JPH10280011A - Production of alnico alloy powder - Google Patents

Production of alnico alloy powder

Info

Publication number
JPH10280011A
JPH10280011A JP9087026A JP8702697A JPH10280011A JP H10280011 A JPH10280011 A JP H10280011A JP 9087026 A JP9087026 A JP 9087026A JP 8702697 A JP8702697 A JP 8702697A JP H10280011 A JPH10280011 A JP H10280011A
Authority
JP
Japan
Prior art keywords
powder
less
heat treatment
alnico alloy
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9087026A
Other languages
Japanese (ja)
Inventor
Okie Nakabayashi
興栄 中林
Atsushi Watanabe
篤 渡辺
Yoshishige Tanaka
義慈 田中
Kaneyuki Katou
欽之 加藤
Masazumi Hirai
正純 平居
Isao Ikeda
功 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pacific Industrial Co Ltd
Taiheiyo Kogyo KK
Original Assignee
Pacific Industrial Co Ltd
Taiheiyo Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pacific Industrial Co Ltd, Taiheiyo Kogyo KK filed Critical Pacific Industrial Co Ltd
Priority to JP9087026A priority Critical patent/JPH10280011A/en
Publication of JPH10280011A publication Critical patent/JPH10280011A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce Alnico alloy powder for permanent magnets having a specific powder grain size and high magnetic characteristics at a good yield by spraying the molten metal of a specific compsn. consisting of Al, Ni, Co, Cu, Si, Mn, Ti, Nb and Fe to form metallic powder and subjecting the metallic powder to drying and classifying. SOLUTION: The molten metal which contains, by weight %, 5 to 12% Al, 10 to 30% Ni, <=40% Co, 1 to 6% Cu, 0.1 to 0.5 Si, <=0.10% Mn, 1 to 10% Ti and <=3% Nb, is further added with 0.001 to 0.010% % Ca at need and consists of the balance Fe and inevitable impurity components is made into metallic powder by a spraying method. The metallic powder is dried and classified, by which the powder grain size is preferably adjusted to <=150 μm. The metallic powder is thereafter subjected to a primary heat treatment of holding the powder for 10 to 60 minutes at 700 to 800 deg.C and is then subjected to an aging treatment of holding or slowly cooling the powder for 1 to 20 hours at 550 to 650 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Al,Ni,Co
を主成分とする永久磁石用アルニコ合金粉末の製造方法
に関するものである。
The present invention relates to Al, Ni, Co
The present invention relates to a method for producing an alnico alloy powder for permanent magnets, comprising as a main component.

【0002】[0002]

【従来の技術】アルニコ系永久磁石合金は、Al,N
i,CoもしくはAl,Niを主成分として残部は実質
的にFeからなり、代表的規格としてアルニコ1〜8な
どがあり、一般的に鋳造法で製造されるが、硬くて脆い
ために切削加工が極めて困難であり、小型で複雑な形状
を有する磁石などは粉末冶金法、粉末成型法を用いて製
造する方法が磁石の品質およびコストの点で有利であ
る。粉末成型法の原料となるアルニコ合金粉末は、従
来、鋳造法で製造された鋳塊を破砕することによって製
造されていたが、破砕に必要な手間と時間がかかり量産
化に限界があること、しかも製造コストが高くなるなど
の欠点があった。
2. Description of the Related Art Alnico-based permanent magnet alloys include Al, N
i, Co or Al, Ni as a main component, and the balance substantially consisting of Fe. Typical standards include Alnico 1 to 8, etc., which are generally manufactured by a casting method. It is extremely difficult to use a powder metallurgy method or a powder molding method for a magnet having a small and complicated shape, which is advantageous in terms of quality and cost of the magnet. Alnico alloy powder, which is the raw material of the powder molding method, was conventionally manufactured by crushing the ingot manufactured by the casting method, but the time and effort required for crushing and mass production are limited, In addition, there are disadvantages such as an increase in manufacturing cost.

