JPH10280042A - Production of grain-oriented silicon steel sheet stable in magnetic property in longitudinal direction of coil - Google Patents

Production of grain-oriented silicon steel sheet stable in magnetic property in longitudinal direction of coil

Info

Publication number
JPH10280042A
JPH10280042A JP8480497A JP8480497A JPH10280042A JP H10280042 A JPH10280042 A JP H10280042A JP 8480497 A JP8480497 A JP 8480497A JP 8480497 A JP8480497 A JP 8480497A JP H10280042 A JPH10280042 A JP H10280042A
Authority
JP
Japan
Prior art keywords
rolling
sheet
annealing
hot
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8480497A
Other languages
Japanese (ja)
Inventor
Ryutaro Kawamata
竜太郎 川又
Takeshi Kubota
猛 久保田
Yoshiyuki Ushigami
義行 牛神
Kenichi Murakami
健一 村上
Yasushi Miyagi
康司 宮城
Shiro Tadokoro
史郎 田所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8480497A priority Critical patent/JPH10280042A/en
Publication of JPH10280042A publication Critical patent/JPH10280042A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a grain-oriented silicon steel sheet stable in the magnetic properties in the longitudinal direction of a coil and used as the material for the iron core of electrical equipment. SOLUTION: This is a method for producing a grain-oriented silicon steel sheet in which a slab contg., by weight, 0.025 to 0.075% C, 2.5 to 4.5% Si, <=0.015% S, 0.010 to 0.050% acid soluble Al, 0.0010 to 0.0120% N, 0.050 to 0.45% Mn, and the balance Fe with inevitable impurities is heated at <=1280 deg.C, is thereafter subjected to hot rolling, then after hot rolled sheet annealing or without executing this, it is subjected to rolling for one time or >= two times including process annealing so as to regulate the final rolling ratio to >=80%, and next, till the start of start of secondary recrystallization in finish annealing after the completion of decarburizing annealing, the steel sheet is subjected to nitriding treatment. In this case, the finish hot rolling is executed under the conditions satisfying the relationship.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属するの技術分野】本発明は、電気機器の鉄心
材料として用いられる、磁束密度が高い方向性電磁鋼板
の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet having a high magnetic flux density, which is used as an iron core material of electric equipment.

【0002】[0002]

【従来の技術】方向性電磁鋼板は二次再結晶により鋼板
の結晶粒を特定方位に高度に結晶粒を配向させた成品で
あることが特徴であり、圧延面に{110}面、圧延方
向に<100>軸を有するゴス方位を持つ結晶粒により
構成されている。
2. Description of the Related Art A grain-oriented electrical steel sheet is characterized in that it is a product in which the crystal grains of the steel sheet are highly oriented in a specific direction by secondary recrystallization, and the {110} plane is on the rolling surface and the rolling direction is And a crystal grain having a Goss orientation having a <100> axis.

【0003】また、方向性電磁鋼板の用途としては、軟
磁性材料として主にトランスその他の電気機器の鉄心材
料に使用されるもので、近年省エネルギー、省資源への
社会的要求がますます厳しくなっている事から、一方向
性電磁鋼板の鉄損低減、磁化特性改善への要求も厳しく
なってきている。このため磁気特性、特に良好な励磁特
性と鉄損特性が求められるようになってきている。
[0003] The use of grain-oriented electrical steel sheets is mainly used as a soft magnetic material for core materials of transformers and other electrical equipment. In recent years, social demands for energy saving and resource saving have become increasingly severe. Therefore, demands for reduction of iron loss and improvement of magnetization characteristics of a grain-oriented electrical steel sheet have become strict. For this reason, magnetic characteristics, particularly good excitation characteristics and iron loss characteristics, have been required.

【0004】方向性電磁鋼板の励磁特性を示す指標とし
ては、通常磁束密度B8 (磁場の強さ800A/mにお
ける磁束密度)が用いられている。また鉄損特性を示す
指標としては、W17/50 (50Hzで1.7Tまで磁化
させたときの単位重量あたりの鉄損)等が用いられてい
る。鉄損は渦電流損とヒステリシス損からなり、渦電流
損は鋼板の電気抵抗率、板厚、結晶粒度、磁区の形態、
鋼板表面の皮膜張力等の因子により支配されている。一
方、ヒステリシス損は磁束密度を支配する鋼板の結晶方
位、純度、内部歪等により支配される。これらの因子を
制御することによる鉄損低減の試みとして、鋼板の電気
抵抗を大きくするためにSi含有量を高めることが行わ
れてきたが、Si含有量を高めると二次再結晶が不安定
になるという問題とともに、製造工程及び製品での加工
性が劣化するため限界にきているのが現状である。
A magnetic flux density B 8 (magnetic flux density at a magnetic field strength of 800 A / m) is generally used as an index indicating the excitation characteristics of a grain-oriented electrical steel sheet. As an index indicating the iron loss characteristics, W 17/50 (iron loss per unit weight when magnetized to 1.7 T at 50 Hz) and the like are used. Iron loss consists of eddy current loss and hysteresis loss, and eddy current loss is the electrical resistivity, thickness, crystal grain size, magnetic domain form,
It is governed by factors such as film tension on the steel sheet surface. On the other hand, the hysteresis loss is governed by the crystal orientation, purity, internal strain and the like of the steel sheet that governs the magnetic flux density. As an attempt to reduce iron loss by controlling these factors, increasing the Si content to increase the electrical resistance of the steel sheet has been performed, but increasing the Si content causes unstable secondary recrystallization. In addition to the problem described above, the processability in the manufacturing process and the product is deteriorated, and the current situation is that the limit is reached.

【0005】一方、鋼板の純度、内部歪については製造
工程において検討が重ねられてきており、これらの低減
による鉄損の低減については限界近くにまで到達してい
る。板厚を薄くして渦電流損を低減させる試みもなされ
てきているが、製造の立場からは薄手化に伴い二次再結
晶の制御が困難になる問題点がある。一方、需要家サイ
ドでは変圧器製造時のコストが増加するため、鉄損値が
同等であれば厚手の材料が好まれて使用されている。
On the other hand, the purity and internal strain of a steel sheet have been studied in the manufacturing process, and the reduction of iron loss due to these reductions has reached the limit. Attempts have been made to reduce eddy current loss by reducing the thickness of the sheet, but from the standpoint of manufacturing, there is a problem in that secondary recrystallization is difficult to control as the thickness is reduced. On the other hand, on the consumer side, thicker materials are preferred and used as long as the iron loss values are equal, since the cost of transformer production increases.

【0006】鉄損低減の手段としては二次再結晶粒径を
小さくすることも有効であり、出願人は特開昭57−9
419号公報において提案した。しかしながら二次再結
晶粒径を小さくすると、その方位集積度が低下して高磁
束密度を得にくいという問題点があった。
As a means for reducing iron loss, it is also effective to reduce the secondary recrystallized grain size.
No. 419. However, when the secondary recrystallized grain size is reduced, there is a problem that the degree of orientation integration is reduced and it is difficult to obtain a high magnetic flux density.

【0007】皮膜張力の効果と方向性電磁鋼板の磁束密
度の間には、J.Appl.Phys.,vol.41,no.7,p2981-2984(19
70) に指摘されているように、磁束密度B8 の値が高い
ほどその鉄損低減効果が大きいことが知られている。ま
た磁区細分化による鉄損低減法は特開昭58−5968
号公報、特開昭58−26405号公報に述べられてい
るが、磁区細分化処理前のプレーン材の磁束密度が高い
ほどその効果が大きいことが知られている。
[0007] Between the effect of the film tension and the magnetic flux density of the grain-oriented electrical steel sheet, J. Appl. Phys., Vol. 41, no. 7, p2981-2984 (19)
As pointed out in 70), it is known that the iron loss reducing effect as the value of the magnetic flux density B 8 is high is large. A method for reducing iron loss by magnetic domain refining is disclosed in Japanese Patent Application Laid-Open No. 58-5968.
As described in JP-A-58-26405, it is known that the effect is greater as the magnetic flux density of the plane material before the magnetic domain refining process is higher.

【0008】このように鉄損を低減させる試みとして
は、その影響因子である電気抵抗率、板厚、結晶粒度、
純度、内部歪等の改善が従来技術において限界に近づい
てきていることから、二次再結晶方位の集積度を向上さ
せ、磁束密度を高めることにより、皮膜張力の効果、磁
区細分化の効果を一層向上させことで鉄損を低減するこ
とが重要となってきている。二次再結晶を安定して発現
させるとともにその方位集積度を高め、磁束密度を向上
させる因子として、インヒビターの役割が重要である。
この目的のため、従来技術ではMnS、AlN、MnS
e等がインヒビターとして用いられてきている。
Attempts to reduce iron loss in this way include electrical resistivity, sheet thickness, grain size,
Since the improvement of purity, internal strain, etc. is approaching the limit in the conventional technology, by improving the degree of integration of the secondary recrystallization orientation and increasing the magnetic flux density, the effect of the film tension and the effect of domain segmentation can be improved. It has become important to reduce iron loss by further improving. The role of the inhibitor is important as a factor for stably expressing secondary recrystallization, increasing the degree of orientation integration, and improving magnetic flux density.
For this purpose, the prior art uses MnS, AlN, MnS
e and the like have been used as inhibitors.

