかし10.0%を越えると残留オ
ーステナイト量が増え、マトリックス硬度が低下するの
で好ましくない。
W: 1.0 to 10.0% W combines with carbon to form a carbide of high hardness and enhances wear resistance. However, if it is less than 1.0%, there is no effect, and if it exceeds 10.0%, the carbide is increased. Unfavorably leads to a decrease in toughness and impact resistance. Although Ni is not an essential component, it has an effect of improving hardenability and increasing matrix hardness. However, when the content exceeds 3.0%, retained austenite increases, which causes a decrease in hardness, which is not preferable. C
Although o is not an essential component, it has the effect of promoting solid solution of carbon, increasing the hardenability of the matrix, and increasing the matrix hardness. However, if it exceeds 10.0%, the amount of retained austenite increases and the matrix hardness decreases, which is not preferable.

【0016】[0016]

【実施例】【Example】

実施例1 次に本発明について実施例を挙げて詳細に説明する。外
層には表1に示す成分の高速度鋼に金属酸化物であるア
ルミナを体積比率で10%混合し、SUJ2鋼製のボー
ルを用いたメカニカルアロイングによって16時間の合
金化作業を行った。母材は炭素鋼SS400を用いた。
その後図4に示すように、カプセル中に母材、合金粉末
をセットし、真空脱気後、1100℃、120MPa、
3時間のHIP処理を行い、軟化焼鈍後、粗加工を施し
た。焼き入れは1200℃×10時間で常温まで冷却し
た後、550℃×12時間で3回焼戻した。この時の外
層硬さはビッカース硬度820Hvであった。
Embodiment 1 Next, the present invention will be described in detail with reference to embodiments. For the outer layer, high-speed steel having the components shown in Table 1 was mixed with alumina as a metal oxide at a volume ratio of 10%, and alloying was performed for 16 hours by mechanical alloying using balls made of SUJ2 steel. The base material used was carbon steel SS400.
Thereafter, as shown in FIG. 4, the base material and the alloy powder were set in the capsule, and after deaeration under vacuum, 1100 ° C., 120 MPa,
HIP treatment was performed for 3 hours, and after softening annealing, rough processing was performed. After quenching, it was cooled to room temperature at 1200 ° C. for 10 hours, and then tempered three times at 550 ° C. for 12 hours. The outer layer hardness at this time was Vickers hardness 820 Hv.

【0017】本部材を、鋼材圧延ラインの鋼材ガイドロ
ーラーとして利用した。本部材は相手鋼材の温度が90
0℃以上で、相手材との接触による加熱と、冷却水噴射
による冷却が繰り返され、かつ鋼材との摩擦による摩耗
が生じるため、耐熱耐摩耗性が要求されるものである。
本発明による部材を使用した結果、従来材(鋼クロム鋳
鋼)は400トンの鋼材通過後480μmの摩耗痕が生
じたのに対して、本発明材は140μmの摩耗しか生じ
ず、3倍以上耐摩耗性が向上した。
This member was used as a steel material guide roller for a steel material rolling line. This member has a mating steel temperature of 90
At 0 ° C. or higher, heating by contact with the counterpart material and cooling by spraying cooling water are repeated, and wear due to friction with the steel material occurs, so that heat resistance and wear resistance are required.
As a result of using the member according to the present invention, the conventional material (cast chromium steel) had a wear mark of 480 μm after passing 400 tons of steel material, whereas the material of the present invention generated only 140 μm of wear, and the resistance was more than three times. Abrasion improved.

【0018】[0018]

【表1】 [Table 1]

【0019】実施例2 本実施例では2種類の材料を作製し、熱間での耐摩耗性
を評価した結果について述べる。1種類は表1に示した
ハイス粉末に炭化物TiCを体積で10%混合し、SU
J2鋼製のボールを用いたメカニカルアロイングによっ
て16時間の合金化作業を行った。もう1種は同じく表
1のハイスに窒化物TiNを体積で10%混合し、同様
にSUJ2鋼製のポールを用いたメカニカルアロイング
によって16時間の合金化作業を行った。母材は低合金
炭素鋼SCM440を用いた。その後図5に示すよう
に、カプセル中に母材、合金粉末をセットし、真空脱気
後、1100℃、120MPa、3時間のHIP処理を
行い、軟化焼鈍後、粗加工を施した。焼き入れ、焼戻し
条件は実施例1と同様で、処理後の外層硬さはTiC混
合材でビッカース硬度920Hv、TiN混合材でビッ
カース硬度915Hvであった。
Example 2 In this example, two types of materials were produced, and the results of evaluating the hot wear resistance will be described. One type was prepared by mixing 10% by volume of carbide TiC with the Heiss powder shown in Table 1,
The alloying operation was performed for 16 hours by mechanical alloying using a ball made of J2 steel. For the other type, 10% by volume of nitride TiN was mixed with the high-speed steel shown in Table 1, and alloying was performed for 16 hours by mechanical alloying using a SUJ2 steel pole. As a base material, low alloy carbon steel SCM440 was used. Thereafter, as shown in FIG. 5, a base material and an alloy powder were set in a capsule, and after deaeration under vacuum, HIP treatment was performed at 1100 ° C. and 120 MPa for 3 hours, and after softening annealing, rough processing was performed. The quenching and tempering conditions were the same as in Example 1. The outer layer hardness after the treatment was Vickers hardness 920 Hv for the TiC mixed material and 915 Hv for the TiN mixed material.