【0003】一方、合金粉末の製造には所定の成分を含
有する合金の溶湯を水アトマイズ、またはガスアトマイ
ズなどの噴霧法(以下、アトマイズ法と総称する)によ
って製造する方法が広く実用されている。しかし、アル
ニコ合金のアトマイズ法はAlやTiの含有量が高いた
め、アトマイズ時の溶湯注湯ノズルが閉塞しやすく、製
造が非常に困難であり、金属粉末の製造は歩留が悪く製
造コストが高いこと、かつ量産化に限界があること、ま
た磁気特性が鋳塊破砕粉に比べ悪いなどの問題があっ
た。
On the other hand, in the production of alloy powder, a method of producing a molten alloy containing a predetermined component by a spraying method such as water atomization or gas atomization (hereinafter collectively referred to as atomization method) is widely used. However, since the Alnico alloy atomization method has a high content of Al and Ti, the molten metal pouring nozzle at the time of atomization is easily clogged, and it is very difficult to manufacture the metal powder. There are problems such as high cost, limited mass production, and poor magnetic properties as compared with ingot crushed powder.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記のよう
な問題点を解決し、高磁気特性のアルニコ合金粉末(特
に粒径が150μm以下の粉末)を、歩留良く製造する
ことを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to produce an Alnico alloy powder having high magnetic properties (particularly a powder having a particle size of 150 μm or less) with a high yield. It is assumed that.

【0005】[0005]

【課題を解決するための手段】本発明者らは、この問題
を解決するために種々の製造実験を行い、検討を重ねた
結果、Feに重量%で、Al:5〜12%、Ni:10
〜30%、Co:40%以下、Cu:1〜6%、Mn:
0.10%以下、Si:0.1〜0.5%、Ti:1〜
10%、Nb:3%以下の元素を含有させることによっ
て、アトマイズ法によって粉末粒径150μm以下の高
磁気特性アルニコ合金粉末を歩留良く製造することがで
きることを見い出した。
Means for Solving the Problems The present inventors have conducted various production experiments to solve this problem, and as a result of repeated studies, have found that Fe: 5% to 12% by weight, Ni: 10
-30%, Co: 40% or less, Cu: 1-6%, Mn:
0.10% or less, Si: 0.1 to 0.5%, Ti: 1 to 1
It has been found that by containing an element of 10% or less, Nb: 3% or less, high magnetic property alnico alloy powder having a powder particle diameter of 150 μm or less can be produced with good yield by an atomizing method.

【0006】すなわち、本発明のアルニコ合金粉末の製
造法は、重量%で、 Al:5〜12%、 Ni:10〜30%、 Co:40%以下、 Cu:1〜6%、 Mn:0.10%以下、 Si:0.1〜0.5%、 Ti:1〜10%、 Nb:3%以下、 さらに、必要に応じて Ca:0.001〜0.010% を含有し、残部はFeおよび不可避的不純物成分からな
るアルニコ溶融金属から、水アトマイズ法やガスアトマ
イズ法などの噴霧法によって金属粉末を製造し、乾燥・
分級することを特徴とする。さらに本発明はその後、7
00〜800℃の範囲の温度で10〜60分間保持する
1次熱処理をした後に、550〜650℃の範囲の所定
温度で1〜20時間保持するか、または該温度範囲を1
〜20時間の徐冷をすることによって時効処理を行うこ
とを特徴とする。
That is, the method for producing an alnico alloy powder of the present invention is as follows: Al: 5 to 12%, Ni: 10 to 30%, Co: 40% or less, Cu: 1 to 6%, Mn: 0 10% or less, Si: 0.1 to 0.5%, Ti: 1 to 10%, Nb: 3% or less, and, if necessary, Ca: 0.001 to 0.010%; Manufactures metal powder from Alnico molten metal consisting of Fe and unavoidable impurity components by spraying methods such as water atomizing method and gas atomizing method,
It is characterized by classification. Further, the present invention has
After the first heat treatment at a temperature in the range of 00 to 800 ° C. for 10 to 60 minutes, the first heat treatment is performed at a predetermined temperature in the range of 550 to 650 ° C. for 1 to 20 hours, or the temperature range is set to 1
The aging treatment is performed by slow cooling for up to 20 hours.