【0009】従来の方向性電磁鋼板の製造法は、二次再
結晶方位制御に用いられるインヒビターの種類により大
きく3種類に大別される。まず第一に、M.F.Littmannに
より特公昭30−3651号公報に開示されている。こ
の製造方法はインヒビターにMnSを用い、二回冷延法
で製造することが特徴である。次に、特公昭40−15
644号公報に田口、坂倉らにより開示された、MnS
に加えてAlNをインヒビターとする製造方法である。
このインヒビターにAlNを用いる方法により、方向性
電磁鋼板の磁束密度は1.870T以上に向上し、磁気
特性の改善による省エネルギーに多大な貢献を果たし
た。第3に、特公昭51−13469号公報に今中等に
より開示されたMnSとSbもしくはMnS、MnSe
とSbを用い、二回冷延法により製造する方法である。
これらの方法においては本質的あるいは良好な磁束密度
を得るためにはインヒビターの析出制御を目的として、
高温スラブ加熱により一旦インヒビターを構成する析出
物を溶体化し、これを熱延工程あるいは特公昭46−2
3820号公報に開示されているように熱延板焼鈍時に
微細に析出させることが必要である。また、この高温ス
ラブ加熱時に、ノロが発生しその処理により生産性が低
下する点も課題である。このように従来法では製鋼段階
での成分調整と熱延の段階でほぼ製品の特性が決定され
るため、上工程での材質造り込みの安定性確立が重要な
課題であり、下行程での磁気特性の調整が困難であり、
製造工程のフレキシビリティの点で問題を残していた。
Conventional methods for producing grain-oriented electrical steel sheets are roughly classified into three types depending on the type of inhibitor used for controlling the secondary recrystallization orientation. First of all, it is disclosed by MFLittmann in Japanese Patent Publication No. 30-3651. This production method is characterized in that MnS is used as an inhibitor and the production is performed by a double cold rolling method. Next, Tokiko 40-15
No. 644, MnS disclosed by Taguchi, Sakakura et al.
In addition to this, a production method using AlN as an inhibitor.
By using AlN for the inhibitor, the magnetic flux density of the grain-oriented electrical steel sheet was improved to 1.870 T or more, and the magnetic properties were improved to greatly contribute to energy saving. Third, MnS and Sb or MnS, MnSe disclosed in Ichinaka et al. In Japanese Patent Publication No. 51-13469.
This is a method of manufacturing by cold rolling twice using Sb and Sb.
In these methods, in order to obtain an essential or good magnetic flux density, for the purpose of controlling inhibitor precipitation,
The precipitate constituting the inhibitor is once dissolved by high-temperature slab heating, and this is subjected to a hot rolling process or a process disclosed in Japanese Patent Publication No. Sho 46-2.
As disclosed in Japanese Patent No. 3820, it is necessary to precipitate finely during annealing of a hot-rolled sheet. Another problem is that slag is generated during the heating of the high-temperature slab, and that the productivity is reduced by the treatment. As described above, in the conventional method, since the properties of the product are almost determined at the stage of the component adjustment at the steel making stage and at the stage of hot rolling, it is important to establish the stability of the incorporation of the material in the upper process. It is difficult to adjust the magnetic properties,
This leaves a problem in terms of manufacturing process flexibility.

【0010】出願人らは、従来の高温スラブ加熱法によ
る方向性電磁鋼板製造プロセスの問題点を解決する手段
として、特公平6−86631号公報他に、1280℃
以下の低温スラブ加熱と脱炭焼鈍後二次再結晶開始まで
の間に窒化によりインヒビターを形成させる行程を旨と
する方法を開示している。この方法により従来製鋼段階
での成分調整と熱延の段階でほぼその性質が決定し後行
程での調整が困難であったインヒビターを後天的に作り
込むことが可能となり、高温スラブ加熱の問題が解決で
きただけでなく、磁気特性の向上により方向性電磁鋼板
の製造法において一つの確実な進歩をもたらした。
As a means for solving the problems of the conventional process for manufacturing a grain-oriented electrical steel sheet by the high-temperature slab heating method, the applicants have disclosed a method disclosed in Japanese Patent Publication No.
A method is disclosed in which an inhibitor is formed by nitriding between the low-temperature slab heating and the start of secondary recrystallization after decarburizing annealing. With this method, it becomes possible to acquire inhibitors whose properties were determined almost at the stage of the conventional steelmaking stage and hot rolling at the stage of hot rolling and were difficult to adjust in the subsequent process. In addition to being able to solve the problem, the improvement of the magnetic properties has led to a certain progress in the manufacturing method of grain-oriented electrical steel sheets.

【0011】本法においては特公平7−17960号公
報に述べられているように、脱炭焼鈍後の1次再結晶粒
径が二次再結晶方位制御に重要な役割を果たしており、
この観点から熱延条件の変動をより抑制し、製品の磁気
特性を安定して得ることが課題であった。
In this method, as described in JP-B-7-17960, the primary recrystallized grain size after decarburization annealing plays an important role in controlling the secondary recrystallization orientation.
From this viewpoint, it has been a problem to further suppress fluctuations in hot rolling conditions and to stably obtain magnetic properties of a product.

【0012】さらに、昨今の省エネルギーに対する市場
の要請にはさらに厳しいものがあり、エネルギー消費量
を節約し環境改善に役立てるために鉄心として使用され
る電磁鋼板に対しては更なる磁束密度の向上、鉄損の低
減の要求が増してきている。回転機等に使用される電磁
鋼板と異なり、トランス等の用途で使用される方向性電
磁鋼板においては常に通電した状態で使用されるため、
稼働率からみた損失低減の重要性は非常に重大である。
このためその磁気特性改善による省エネルギー効果は非
常に大きいものがあり、需要家はコストアップを出来る
だけ押さえながらも鉄心の高効率化のためにより磁束密
度の高い成品の供給が求められていた。
Furthermore, the market demands for energy savings in recent years are even more severe. For magnetic steel sheets used as iron cores to save energy consumption and contribute to environmental improvement, further improvement in magnetic flux density, The demand for reduction of iron loss is increasing. Unlike electrical steel sheets used for rotating machines, etc., directional electrical steel sheets used for transformers and other applications are always used in an energized state.
The importance of loss reduction in terms of occupancy is very important.
For this reason, the energy saving effect by the improvement of the magnetic properties is very large, and the customer has been required to supply a product having a higher magnetic flux density to increase the efficiency of the iron core while suppressing the cost as much as possible.

【0013】[0013]

【発明が解決しようとする課題】本発明はこのような昨
今の市場の要請に応え、従来技術における方向性電磁鋼
板製造上の熱延条件に対する成品磁気特性の安定性の問
題を解決法を提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention provides a method for solving the problem of the stability of the magnetic properties of a product to the hot rolling conditions in the production of grain-oriented electrical steel sheets in the prior art in response to the recent market demand. It is intended to do so.

【0014】[0014]

【課題を解決するための手段】本発明の要旨とするとこ
ろは以下の通りである。 (1) 重量%で、0.025%≦C≦0.075%、
2.5%≦Si≦4.5%、S ≦0.015%、0.
010% ≦酸可溶性Al≦0.050%、0.001
0%≦N≦0.0120%、0.050%≦Mn≦0.
45%を含有し、残部Feおよび不可避的不純物からな
るスラブを、1280℃以下の温度に加熱した後熱延
し、熱延板焼鈍を施すかあるいは施さず、1回または中
間焼鈍をはさむ2回以上の圧延で最終圧延率80%以上
とし、次いで脱炭焼鈍完了後以降、仕上焼鈍の二次再結
晶開始までの間に鋼板に窒化処理を施す方向性電磁鋼板
の製造法において、仕上熱間圧延を、下記(1)式を満
足する条件で行うことを特徴とするコイル長手方向の磁
気特性の安定した方向性電磁鋼板の製造方法。
The gist of the present invention is as follows. (1) 0.025% ≦ C ≦ 0.075% by weight,
2.5% ≦ Si ≦ 4.5%, S ≦ 0.015%, 0.1%
010% ≦ acid-soluble Al ≦ 0.05%, 0.001
0% ≦ N ≦ 0.0120%, 0.050% ≦ Mn ≦ 0.
A slab containing 45%, the balance being Fe and unavoidable impurities, is heated to a temperature of 1280 ° C. or lower and then hot-rolled, with or without hot-rolled sheet annealing, or once or twice with intermediate annealing In the method for producing a grain-oriented electrical steel sheet in which the steel sheet is subjected to a nitriding treatment after the completion of decarburizing annealing and before the start of secondary recrystallization of finish annealing after the completion of decarburizing annealing, A method for producing a grain-oriented electrical steel sheet having stable magnetic properties in the longitudinal direction of a coil, wherein the rolling is performed under conditions satisfying the following equation (1).