【0020】耐摩耗性は熱間摩耗試験にて評価した。リ
ング形状(φ80×10t mm)に加工した本材料を、
相手材リング(S45C鋼)に押しつけながら回転さ
せ、一定回転数後の摩耗量で、耐摩耗性を評価する。試
験中は、試験材の温度を500℃、相手材の温度を85
0℃一定に保った。回転速度は700rpm、押しつけ
荷重は70kgで、10000回転後の摩耗重量を測定
した。試験結果を表2に示す。比較材は金属化合物を混
合しないハイス材料である。表より、10%のTiC、
TiN混合によって比較材に比して顕著な耐摩耗性の向
上が認められた。なお、本実施例ではハイスと硬質化合
物の合金からなる外層と炭素鋼母材を接合した2層構造
としているが、例えば切削工具のバイトやチップなど
に、合金単体でHIP成型することも可能である。
The wear resistance was evaluated by a hot wear test. This material processed into a ring shape (φ80 × 10 t mm)
Rotate while pressing against the mating material ring (S45C steel), and evaluate the wear resistance by the amount of wear after a certain number of rotations. During the test, the temperature of the test material was set at 500 ° C and the temperature of the mating material was set at 85 ° C.
It was kept constant at 0 ° C. The rotation speed was 700 rpm, the pressing load was 70 kg, and the abrasion weight after 10,000 rotations was measured. Table 2 shows the test results. The comparative material is a high-speed material not mixed with a metal compound. From the table, 10% TiC,
A remarkable improvement in wear resistance was recognized by the TiN mixing as compared with the comparative material. In the present embodiment, the outer layer made of an alloy of high-speed steel and a hard compound has a two-layer structure in which a carbon steel base material is joined. is there.

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【発明の効果】以上述べたように、本発明によって、耐
熱耐摩耗性が要求される使用環境で有効な材料、部材を
提供することができ、寿命向上によってライン整備費等
のコスト軽減に寄与できる。
As described above, according to the present invention, it is possible to provide materials and members that are effective in a use environment where heat resistance and abrasion resistance are required, and to contribute to reduction of cost such as line maintenance cost by extending the life. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】アルミナ混合量と硬度の関係を示す図である。FIG. 1 is a diagram showing a relationship between an alumina mixing amount and hardness.

【図2】アルミナ混合量と曲げ強度の関係を示す図であ
る。
FIG. 2 is a diagram showing the relationship between the amount of alumina mixed and bending strength.

【図3】メカニカルアロイングによる合金化を模式的に
示す図である。
FIG. 3 is a diagram schematically showing alloying by mechanical alloying.

【図4】部材製造工程(HIPカプセル)を示す図であ
る。
FIG. 4 is a diagram showing a member manufacturing process (HIP capsule).

【図5】部材製造工程(HIPカプセル)を示す図であ
る。
FIG. 5 is a diagram showing a member manufacturing process (HIP capsule).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22C 33/02 103 C22C 38/38 38/38 B22F 3/14 E ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C22C 33/02 103 C22C 38/38 38/38 B22F 3/14 E