【0007】本発明において上記金属粉末の粒径は15
0μm(100メッシュ)以下、望ましくは15〜15
0μmとするのがよく、また、1次熱処理と時効処理の
炉内雰囲気を水素雰囲気、または水素と窒素の混合雰囲
気とするのがよい。また、1次熱処理と時効処理は連続
炉で行うことができる。
In the present invention, the particle size of the metal powder is 15
0 μm (100 mesh) or less, desirably 15 to 15
The atmosphere in the furnace for the primary heat treatment and the aging treatment is preferably a hydrogen atmosphere or a mixed atmosphere of hydrogen and nitrogen. The primary heat treatment and the aging treatment can be performed in a continuous furnace.

【0008】[0008]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明は、種々の製造実験を行い、アルニコ合金粉末を
溶融金属からアトマイズ法によって製造するに当たっ
て、溶融金属にSiを0.1〜0.5%添加し、必要に
応じてCaを0.001〜0.010%添加することに
よって、AlおよびTiの含有量が多いアルニコ合金で
も、アトマイズ中の注湯ノズルの閉塞を防止し、歩留良
く製造できると共に、粉末粒度とAl,Ni,Co,C
u,Mn,Ti,Nbの含有量の選択と熱処理条件を規
制することによって、アトマイズ粉の磁気特性は鋳塊破
砕粉に比べ良好になることを見い出したものである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The present invention carries out various production experiments, and when producing an alnico alloy powder from a molten metal by an atomizing method, 0.1 to 0.5% of Si is added to the molten metal, and if necessary, 0.001% of Ca is added. By adding about 0.010%, even with an Alnico alloy having a large content of Al and Ti, it is possible to prevent clogging of a pouring nozzle during atomization and to produce with a good yield, and to obtain a powder particle size and Al, Ni, Co, C
It has been found that by selecting the contents of u, Mn, Ti, and Nb and regulating the heat treatment conditions, the magnetic properties of the atomized powder are better than those of the ingot crushed powder.

【0009】まず、本発明が含有する合金元素の含有量
を限定する理由を以下に説明する。Niは10%未満で
は残留磁束密度Brが低くて実用的でなく、30%を超
えると保持力Hcの低下が著しくなるため、10〜30
%とする。
First, the reason for limiting the content of the alloy element contained in the present invention will be described below. If the Ni content is less than 10%, the residual magnetic flux density Br is low, which is not practical. If the Ni content is more than 30%, the coercive force Hc significantly decreases.
%.

【0010】Alは5%未満では溶体化処理温度が著し
く高くなり、溶体化処理後に急速冷却しなければ所望の
磁気特性を得ることができず、一方、12%を超えると
製品の磁石が脆くなると共に、噴霧操業時の製造歩留
的、製造コスト的に不利となるため、5〜12%とす
る。
[0010] If the Al content is less than 5%, the solution treatment temperature becomes remarkably high, and the desired magnetic properties cannot be obtained without rapid cooling after the solution treatment. On the other hand, if it exceeds 12%, the magnet of the product becomes brittle. At the same time, it is disadvantageous in terms of production yield and production cost at the time of spraying operation.

【0011】Coは従来のアルニコ合金の最大磁気エネ
ルギー積(BH)max の高値を得るために20%以上必
要とするが、高価であるため、40%以下とする。Cu
は1.0〜6.0%で保持力Hcが最大となり、7%を
超えると保持力Hcが著しく低下するので、6%以下と
する。Tiは永久磁石の保持力Hcを向上させるために
有効であるが、残留磁束密度を劣化させるため、1〜1
0%とする。
[0011] Co requires at least 20% to obtain a high maximum magnetic energy product (BH) max of the conventional alnico alloy, but it is expensive, so it should be at most 40%. Cu
Is from 1.0 to 6.0%, the holding force Hc becomes maximum, and if it exceeds 7%, the holding force Hc is remarkably reduced. Although Ti is effective for improving the coercive force Hc of the permanent magnet, it degrades the residual magnetic flux density.
0%.

【0012】Mnは多すぎるとアトマイズ中に酸化され
やすく、金属粉末中の酸素含有量が高くなり、該金属粉
末から製造した最終製品(以下、製品と総称する)の気
孔発生、密度低下や磁気特性劣化の問題が発生するた
め、0.1%以下とする。
If Mn is too large, it is liable to be oxidized during atomization, the oxygen content in the metal powder increases, and the final product (hereinafter, collectively referred to as “product”) produced from the metal powder generates pores, decreases the density, and reduces the magnetic field. Since a problem of characteristic deterioration occurs, the content is set to 0.1% or less.