【数3】 (Equation 3)

【0015】[0015]

【請求項2】 重量%で、0.025%≦C≦0.07
5%、2.5%≦Si≦4.5%、S ≦0.015
%、0.010%≦酸可溶性Al≦0.050%0.0
010%≦N≦0.0120%、0.050%≦Mn≦
0.45%を含有し、残部Feおよび不可避的不純物か
らなるスラブを、1280℃以下の温度に加熱した後熱
延し、熱延板焼鈍を施すかあるいは施さず、1回または
中間焼鈍をはさむ2回以上の圧延で最終圧延率80%以
上とし、次いで脱炭焼鈍完了後以降、仕上焼鈍の二次再
結晶開始までの間に鋼板に窒化処理を施す方向性電磁鋼
板の製造法において、スラブを粗圧延して得られたシー
トバーの先端部を先行するシートバーの後端部と接合し
て複数のシートバーを一体とし、この一体とした複数の
シートバーを連続的に仕上げ熱延に供するとともに、一
体としたシートバーの先端のシートバーと後端のシート
バーとを除いた中間のシートバーの仕上熱間圧延を、下
記(2)式を満足する条件で行うことを特徴とするコイ
ル長手方向の磁気特性の安定した方向性電磁鋼板の製造
方法。
2. 0.025% ≦ C ≦ 0.07% by weight
5%, 2.5% ≦ Si ≦ 4.5%, S ≦ 0.015
%, 0.010% ≦ acid-soluble Al ≦ 0.050% 0.0
010% ≦ N ≦ 0.0120%, 0.050% ≦ Mn ≦
A slab containing 0.45%, the balance being Fe and unavoidable impurities, is heated to a temperature of 1280 ° C. or lower and then hot-rolled, subjected to hot-rolled sheet annealing or not, and is subjected to one-time or intermediate annealing In a method for producing a grain-oriented electrical steel sheet, a steel sheet is subjected to nitriding treatment after the completion of decarburizing annealing and before the start of secondary recrystallization of finish annealing after the completion of decarburizing annealing and then to a final rolling reduction of 80% or more by two or more rollings. The front end of the sheet bar obtained by rough rolling is joined to the rear end of the preceding sheet bar to integrate a plurality of sheet bars, and the integrated plurality of sheet bars are continuously finished to hot rolling. And hot-rolling the intermediate sheet bar excluding the sheet bar at the front end and the sheet bar at the rear end of the integrated sheet bar under the condition satisfying the following expression (2). Coil longitudinal magnetism Method for manufacturing a sexual stable oriented electrical steel sheet.

【数4】 (Equation 4)

【0016】[0016]

【発明の実施の形態】本発明者らは、この低温スラブ加
熱法において更にコイル長手方向の製品の磁気特性の変
動を抑制すべく、仕上げ熱延技術に注目して鋭意検討を
行った。その結果、仕上圧延時の歪み速度の変動が成品
の磁気特性に密接な影響を及ぼすことを見出し、これを
一定の範囲内の変動に押さえることでコイル長手方向の
磁気特性の安定した方向性電磁鋼板を製造することが可
能であるとともに、さらに熱延板焼鈍を省略しての製造
が可能であることをも見出だした。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have conducted intensive studies by focusing on the hot-rolling finishing technique in the low-temperature slab heating method in order to further suppress the fluctuation of the magnetic properties of the product in the longitudinal direction of the coil. As a result, it was found that the fluctuation of the strain rate during finish rolling had a close effect on the magnetic properties of the product, and by suppressing this within a certain range, the magnetic properties in the longitudinal direction of the coil were stabilized. It has been found that it is possible to manufacture a steel sheet and also to omit the hot-rolled sheet annealing.

【0017】また、さらにこのような仕上圧延中の歪み
速度の変動を抑制するために、粗圧延後のシートバーを
先行するシートバーに接合し、2本以上のシートバーを
連続して仕上熱延に供することが極めて有効であること
も見いだした。
Further, in order to suppress such a variation in the strain rate during the finish rolling, the sheet bar after the rough rolling is joined to the preceding sheet bar, and two or more sheet bars are continuously connected to the finishing heat. It was also found that it was extremely effective to provide the service.

【0018】先行シートバーと後行シートバーを接合す
る方法としては、先行シートバーの後端部と後行シート
バーの先端とを突き合わせ、突合せ部を溶接する方法
や、突合せ部に押圧力を加えて圧接する方法や、突合せ
部を溶接した後に圧接する方法等がある。また、突合せ
部に押圧力を加えつつ溶接するようにしてもよい。な
お、突合せ部を溶接する方法としては、例えばレーザ溶
接法、誘導加熱による方法等があげられる。
As a method of joining the preceding sheet bar and the following sheet bar, a method of welding the butting portion with the rear end of the preceding sheet bar and the tip of the following sheet bar, or applying a pressing force to the butting portion is used. In addition, there is a method of performing pressure contact, a method of performing pressure contact after welding a butt portion, and the like. Also, welding may be performed while applying a pressing force to the butted portion. In addition, as a method of welding the butt portion, for example, a laser welding method, a method by induction heating, and the like can be mentioned.

【0019】以下に本発明を詳細に説明する。まず、成
分について説明する。Si含有量は電磁鋼板の固有抵抗
を介して鉄損特性を大きく左右するが、2.5%未満で
は固有抵抗が小さく渦電流損が増大するので好ましくな
い。また、4.5%超では加工性が劣化するので製造、
製品加工が困難になり好ましくない。
Hereinafter, the present invention will be described in detail. First, the components will be described. The Si content greatly affects the iron loss characteristics via the specific resistance of the magnetic steel sheet. However, if it is less than 2.5%, the specific resistance is small and the eddy current loss is undesirably increased. On the other hand, if it exceeds 4.5%, the workability deteriorates,
Product processing becomes difficult, which is not preferable.

【0020】Cはその含有量が0.025%未満になる
と二次再結晶が不安定となり、磁束密度が著しく低下す
るので0.025%以上とする。一方、0.075%を
超えると、脱炭焼鈍に要する時間が長くなりすぎ、不経
済であるので0.075%以下とする。
When the content of C is less than 0.025%, secondary recrystallization becomes unstable and the magnetic flux density is remarkably reduced. On the other hand, if it exceeds 0.075%, the time required for decarburization annealing becomes too long, which is uneconomical.

【0021】Sの含有量規定は従来の方向性電磁鋼板製
造技術と本発明の異なる点の一つである。なぜなら、本
発明ではインヒビターとしては主として(Al,Si)
Nを用いるので、MnSは特に必要とせず、むしろ磁気
特性上は有害である。従って、S含有量は0.015%
以下、好ましくは0.007%以下にする必要がある。
The S content regulation is one of the differences between the conventional technology for manufacturing grain-oriented electrical steel sheets and the present invention. Because, in the present invention, (Al, Si) is mainly used as an inhibitor.
Since N is used, MnS is not particularly required and is rather detrimental to magnetic properties. Therefore, the S content is 0.015%
Or less, preferably 0.007% or less.

【0022】本発明においては脱炭焼鈍後から二次再結
晶開始までの間に窒化を行い(Al,Si)Nを形成さ
せるので、フリーの酸可溶性Alが一定以上必要であ
る。このため0.010%以上添加することが必要であ
る。一方、0.050%超であると二次再結晶が不安定
となるので0.0050%以下添加する。
In the present invention, since nitriding is performed to form (Al, Si) N after the decarburizing annealing and before the start of the secondary recrystallization, a certain amount of free acid-soluble Al is required. For this reason, it is necessary to add 0.010% or more. On the other hand, if the content exceeds 0.050%, secondary recrystallization becomes unstable, so 0.0050% or less is added.

【0023】Nは0.0120%以下にする必要があ
る。これを超えるとブリスターと呼ばれる鋼板表面の膨
れが発生するとともに、一次再結晶組織の調整が困難と
なるので0.0120%以下とする。一方、N含有量が
0.0010%未満であると、二次再結晶の発現が困難
になるのでN含有量は0.0010%以上とする。
N needs to be 0.0120% or less. If it exceeds this, blisters called blisters are generated on the surface of the steel sheet, and it becomes difficult to adjust the primary recrystallization structure. On the other hand, if the N content is less than 0.0010%, it becomes difficult to develop secondary recrystallization, so the N content is set to 0.0010% or more.

【0024】Mn含有量が0.45%を超えると成品の
磁束密度が低下し、一方0.050%未満であると二次
再結晶が不安定となるのでMn含有量は0.050%以
上0.45%未満とする。
If the Mn content exceeds 0.45%, the magnetic flux density of the product is reduced, while if it is less than 0.050%, the secondary recrystallization becomes unstable, so the Mn content is 0.050% or more. It shall be less than 0.45%.

【0025】なお、二次再結晶の安定化その他の目的の
ために微量のSn、Cu、Cr、P、Tiを鋼中に含有
させることは本発明の効果を何ら損なうものではない。
It should be noted that the inclusion of trace amounts of Sn, Cu, Cr, P and Ti in steel for stabilization of secondary recrystallization and other purposes does not impair the effects of the present invention at all.