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭素鋼からなる母材に金属の炭化物、窒
化物、酸化物、ホウ化物のうちの1種以上と下記成分か
らなる高速度鋼(ハイスと称す)との合金からなるHI
P処理層を形成し2層構造としたことを特徴とする耐熱
耐摩耗部材。ハイス成分は重量%で、 C :0.9〜2.5% Si:0.2〜1.5% Mn:0.3〜2.0% Cr:0.5〜12.0% Mo:3.0〜10.0% V :0.8〜8.0% W :1.0〜10.0% Fe:残部
An HI comprising an alloy of a base material made of carbon steel and one or more of metal carbides, nitrides, oxides and borides and a high-speed steel (hereinafter referred to as high-speed steel) having the following components:
A heat and wear resistant member having a two-layer structure by forming a P treatment layer. The high-speed component is% by weight. C: 0.9 to 2.5% Si: 0.2 to 1.5% Mn: 0.3 to 2.0% Cr: 0.5 to 12.0% Mo: 3 0.0 to 10.0% V: 0.8 to 8.0% W: 1.0 to 10.0% Fe: balance
【請求項2】 予め重量%で、 C :0.9〜2.5% Si:0.2〜1.5% Mn:0.3〜1.5% Cr:3.5〜12.0% Mo:3.0〜10.0% V :0.8〜8.0% W :1.0〜10.0% 残部Feからなるハイス粉末に合計体積で5〜45%の
1種以上の、金属の炭化物、窒化物、酸化物、ホウ化物
の粉末をメカニカルアロイング法により合金化し、その
後、炭素鋼からなる母材の表面へ温度1000〜120
0℃、圧力100MPa以上、2〜5時間のHIP処理
を行い2層構造としたことを特徴とする耐熱耐摩耗部材
の製造方法。
2. C: 0.9 to 2.5% Si: 0.2 to 1.5% Mn: 0.3 to 1.5% Cr: 3.5 to 12.0% by weight in advance Mo: 3.0 to 10.0% V: 0.8 to 8.0% W: 1.0 to 10.0% One or more of a total volume of 5 to 45% of a high-speed steel powder composed of the balance of Fe, Metal carbide, nitride, oxide and boride powders are alloyed by a mechanical alloying method, and then the temperature of 1000 to 120 is applied to the surface of a base material made of carbon steel.
A method for producing a heat-resistant and abrasion-resistant member, wherein a two-layer structure is formed by performing a HIP treatment at 0 ° C. and a pressure of 100 MPa or more for 2 to 5 hours.
JP9086584A 1997-04-04 1997-04-04 Heat resisting and wear resisting member and its production Withdrawn JPH10280101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9086584A JPH10280101A (en) 1997-04-04 1997-04-04 Heat resisting and wear resisting member and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9086584A JPH10280101A (en) 1997-04-04 1997-04-04 Heat resisting and wear resisting member and its production

Publications (1)

Publication Number Publication Date
JPH10280101A true JPH10280101A (en) 1998-10-20

Family

ID=13891068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9086584A Withdrawn JPH10280101A (en) 1997-04-04 1997-04-04 Heat resisting and wear resisting member and its production

Country Status (1)

Country Link
JP (1) JPH10280101A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2467224A1 (en) * 2009-08-18 2012-06-27 MTU Aero Engines GmbH Thin-walled structural component, and method for the production thereof
CN107225249A (en) * 2017-06-23 2017-10-03 中南大学 A kind of tungsten based on the surface graded alloying of tungsten/steel diffusion connection method
CN108060361A (en) * 2017-11-09 2018-05-22 佛山峰合精密喷射成形科技有限公司 A kind of substitution steel grade of cobalt-containing high speed steel
CN112935260A (en) * 2021-01-26 2021-06-11 黄石中睿科技有限责任公司 Easily machined alloy bar and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2467224A1 (en) * 2009-08-18 2012-06-27 MTU Aero Engines GmbH Thin-walled structural component, and method for the production thereof
CN107225249A (en) * 2017-06-23 2017-10-03 中南大学 A kind of tungsten based on the surface graded alloying of tungsten/steel diffusion connection method
CN108060361A (en) * 2017-11-09 2018-05-22 佛山峰合精密喷射成形科技有限公司 A kind of substitution steel grade of cobalt-containing high speed steel
CN112935260A (en) * 2021-01-26 2021-06-11 黄石中睿科技有限责任公司 Easily machined alloy bar and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3241491B2 (en) Rolling bearing for high temperature and high speed rotation
EP2253727A1 (en) Powder for iron-based sintered alloy
JP3743793B2 (en) Composite roll for hot rolling, method for producing the same, and hot rolling method using the same
JP2857724B2 (en) High speed steel based sintered alloy
JPH10280101A (en) Heat resisting and wear resisting member and its production
JPH07179997A (en) High speed steel type powder alloy
JP2001279367A (en) Roll for hot rolling made by centrifugal casting
JP4330157B2 (en) Screw for injection molding machine and its assembly parts
JPH07166300A (en) High speed steel type powder alloy
JP4381210B2 (en) High wear-resistant roll material and high wear-resistant composite roll
JPH06145887A (en) Composite high-speed steel sleeve roll and its production
JP2791445B2 (en) High speed steel based sintered alloy
EP0510598A2 (en) Wear-resistant compound roll
JP3032995B2 (en) High-speed steel-based sintered alloy for steel roll, roll body and manufacturing method
JP2990847B2 (en) Ring roll for hot rolling and method for producing the same
JP2972032B2 (en) High speed steel based sintered alloy
JP2972033B2 (en) High speed steel based sintered alloy
JP3032997B2 (en) High speed steel based sintered alloy
CN114231969A (en) Wear-resistant composite coating for improving surface hardness of U-shaped roller and production process of U-shaped roller
JPH11246949A (en) High speed steel series sintered alloy excellent in cracking resistance and roll for rolling using it
JPH0881734A (en) Steel for nitriding treatment and production therof
JP3032996B2 (en) High-speed steel-based sintered alloy for steel roll, roll body and manufacturing method
JPH11172364A (en) Production of sintered tool steel
JP3750835B2 (en) High hardness corrosion resistant powder die steel excellent in mirror finish and method for producing the same
JP3748131B2 (en) Powdered high-speed tool steel with excellent toughness and wear resistance

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040706