【0026】次に、本発明のプロセスについて説明す
る。電磁鋼スラブは、転炉または電気炉等の溶解炉で鋼
を溶製し、必要に応じて真空脱ガス処理し、次いで連続
鋳造により、あるいは造塊後分塊圧延することによって
得られる。その後、熱間圧延に先立ちスラブ加熱が行わ
れる。本発明のプロセスにおいては、スラブの加熱温度
は1280℃以下の低いものとして熱源単位を節約する
とともに、鋼中のAlNを完全には固溶させずに不完全
固溶状態とする。
Next, the process of the present invention will be described. The electromagnetic steel slab is obtained by smelting steel in a melting furnace such as a converter or an electric furnace, subjecting the steel to vacuum degassing if necessary, and then performing continuous casting or slab rolling after ingot making. Thereafter, slab heating is performed prior to hot rolling. In the process of the present invention, the heating temperature of the slab is set to a low temperature of 1280 ° C. or less to save heat source units, and to make the AlN in the steel into an incomplete solid solution state without completely dissolving the AlN in the steel.

【0027】このスラブを熱延して所定の厚みの熱延板
とする。仕上熱延時の歪速度の変動がコイル長手方向の
成品磁気特性に与える影響を調査するため下記の様な実
験を行った。表1に示す成分の鋼を溶製し、連鋳機によ
り200mm厚みのスラブとした。次にこれを粗圧延によ
り板厚70mmのシートバーとし、その後コイル状に巻き
取った。巻取り実施時のシートバーの温度は1000℃
であった。
The slab is hot-rolled into a hot-rolled sheet having a predetermined thickness. The following experiment was conducted to investigate the effect of the variation of the strain rate during hot rolling on the product magnetic properties in the longitudinal direction of the coil. Steels having the components shown in Table 1 were melted and made into slabs having a thickness of 200 mm by a continuous casting machine. Next, this was rough-rolled into a sheet bar having a thickness of 70 mm, and then wound into a coil shape. The temperature of the sheet bar at the time of winding is 1000 ° C.
Met.

【0028】[0028]

【表1】 [Table 1]

【0029】その後このシートバーを巻きもどし、後行
するシートバーの先端部と先行するシートバーの後端部
とを接合し、複数のシートバーを一体として連続的に仕
上げ熱延を行った。ここで仕上熱延の最終スタンドにお
いて最大歪速度は300s-1の一定としながら最低歪速
度を変化させた。熱延終了温度は950℃とし、得られ
た熱延板は仕上熱延最終スタンド通過後直ちに冷却し、
550℃で巻き取った。
Thereafter, the sheet bar was unwound, the leading end of the succeeding sheet bar was joined to the trailing end of the preceding sheet bar, and a plurality of sheet bars were integrated and continuously subjected to hot rolling. Here, the minimum strain rate was changed while the maximum strain rate was kept constant at 300 s -1 in the final stand of the finish hot rolling. The hot-rolling end temperature was 950 ° C., and the obtained hot-rolled sheet was cooled immediately after passing through the final hot-rolling final stand,
The film was wound at 550 ° C.

【0030】巻き取った熱延板に1120℃×2分+9
00℃×2分の熱延板焼鈍を施し、その後酸洗し0.3
0mmまで冷延し、次いで830℃120秒の脱炭焼鈍を
実施した。次いでアンモニア含有雰囲気中で窒化処理を
行った。その後MgOを主成分とする焼鈍分離剤を塗布
し、1200℃×20時間の仕上焼鈍を行った。仕上熱
延の最終スタンドにおける歪速度の変動と製品磁束密度
との関係について図1に示す。
1120 ° C. × 2 minutes + 9
Hot rolled sheet annealing for 2 minutes at 00 ° C, then pickling
It was cold rolled to 0 mm and then decarburized annealing at 830 ° C. for 120 seconds. Next, a nitriding treatment was performed in an atmosphere containing ammonia. Thereafter, an annealing separator containing MgO as a main component was applied, and finish annealing was performed at 1200 ° C. for 20 hours. FIG. 1 shows the relationship between the variation of the strain rate and the product magnetic flux density in the final stand of the finish hot rolling.

【0031】図1によれば、歪速度の変動を下記式
(1)の範囲内、すなわち最大歪速度に対する歪速度の
変動量を25%以内にすることにより、磁束密度の変動
が抑制されていることが分かる。さらに、歪み速度の変
動を下記式(2)の範囲内、すなわち最大歪速度に対す
る歪速度の変動量を20%以内にすることにより、磁束
密度の変動をより小さい範囲に抑制できることが分か
る。
According to FIG. 1, the fluctuation of the magnetic flux density is suppressed by controlling the fluctuation of the strain rate within the range of the following equation (1), that is, the fluctuation amount of the strain rate with respect to the maximum strain rate is within 25%. You can see that there is. Further, it can be seen that the variation of the magnetic flux density can be suppressed to a smaller range by setting the variation of the strain rate within the range of the following equation (2), that is, by setting the variation of the strain rate to the maximum strain rate within 20%.

【数5】 (Equation 5)

【数6】 以上のように、仕上熱延における歪速度の変動量を一定
範囲内することで、鋼板の磁束密度の変動を抑制でき
る。したがって、粗圧延後のシートバーの仕上熱延にお
いて、歪速度の変動量を一定範囲内とすれば、コイル長
手方向の製品の磁気特性を安定させることが可能であ
る。
(Equation 6) As described above, the variation of the magnetic flux density of the steel sheet can be suppressed by keeping the variation of the strain rate in the hot-rolling within a certain range. Therefore, in the finishing hot rolling of the sheet bar after the rough rolling, if the variation of the strain rate is within a certain range, it is possible to stabilize the magnetic properties of the product in the coil longitudinal direction.

【0032】ただし、単独のシートバー圧延の際には、
仕上熱延の噛み込み、尻抜け(「仕上げ抜け」とも称す
る)時の圧延安定性の確保のために仕上熱延最終スタン
ドの歪速度を一定範囲内に制御することは困難であるの
で、上記式(1)の範囲内とする。
However, when rolling a single sheet bar,
It is difficult to control the strain rate of the final hot-rolling final stand within a certain range in order to ensure the stability of rolling at the time of biting of the hot-rolled finish and loss of butt (also referred to as “finishing-off”). It is assumed to be within the range of Expression (1).

【0033】ここで、スラブを粗圧延して得られたシー
トバーの先端部を先行するシートバーの後端部と接合し
て複数のシートバーを一体とし、一体とした複数のシー
トバーを連続的に仕上げ熱延に供するようにすれば、歪
速度の変動量を抑制する上で有利である。特に、複数の
シートバーを一体に接合して連続的に仕上熱延を行う場
合には、先端のシートバーと後端のシートバーとを除い
た、中間のシートバーは歪速度の制御が比較的容易であ
る。そこで、これら中間のシートバーにおける仕上熱延
最終スタンドの歪速度を上記式(2)の範囲内とすれ
ば、コイル長手方向の磁気特性がより安定した方向性電
磁鋼板を得ることができる。
Here, the front end portion of the sheet bar obtained by roughly rolling the slab is joined to the rear end portion of the preceding sheet bar to integrate a plurality of sheet bars, and the integrated plurality of sheet bars are continuously connected. It is advantageous to suppress the variation of the strain rate by subjecting it to finish hot rolling. In particular, when multiple sheet bars are joined together to perform continuous hot rolling, the middle sheet bar excluding the leading and trailing sheet bars has a comparatively higher strain rate control. It is easy. Therefore, if the strain rate of the final hot-rolled final stand in these intermediate sheet bars is within the range of the above-mentioned formula (2), it is possible to obtain a grain-oriented electrical steel sheet having more stable magnetic properties in the coil longitudinal direction.

【0034】なお、歪み速度の計算は下記の式によって
行う。ここで、rは圧下率%/100、nはロールの回
転数(rpm)、Rは圧延ロール半径(mm)、H0 は圧
延前の板厚(mm)である。歪み速度=(2πn/(60
0.5 ))(R/H0 0.5 ln(1/(1−r))
The calculation of the strain rate is performed by the following equation. Here, r is the rolling reduction% / 100, n is the number of revolutions of the roll (rpm), R is the radius of the rolling roll (mm), and H 0 is the thickness (mm) before rolling. Strain rate = (2πn / (60
r 0.5 )) (R / H 0 ) 0.5 ln (1 / (1-r))

【0035】式(1)、式(2)の規定が製品長手方向
の磁気特性を安定させることについてその詳細な理由は
定かでないが、仕上圧延中の歪み速度の変化が熱延鋼板
中のMnS、AlNの析出状態に影響を与え、鋼板長手
方向全体にわたって二次再結晶粒の核となる方位選択性
が向上することがその原因ではないかと推測できる。
The detailed reason why the provisions of the formulas (1) and (2) stabilize the magnetic properties in the longitudinal direction of the product is not clear, but the change in the strain rate during the finish rolling is caused by MnS in the hot-rolled steel sheet. It can be assumed that the cause is that the orientation selectivity, which affects the precipitation state of AlN and improves the nuclei of secondary recrystallized grains throughout the longitudinal direction of the steel sheet, is improved.

【0036】粗圧延後のシートバーは仕上熱延に供する
前に一旦コイル状に巻き取り、これを板状に巻きもどし
て仕上熱延に供してもよい。この際、巻き取ったシート
バーの保持時間については特に規定しないが、本成分系
の方向性電磁鋼板の場合は、巻き取ったシートバーの保
持時間が過度に長くなると生産性が低下するので、18
0秒以内であることが好ましい。生産性はシートバーコ
イルを複数巻取り保熱することである程度改善できる
が、そのための保熱炉設置による設備費の増大と生産性
との兼ね合いからさらに好ましいシートバー巻取り時間
は、30秒以上150秒以内である。
The sheet bar after the rough rolling may be temporarily wound into a coil before being subjected to the hot rolling for finishing, and may be wound back into a plate shape and then subjected to the hot rolling for finishing. At this time, the holding time of the wound sheet bar is not particularly specified, but in the case of the grain-oriented electrical steel sheet of the present component system, if the holding time of the wound sheet bar becomes excessively long, the productivity is reduced. 18
It is preferably within 0 seconds. Productivity can be improved to some extent by winding and holding the sheet bar coil multiple times, but the more preferable sheet bar winding time is 30 seconds or more in view of the increase in equipment cost and the productivity due to the installation of the heat retaining furnace. Within 150 seconds.

【0037】シートバーの巻取り温度については規定し
ないが、800℃以上1250℃以下が好ましい。その
理由は、巻取り温度が800℃を下回ると、仕上熱延時
に圧延反力が大きくなりすぎるからであり、1250℃
を上回るようであると巻き取った際にシートバー自身の
剛性が不足して、自重によりクリープ変形が生じ、シー
トバーの形状が不良となる。このためシートバーの巻取
り温度は800℃以上1250℃以下が好ましい。
The winding temperature of the sheet bar is not specified, but is preferably 800 ° C. or higher and 1250 ° C. or lower. The reason for this is that if the winding temperature is lower than 800 ° C., the rolling reaction force becomes too large during the hot rolling in the finishing step.
If it exceeds, the rigidity of the sheet bar itself will be insufficient when it is wound up, creep deformation will occur due to its own weight, and the shape of the sheet bar will be poor. Therefore, the winding temperature of the sheet bar is preferably 800 ° C. or more and 1250 ° C. or less.

【0038】熱延以降の行程については、析出物制御を
目的として熱延板焼鈍を行っても良い。酸洗後、一回も
しくは中間焼鈍をはさむ2回以上の冷間圧延を施して最
終板厚とするが、最終圧延率が80%未満であると磁束
密度B8 の値が低下するので、冷延率は80%以上にす
る。特性はやや劣るものの、コスト低減のために熱延板
焼鈍を省略してもよい。最終製品の結晶粒径を小さくし
鉄損を低減するために中間焼鈍を含む2回以上の圧延で
最終板厚としてもよい。
In the process after hot rolling, hot strip annealing may be performed for the purpose of controlling precipitates. After pickling, although a final sheet thickness by performing once or twice or more cold rolling sandwiching the intermediate annealing, so the final rolling rate value of the magnetic flux density B 8 is less than 80% is reduced, cold The elongation is 80% or more. Although the properties are slightly inferior, the hot rolled sheet annealing may be omitted for cost reduction. In order to reduce the crystal grain size of the final product and reduce iron loss, the final thickness may be obtained by performing rolling twice or more including intermediate annealing.

【0039】次に湿水素あるいは湿水素、窒素混合雰囲
気ガス中で脱炭焼鈍をする。このときの温度は特に本発
明では定めないが、800℃から900℃が好ましい。
Next, decarburizing annealing is performed in wet hydrogen or a mixed gas of wet hydrogen and nitrogen. The temperature at this time is not particularly defined in the present invention, but is preferably from 800 ° C to 900 ° C.

【0040】次いで焼鈍分離材を塗布し仕上げ焼鈍を行
い、二次再結晶および引き続いて純化を行う。このため
焼鈍温度は通常1100℃から1200℃の高温とす
る。二次再結晶完了後の純化焼鈍は水素雰囲気中で実施
する。
Next, an annealing separator is applied and finish annealing is performed, and secondary recrystallization and subsequent purification are performed. For this reason, the annealing temperature is usually set to a high temperature of 1100 ° C to 1200 ° C. The purification annealing after the completion of the secondary recrystallization is performed in a hydrogen atmosphere.

【0041】本発明では脱炭焼鈍の完了後、仕上焼鈍の
二次再結晶開始までの間に鋼板に窒化処理を施し、微細
な(Al,Si)Nを鋼板内に形成させる。その方法と
しては、脱炭焼鈍時均熱以降で窒化能のある気体の雰囲
気で窒化するか、または、脱炭焼鈍後別途設けたNH3
等の雰囲気を有する熱処理炉に通過せしめて窒化する
か、あるいは仕上焼鈍の際に焼鈍分離材中にMnN、C
rN等を適量配合するか、仕上焼鈍の昇温過程において
窒化能のあるNH3 等の気体を雰囲気に含有せしめても
よい。さらに、以上の方法の組み合わせによって窒化を
行ってもよい。
In the present invention, after the completion of the decarburizing annealing, the steel sheet is subjected to a nitriding treatment until the start of the secondary recrystallization of the finish annealing to form fine (Al, Si) N in the steel sheet. As the method, nitriding is performed in a gas atmosphere having a nitriding ability after soaking during decarburizing annealing, or NH 3 provided separately after decarburizing annealing.
Nitriding by passing through a heat treatment furnace having an atmosphere such as MnN, C in the annealing separation material at the time of finish annealing.
An appropriate amount of rN or the like may be blended, or a gas such as NH 3 having a nitriding ability may be contained in the atmosphere during the temperature raising process of the finish annealing. Further, nitriding may be performed by a combination of the above methods.

【0042】[0042]

【実施例】【Example】

[実施例1]表2の成分を含有し、残部Feおよび不可
避的不純物からなる電磁鋼スラブを1150℃に加熱後
粗圧延機により60mm厚のシートバーとした。その後、
このシートバーを仕上圧延機により2.1mmに厚みの熱
延板とした。その際、仕上げ熱延中の歪み速度の変動を
抑制するために、粗圧延後のシートバーを先行するシー
トバーに接合し、連続的に仕上げ熱延を行った。シート
バーの最大歪速度は仕上げ熱延最終スタンドで280s
-1とし、かつ、式(1)を満たすように圧延時の最終ス
タンドの歪速度が最大歪速度の80%を下回らないよう
に仕上圧延を行った。パススケジュールは圧延中一定と
し、熱延最終スタンドで圧下率20%で圧延を行った。
[Example 1] An electromagnetic steel slab containing the components shown in Table 2 and consisting of the balance Fe and unavoidable impurities was heated to 1150 ° C and then made into a sheet bar having a thickness of 60 mm by a rough rolling mill. afterwards,
This sheet bar was formed into a hot-rolled sheet having a thickness of 2.1 mm by a finishing mill. At that time, in order to suppress the fluctuation of the strain rate during the finish hot rolling, the sheet bar after the rough rolling was joined to the preceding sheet bar, and the finish hot rolling was continuously performed. The maximum strain rate of the sheet bar is 280s at the final hot rolling final stand.
Finish rolling was performed so that the strain rate of the final stand at the time of rolling did not fall below 80% of the maximum strain rate so that −1 was satisfied and the formula (1) was satisfied. The pass schedule was constant during rolling, and rolling was performed at a final rolling stand at a rolling reduction of 20%.

【0043】[0043]

【表2】 [Table 2]

【0044】比較材は粗圧延後のシートバーを単独で仕
上げ熱延に供した。この際、パススケジュールは圧延中
一定としたが、シートバーの咬み込みを安定させるた
め、仕上圧延開始時には最終スタンドの歪速度を196
-1とし、その後加速して定常状態では280-1で仕上
げ熱延を行った。
As a comparative material, the sheet bar after the rough rolling was used alone for finish hot rolling. At this time, the pass schedule was constant during the rolling, but the strain rate of the final stand was set to 196 at the start of the finish rolling in order to stabilize the biting of the sheet bar.
s −1, and then accelerated to perform finish hot rolling at 280 −1 in a steady state.

【0045】熱延仕上げ温度はいずれも960℃とし、
水冷して550℃で巻き取った。得られた熱延板を11
20℃×2分+900℃×2分の熱延板焼鈍を施し、そ
の後酸洗し0.23mmまで冷延し、次いで830℃90
秒の脱炭焼鈍を露点58℃の湿水素、窒素雰囲気中で実
施した。次いでアンモニア含有雰囲気で窒化処理を行っ
た。その後MgOを主成分とする焼鈍分離剤を塗布し、
1200℃×20時間の仕上焼鈍を行った。得られたコ
イルは焼鈍分離材を除去後、平坦化焼鈍を施し、張力皮
膜を焼き付け製品とした。
The hot rolling finishing temperature was 960 ° C.
After cooling with water, the film was wound at 550 ° C. The obtained hot rolled sheet was
20 ° C. × 2 minutes + 900 ° C. × 2 minutes hot-rolled sheet annealing, then pickling, cold rolling to 0.23 mm, and then 830 ° C. 90
The second decarburization annealing was performed in a wet hydrogen and nitrogen atmosphere having a dew point of 58 ° C. Next, nitriding treatment was performed in an ammonia-containing atmosphere. Thereafter, an annealing separator containing MgO as a main component is applied,
Finish annealing was performed at 1200 ° C. for 20 hours. After removing the annealing separator, the obtained coil was subjected to flattening annealing, and a tension film was baked to obtain a product.

【0046】これからエプスタイン試料を切り出して磁
気特性を測定した。エプスタイン試料は一本のシートバ
ーの先端部にあたるコイルの端部から100mの場所で
採取したものをT試料、コイル長手方向中心部で測定し
たものをM試料、熱延終端側から100mの場所で採取
したものをB試料とし、本発明例では連続圧延したシー
トバーの中間の一本分のシートバー各部より、比較例で
は1本のシートバーの各部より採取した。各試料の磁束
密度測定結果と、試料採取位置での熱延最終スタンドの
歪速度の最大値に対する比を併せて表3に示す。この様
に仕上熱延時の歪速度の変動を抑制したことにより、コ
イル長手方向の磁気特性の変動の少ない方向性電磁鋼板
を得ることが可能である。
From this, an Epstein sample was cut out and its magnetic properties were measured. The Epstein sample was a T sample taken at a position 100 m from the end of the coil corresponding to the tip of one sheet bar, an M sample measured at the center of the coil in the longitudinal direction, and a M sample at a position 100 m from the end of hot rolling. The sample was taken as a B sample, which was sampled from each part of one sheet bar in the middle of the continuously rolled sheet bar in the present invention, and from each part of one sheet bar in the comparative example. Table 3 also shows the results of measuring the magnetic flux density of each sample and the ratio of the strain rate of the final stand at the sample collection position to the maximum value of the strain rate. By suppressing the fluctuation of the strain rate during hot rolling in the finish, it is possible to obtain a grain-oriented electrical steel sheet with a small fluctuation of the magnetic properties in the longitudinal direction of the coil.

【0047】[0047]

【表3】 [Table 3]

【0048】[実施例2]表4の成分を含有し、残部F
eおよび不可避的不純物からなる電磁鋼スラブを115
0℃に加熱後粗圧延機により65mm厚のシートバーとし
た。その後、このシートバーを仕上圧延機により2.3
mmの厚みの熱延板とした。
Example 2 The components shown in Table 4 were contained, and the balance F
slab consisting of e and unavoidable impurities
After heating to 0 ° C., a sheet bar having a thickness of 65 mm was formed by a rough rolling mill. Thereafter, the sheet bar was subjected to 2.3 by a finishing mill.
A hot-rolled sheet having a thickness of mm was used.

【0049】[0049]

【表4】 [Table 4]

【0050】その際、スラブを粗圧延してシートバーと
した後、1020℃でシートバーを巻き取り、60秒経
過後にシートバーを板状に巻きもどした。次いで、仕上
熱延中の歪速度の変動を抑制するために、巻きもどした
シートバーを先行するシートバーに接合し、連続的に仕
上げ熱延を行った。ここで、中間のシートバーの最大歪
速度は仕上げ熱延最終スタンドで300s-1とし、か
つ、式(1)を満たすように圧延時の最終スタンドの歪
速度が最大歪速度の80%を下回らないように仕上圧延
を行った。パススケジュールは圧延中一定とし、熱延最
終スタンドで圧下率20%で圧延を行った。
At this time, after the slab was roughly rolled into a sheet bar, the sheet bar was wound up at 1020 ° C., and after a lapse of 60 seconds, the sheet bar was unwound into a plate shape. Next, in order to suppress the fluctuation of the strain rate during the hot rolling in the finish, the unwound sheet bar was joined to the preceding sheet bar, and the finish hot rolling was continuously performed. Here, the maximum strain rate of the intermediate sheet bar is 300 s −1 in the final hot-rolling final stand, and the strain rate of the final stand during rolling falls below 80% of the maximum strain rate so as to satisfy the expression (1). Finish rolling was performed so as not to occur. The pass schedule was constant during rolling, and rolling was performed at a final rolling stand at a rolling reduction of 20%.

【0051】比較材は粗圧延後のシートバーを単独で仕
上げ熱延に供した。この際、パススケジュールは圧延中
一定としたが、シートバーの咬み込みを安定させるた
め、仕上圧延開始時には最終スタンドの歪速度が210
-1とし、その後加速して定常状態では300-1で仕上
熱延を行い、シートバー最後端部分の歪速度は200s
-1とした。熱延仕上温度はいずれも960℃とし、水冷
して570℃で巻き取った。
As a comparative material, the sheet bar after the rough rolling was used alone for finish hot rolling. At this time, the pass schedule was constant during the rolling, but the strain rate of the final stand was set to 210 at the start of finish rolling in order to stabilize the bite of the sheet bar.
s -1, and then accelerated to perform hot rolling at 300 -1 in the steady state, and the strain rate at the rear end of the sheet bar was 200 s
It was set to -1 . Each of the hot rolling finishing temperatures was 960 ° C., water-cooled and wound at 570 ° C.

【0052】得られた熱延板を1120℃×2分30秒
+900℃×2分の熱延板焼鈍を施し、100℃の湯中
で冷却し、その後酸洗し0.30mmまで冷延し、次いで
830℃120秒の脱炭焼鈍を実施した。次いでアンモ
ニア含有雰囲気で窒化処理を行った。その後MgOを主
成分とする焼鈍分離剤を塗布し、1200℃×20時間
の仕上焼鈍を行った。得られたコイルは焼鈍分離材を除
去後、平坦化焼鈍を施し、張力皮膜を焼き付け製品とし
た。
The obtained hot rolled sheet was subjected to hot rolled sheet annealing at 1120 ° C. × 2 minutes 30 seconds + 900 ° C. × 2 minutes, cooled in hot water at 100 ° C., then pickled and cold rolled to 0.30 mm. Then, decarburizing annealing was performed at 830 ° C. for 120 seconds. Next, nitriding treatment was performed in an ammonia-containing atmosphere. Thereafter, an annealing separator containing MgO as a main component was applied, and finish annealing was performed at 1200 ° C. for 20 hours. After removing the annealing separator, the obtained coil was subjected to flattening annealing, and a tension film was baked to obtain a product.

【0053】これからエプスタイン試料を切り出して磁
気特性を測定した。エプスタイン試料は一本のシートバ
ーの先端部にあたる製品コイルの端部から100mの場
所で採取したものをT試料、製品コイル長手方向中心部
で測定したものをM試料、熱延終端側から100mの場
所で採取したものをB試料とし、本発明例では連続圧延
したシートバーの中間の一本分のシートバー各部より、
比較例では1本のシートバーの各部より採取した。各試
料の磁束密度測定結果と、試料採取位置での熱延最終ス
タンドの歪速度の最大値に対する比を併せて表5に示
す。この様に仕上熱延時の歪速度の変動を抑制したこと
により、コイル長手方向の磁気特性の変動の少ない方向
性電磁鋼板を得ることが可能である。
From this, an Epstein sample was cut out and its magnetic properties were measured. Epstein samples were T samples taken at a position 100 m from the end of the product coil corresponding to the tip of one sheet bar, M samples were taken at the center of the product coil in the longitudinal direction, and M samples were taken at 100 m from the end of the hot rolling. What was sampled at the place was designated as B sample, and in the present invention example, from each part of the sheet bar in the middle of the continuously rolled sheet bar,
In the comparative example, samples were taken from each part of one sheet bar. Table 5 also shows the results of measuring the magnetic flux density of each sample and the ratio of the strain rate of the final stand at the sample collection position to the maximum value of the strain rate. By suppressing the fluctuation of the strain rate during hot rolling in the finish, it is possible to obtain a grain-oriented electrical steel sheet with a small fluctuation of the magnetic properties in the longitudinal direction of the coil.

【0054】[0054]

【表5】 [Table 5]

【0055】[実施例3]表6の成分を含有し、残部F
eおよび不可避的不純物からなる電磁鋼スラブを115
0℃に加熱後粗圧延機により65mm厚のシートバーとし
た。その後、このシートバーを仕上圧延機により2.3
mmに厚みの熱延板とした。
Example 3 The components shown in Table 6 were contained and the balance F
slab consisting of e and unavoidable impurities
After heating to 0 ° C., a sheet bar having a thickness of 65 mm was formed by a rough rolling mill. Thereafter, the sheet bar was subjected to 2.3 by a finishing mill.
A hot rolled sheet having a thickness of mm was used.

【0056】[0056]

【表6】 [Table 6]

【0057】その際、仕上熱延中の歪速度の変動を抑制
するために、粗圧延後のシートバーを先行するシートバ
ーに接合し、連続的に仕上熱延を行った。巻取り時のシ
ートバーの温度は1220℃とし、巻取り後のシートバ
ーは60秒経過後、板状に巻きもどして仕上熱延を行っ
た。中間のシートバーの最大歪速度は仕上熱延最終スタ
ンドで300s-1とし、かつ、式(1)を満たすように
圧延時の最終スタンドの歪み速度が最大歪速度の80%
を下回らないように仕上圧延を行った。パススケジュー
ルは圧延中一定とし、熱延最終スタンドで圧下率20%
で圧延を行った。
At that time, in order to suppress the variation of the strain rate during the hot rolling, the sheet bar after the rough rolling was joined to the preceding sheet bar, and the hot rolling was continuously performed. The temperature of the sheet bar at the time of winding was 1220 ° C., and after the lapse of 60 seconds, the sheet bar after winding was wound back into a plate shape and subjected to finish hot rolling. The maximum strain rate of the intermediate sheet bar is 300 s -1 at the final hot rolling final stand, and the strain rate of the final stand at the time of rolling is 80% of the maximum strain rate so as to satisfy Expression (1).
The finish rolling was carried out so as not to fall below. The pass schedule is constant during rolling, and the rolling reduction is 20% at the final hot rolling stand.
Rolled.

【0058】比較材は粗圧延後のシートバーを単独で仕
上げ熱延に供した。この際、パススケジュールは圧延中
一定としたが、シートバーの咬み込みを安定させるた
め、仕上圧延開始時には最終スタンドの歪速度が210
-1とし、その後加速して定常状態では300-1で仕上
熱延を行い、シートバー最後端部分の歪速度は200s
-1とした。熱延仕上げ温度はいずれも970℃とし、水
冷して570℃で巻き取った。
As a comparative material, the sheet bar after the rough rolling was used alone for finish hot rolling. At this time, the pass schedule was constant during the rolling, but the strain rate of the final stand was set to 210 at the start of finish rolling in order to stabilize the bite of the sheet bar.
s -1, and then accelerated to perform hot rolling at 300 -1 in the steady state, and the strain rate at the rearmost end of the sheet bar was 200 s.
It was set to -1 . The hot-rolling finishing temperature was 970 ° C., water-cooled and wound at 570 ° C.

【0059】得られた熱延板を1120℃×2分30秒
+900℃×2分の熱延板焼鈍を施し、100℃の湯中
で冷却し、その後酸洗し0.27mmまで冷延し、次いで
830℃120秒の脱炭焼鈍を実施した。次いでアンモ
ニア含有雰囲気で窒化処理を行った。その後MgOを主
成分とする焼鈍分離剤を塗布し、1200℃×20時間
の仕上焼鈍を行った。得られたコイルは焼鈍分離材を除
去後、平坦化焼鈍を施し、張力皮膜を焼き付け製品とし
た。
The obtained hot rolled sheet is subjected to hot rolled sheet annealing at 1120 ° C. × 2 minutes 30 seconds + 900 ° C. × 2 minutes, cooled in hot water at 100 ° C., then pickled and cold rolled to 0.27 mm. Then, decarburizing annealing was performed at 830 ° C. for 120 seconds. Next, nitriding treatment was performed in an ammonia-containing atmosphere. Thereafter, an annealing separator containing MgO as a main component was applied, and finish annealing was performed at 1200 ° C. for 20 hours. After removing the annealing separator, the obtained coil was subjected to flattening annealing, and a tension film was baked to obtain a product.

【0060】これからエプスタイン試料を切り出して磁
気特性を測定した。エプスタイン試料は一本のシートバ
ーの先端部にあたるコイルの端部から100mの場所で
採取したものをT試料、コイル長手方向中心部で測定し
たものをM試料、熱延終端側から100mの場所で採取
したものをB試料とし、本発明例では中間のシートバー
より、比較例では1本のシートバーの各部より採取し
た。各試料の磁束密度測定結果と、試料採取位置での熱
延最終スタンドの歪速度の最大値に対する比を併せて表
7に示す。この様に仕上熱延時の歪速度の変動を抑制し
たことにより、コイル長手方向の磁気特性の変動の少な
い方向性電磁鋼板を得ることが可能である。
From this, an Epstein sample was cut out and its magnetic properties were measured. The Epstein sample was a T sample taken at a position 100 m from the end of the coil corresponding to the tip of one sheet bar, an M sample measured at the center of the coil in the longitudinal direction, and a M sample at a position 100 m from the end of hot rolling. The sample was taken as a B sample, which was sampled from an intermediate sheet bar in the present invention, and from each part of one sheet bar in the comparative example. Table 7 shows the measurement results of the magnetic flux density of each sample and the ratio of the strain rate of the final stand at the sample collection position to the maximum value of the strain rate. By suppressing the fluctuation of the strain rate during hot rolling in the finish, it is possible to obtain a grain-oriented electrical steel sheet with a small fluctuation of the magnetic properties in the longitudinal direction of the coil.

【0061】[0061]

【表7】 [Table 7]

【0062】[実施例4]表8の成分を含有し、残部F
eおよび不可避的不純物からなる電磁鋼スラブを115
0℃に加熱後、粗圧延機により65mm厚のシートバーと
した。その後、このシートバーを仕上圧延機により2.
3mmの厚みの熱延板とした。
Example 4 The components shown in Table 8 were contained, and the balance F
slab consisting of e and unavoidable impurities
After heating to 0 ° C., a sheet bar having a thickness of 65 mm was formed by a rough rolling mill. Thereafter, the sheet bar is subjected to 2.
A hot-rolled sheet having a thickness of 3 mm was obtained.

【0063】[0063]

【表8】 [Table 8]

【0064】その際、スラブを粗圧延してシートバーと
した後、1220℃でシートバーを巻き取り、60秒経
過後にシートバーを板状に巻きもどした。次いで、仕上
熱延中の歪速度の変動を抑制するために、巻きもどした
シートバーを先行するシートバーに接合し、連続的に仕
上げ熱延を行った。ここで、中間のシートバーの最大歪
速度は仕上げ熱延最終スタンドで300s-1とし、か
つ、式(1)を満たすように圧延時の最終スタンドの歪
速度が最大歪速度の80%を下回らないように仕上圧延
を行った。パススケジュールは圧延中一定とし、熱延最
終スタンドで圧下率20%で圧延を行った。
At that time, after the slab was roughly rolled into a sheet bar, the sheet bar was wound up at 1220 ° C., and after a lapse of 60 seconds, the sheet bar was unwound into a plate shape. Next, in order to suppress the fluctuation of the strain rate during the hot rolling in the finish, the unwound sheet bar was joined to the preceding sheet bar, and the finish hot rolling was continuously performed. Here, the maximum strain rate of the intermediate sheet bar is 300 s −1 in the final hot-rolling final stand, and the strain rate of the final stand during rolling falls below 80% of the maximum strain rate so as to satisfy the expression (1). Finish rolling was performed so as not to occur. The pass schedule was constant during rolling, and rolling was performed at a final rolling stand at a rolling reduction of 20%.

【0065】比較材は粗圧延後のシートバーを単独で仕
上げ熱延に供した。この際、パススケジュールは圧延中
一定としたが、シートバーの咬み込みを安定させるた
め、仕上圧延開始時には最終スタンドの圧延速度が21
0s-1とし、その後加速して定常状態では300s-1
仕上げ熱延を行い、シートバー最後端部分の圧延速度は
200s-1とした。熱延仕上げ温度はいずれも970℃
とし、水冷して570℃で巻き取った。
As a comparative material, the sheet bar after the rough rolling was subjected to finishing hot rolling alone. At this time, the pass schedule was constant during the rolling, but the rolling speed of the final stand was set to 21 at the start of finish rolling in order to stabilize the bite of the sheet bar.
And 0 s -1, performs finishing hot rolling at 300 s -1 in a steady state and then accelerated, the rolling speed of the sheet bar rearmost end portion was 200 s -1. Hot rolling finish temperature is 970 ℃
And cooled with water at 570 ° C.

【0066】得られた熱延板を酸洗しタンデム圧延機で
0.30mmまで冷延し、次いで830℃120秒の脱炭
焼鈍を実施した。次いでアンモニア含有雰囲気で窒化処
理を行った。その後MgOを主成分とする焼鈍分離剤を
塗布し、1200℃×20時間の仕上焼鈍を行った。得
られたコイルは焼鈍分離材を除去後、平坦化焼鈍を施
し、張力皮膜を焼き付け製品とした。
The obtained hot-rolled sheet was pickled, cold rolled to 0.30 mm by a tandem rolling mill, and then decarburized at 830 ° C. for 120 seconds. Next, nitriding treatment was performed in an ammonia-containing atmosphere. Thereafter, an annealing separator containing MgO as a main component was applied, and finish annealing was performed at 1200 ° C. for 20 hours. After removing the annealing separator, the obtained coil was subjected to flattening annealing, and a tension film was baked to obtain a product.

【0067】これからエプスタイン試料を切り出して磁
気特性を測定した。エプスタイン試料は一本のシートバ
ーの先端部にあたる製品コイルの端部から100mの場
所で採取したものをT試料、製品コイル長手方向中心部
で測定したものをM試料、熱延終端側から100mの場
所で採取したものをB試料とし、本発明例では中間のシ
ートバーより、比較例では1本のシートバーの各部より
採取した。各試料の磁束密度測定結果と、試料採取位置
での熱延最終スタンドの歪速度の最大値に対する比を併
せて表9に示す。この様に仕上熱延時の歪速度の変動を
抑制したことにより、コイル長手方向の磁気特性の変動
の少ない方向性電磁鋼板を得ることが可能である。
From this, an Epstein sample was cut out and its magnetic properties were measured. Epstein samples were T samples taken at a position 100 m from the end of the product coil corresponding to the tip of one sheet bar, M samples were taken at the center of the product coil in the longitudinal direction, and M samples were taken at 100 m from the end of the hot rolling. The sample collected at the place was designated as a B sample, which was sampled from an intermediate sheet bar in the present invention, and from each part of one sheet bar in the comparative example. Table 9 also shows the results of measuring the magnetic flux density of each sample and the ratio of the strain rate of the final stand of the hot rolling at the sample collection position to the maximum value. By suppressing the fluctuation of the strain rate during hot rolling in the finish, it is possible to obtain a grain-oriented electrical steel sheet with a small fluctuation of the magnetic properties in the longitudinal direction of the coil.

【0068】[0068]

【表9】 [Table 9]

【0069】[0069]

【発明の効果】このように本発明によれば、コイル長手
方向の磁気特性の安定した方向性電磁鋼板を製造するこ
とが可能である。
As described above, according to the present invention, it is possible to manufacture a grain-oriented electrical steel sheet having stable magnetic properties in the longitudinal direction of the coil.

【図面の簡単な説明】[Brief description of the drawings]

【図1】仕上熱延時の、成品の磁束密度と仕上げ熱延最
終スタンドの歪み速度との関係を示すものである。
FIG. 1 shows the relationship between the magnetic flux density of a finished product and the strain rate of a final hot-rolled final stand at the time of finish hot-rolling.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村上 健一 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 宮城 康司 北九州市戸畑区飛幡町1番1号 新日本製 鐵株式会社八幡製鐵所内 (72)発明者 田所 史郎 北九州市戸畑区飛幡町1番1号 新日本製 鐵株式会社八幡製鐵所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kenichi Murakami 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Technology Development Division (72) Inventor Koji Miyagi 1-1-1, Tobata-cho, Tobata-ku, Kitakyushu-shi New Nippon Steel Corporation Yawata Works (72) Inventor Shiro Tadokoro 1-1 Hatabi-cho, Tobata-ku, Kitakyushu-shi Nippon Steel Corporation Yawata Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 0.025% ≦ C ≦0.075%、 2.5% ≦ Si≦4.5%、 S ≦0.015%、 0.010% ≦酸可溶性Al≦0.050%、 0.0010%≦ N ≦0.0120%、 0.050% ≦ Mn≦0.45 %を含有し、残部
Feおよび不可避的不純物からなるスラブを、1280
℃以下の温度に加熱した後熱延し、熱延板焼鈍を施すか
あるいは施さず、1回または中間焼鈍をはさむ2回以上
の圧延で最終圧延率80%以上とし、次いで脱炭焼鈍完
了後以降、仕上焼鈍の二次再結晶開始までの間に鋼板に
窒化処理を施す方向性電磁鋼板の製造法において、仕上
熱間圧延を、下記(1)式を満足する条件で行うことを
特徴とするコイル長手方向の磁気特性の安定した方向性
電磁鋼板の製造方法。 【数1】
1. In% by weight, 0.025% ≦ C ≦ 0.075%, 2.5% ≦ Si ≦ 4.5%, S ≦ 0.015%, 0.010% ≦ acid-soluble Al ≦ 0 A slab containing 0.050%, 0.0010% ≦ N ≦ 0.0120%, 0.050% ≦ Mn ≦ 0.45%, and the balance being Fe and unavoidable impurities was 1280.
After hot-rolling after heating to a temperature of not more than ℃, hot-rolled sheet annealing is performed or not, and a final rolling reduction of 80% or more is performed by rolling once or twice or more with intermediate annealing, and then after decarburizing annealing is completed Thereafter, in a method for producing a grain-oriented electrical steel sheet in which the steel sheet is subjected to nitriding treatment before the start of the secondary recrystallization of the finish annealing, the finish hot rolling is performed under a condition satisfying the following equation (1). Of producing a grain-oriented electrical steel sheet having stable magnetic properties in the longitudinal direction of the coil. (Equation 1)
【請求項2】 重量%で、 0.025% ≦ C ≦0.075% 2.5% ≦ Si≦4.5 % S ≦0.015% 0.010%≦酸可溶性Al≦0.050% 0.0010%≦ N ≦0.0120% 0.050% ≦ Mn≦0.45% を含有し、残部Feおよび不可避的不純物からなるスラ
ブを、1280℃以下の温度に加熱した後熱延し、熱延
板焼鈍を施すかあるいは施さず、1回または中間焼鈍を
はさむ2回以上の圧延で最終圧延率80%以上とし、次
いで脱炭焼鈍完了後以降、仕上焼鈍の二次再結晶開始ま
での間に鋼板に窒化処理を施す方向性電磁鋼板の製造法
において、スラブを粗圧延して得られたシートバーの先
端部を先行するシートバーの後端部と接合して複数のシ
ートバーを一体とし、この一体とした複数のシートバー
を連続的に仕上げ熱延に供するとともに、一体としたシ
ートバーの先端のシートバーと後端のシートバーとを除
いた中間のシートバーの仕上熱間圧延を、下記(2)式
を満足する条件で行うことを特徴とするコイル長手方向
の磁気特性の安定した方向性電磁鋼板の製造方法。 【数2】
2. In% by weight, 0.025% ≦ C ≦ 0.075% 2.5% ≦ Si ≦ 4.5% S ≦ 0.015% 0.010% ≦ acid-soluble Al ≦ 0.050% A slab containing 0.0010% ≦ N ≦ 0.0120% 0.050% ≦ Mn ≦ 0.45%, the balance consisting of Fe and unavoidable impurities is heated to a temperature of 1280 ° C. or lower, and then hot-rolled, With or without hot-rolled sheet annealing, the final rolling reduction is 80% or more by rolling once or twice or more with intermediate annealing, and then after completion of decarburizing annealing, until the start of secondary recrystallization of finish annealing. In the manufacturing method of grain-oriented electrical steel sheets in which the steel sheet is subjected to nitriding in the middle, the front end of the sheet bar obtained by roughly rolling the slab is joined to the rear end of the preceding sheet bar to integrate multiple sheet bars. And the integrated multiple sheet bars are continuously And finish hot rolling of the intermediate sheet bar excluding the sheet bar at the front end and the sheet bar at the rear end of the integrated sheet bar under the conditions satisfying the following expression (2). A method for producing a grain-oriented electrical steel sheet having stable magnetic properties in the longitudinal direction of a coil. (Equation 2)
JP8480497A 1997-04-03 1997-04-03 Production of grain-oriented silicon steel sheet stable in magnetic property in longitudinal direction of coil Withdrawn JPH10280042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8480497A JPH10280042A (en) 1997-04-03 1997-04-03 Production of grain-oriented silicon steel sheet stable in magnetic property in longitudinal direction of coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8480497A JPH10280042A (en) 1997-04-03 1997-04-03 Production of grain-oriented silicon steel sheet stable in magnetic property in longitudinal direction of coil

Publications (1)

Publication Number Publication Date
JPH10280042A true JPH10280042A (en) 1998-10-20

Family

ID=13840908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8480497A Withdrawn JPH10280042A (en) 1997-04-03 1997-04-03 Production of grain-oriented silicon steel sheet stable in magnetic property in longitudinal direction of coil

Country Status (1)

Country Link
JP (1) JPH10280042A (en)

Similar Documents

Publication Publication Date Title
JPS6160896B2 (en)
JP6721135B1 (en) Method for producing grain-oriented electrical steel sheet and cold rolling equipment
JP2008156741A (en) Method for manufacturing non-oriented electromagnetic steel sheet with high magnetic flux density
KR19990071916A (en) A method for producing a non-oriented electromagnetic steel sheet having a high magnetic flux density and a low iron loss
JP3492965B2 (en) Cold rolling method to obtain unidirectional electrical steel sheet with excellent magnetic properties
JPH10273726A (en) Manufacture of grain oriented silicon steel sheet with stable magnetic property in longitudinal direction of coil
JP3359385B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPH10280042A (en) Production of grain-oriented silicon steel sheet stable in magnetic property in longitudinal direction of coil
JP4317305B2 (en) Cold rolling method for obtaining a unidirectional electrical steel sheet with small fluctuation in magnetic properties in the cold rolling direction
JP2647323B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JPH10280043A (en) Production of grain-oriented silicon steel sheet high in magnetic flux density
JP4261633B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPH1046248A (en) Production of nonoriented magnetic steel sheet high in magnetic flux density and low in core loss
JPH1150153A (en) Production of grain oriented silicon steel sheet with extremely high magnetic flux density
JPH10306318A (en) Manufacture of grain oriented silicon steel sheet having stable and extremely high magnetic flux density in longitudinal direction of coil
JP3546114B2 (en) Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density
JPH10280039A (en) Production of grain-oriented silicon steel sheet high in magnetic flux density and low in core loss
JP2001172718A (en) Method for producing nonoriented silicon steel sheet uniform in magnetic property
CN115720594A (en) Method and apparatus for manufacturing grain-oriented electrical steel sheet
CN115867680A (en) Method and apparatus for manufacturing grain-oriented electrical steel sheet
JP2001172719A (en) Method for producing nonoriented silicon steel sheet excellent in magnetic property
JP3369371B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP2000297325A (en) Manufacture of nonoriented silicon steel sheet with high magnetic flux density and low iron loss
JP2000096145A (en) Manufacture of nonoriented silicon steel sheet with uniform magnetic property

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040706