【0013】Siは溶融金属精練時の脱酸とアトマイズ
操業安定化のため0.1%以上添加するが、磁気特性劣
化防止のため0.5%以下とする。Nbは永久磁石の保
持力Hcを向上させるために有効であるが、残留磁束密
度を劣化させると共に、高価なため3%以下とする。
[0013] Si is added in an amount of 0.1% or more for deoxidation during the refining of molten metal and for stabilizing the atomizing operation, but is added to 0.5% or less for preventing deterioration of magnetic properties. Nb is effective for improving the coercive force Hc of the permanent magnet, but is not more than 3% because it degrades the residual magnetic flux density and is expensive.

【0014】また、溶融金属を取鍋から流出させ、アト
マイズ法によって金属粉末を製造する時に、流出ノズル
が溶融金属中に懸濁するアルミナ系介在物による閉塞を
防止するために、Caを添加することができるが、Ca
を0.001〜0.010%とした理由は、0.001
%未満ではその効果がなく、また0.010%を超える
と酸化が激しくCaO系介在物が多く有害となるためで
ある。
Further, when the molten metal is discharged from the ladle and metal powder is produced by the atomization method, Ca is added in order to prevent the flow nozzle from being clogged by alumina-based inclusions suspended in the molten metal. Can be
Is 0.001 to 0.010%.
%, The effect is not obtained, and if it exceeds 0.010%, oxidization is severe and many CaO-based inclusions are harmful.

【0015】アルニコ合金の粉末粒径は、粉末成形性の
観点から細かい方がよいが、細かくなると表面酸化量の
増大による磁気特性低下を招く恐れがあるので、150
μm以下、望ましくは15〜150μmとする。このよ
うな適正な粒度を安価に得るには水アトマイズ法の採用
が好ましい。
The finer the particle size of the alnico alloy is, the better from the viewpoint of powder moldability. However, the finer the particle size, the lower the magnetic property due to an increase in the amount of surface oxidation.
μm or less, preferably 15 to 150 μm. In order to obtain such an appropriate particle size at low cost, it is preferable to employ a water atomizing method.

【0016】次に金属粉末を熱処理する理由を説明す
る。アルニコ合金の磁気特性向上のためには、1次熱処
理と時効処理によるスピノーダル分解によって2相分離
させた微細組織にする必要がある。ここで、1次熱処理
は温度が高すぎると2相分離の粒子が粗大化し、低温す
ぎると2相分離が不十分となる。また熱処理保持時間が
長すぎると粗大化し、短かすぎると2相分離が不十分と
なって磁気特性が低下するため、700〜800℃の範
囲の所定温度において、10〜60分間保持の熱処理を
行う。
Next, the reason for heat-treating the metal powder will be described. In order to improve the magnetic properties of the alnico alloy, it is necessary to form a microstructure separated into two phases by spinodal decomposition by primary heat treatment and aging treatment. Here, in the first heat treatment, if the temperature is too high, the particles of the two-phase separation become coarse, and if the temperature is too low, the two-phase separation becomes insufficient. Also, if the heat treatment holding time is too long, coarsening occurs, and if the heat treatment holding time is too short, two-phase separation becomes insufficient and magnetic properties deteriorate, so that a heat treatment of holding for 10 to 60 minutes at a predetermined temperature in the range of 700 to 800 ° C. Do.

【0017】一方、時効処理は2相分離した析出相への
組成の拡散を促進させ磁気特性を向上させるために行う
が、温度が低すぎると各成分の拡散速度が遅くなる。ま
た処理時間が短すぎると拡散が不十分となり、処理時間
が長すぎると生産能力が低下し、工業的に非量産的であ
り、経済的にも不利となるため、550〜650℃の範
囲の温度で1〜20時間保持するか、または該温度範囲
を1〜20時間の徐冷を行う。
On the other hand, the aging treatment is carried out to promote the diffusion of the composition into the two-phase separated precipitate phase and to improve the magnetic properties. However, if the temperature is too low, the diffusion rate of each component becomes slow. If the treatment time is too short, the diffusion becomes insufficient, and if the treatment time is too long, the production capacity is reduced, which is industrially non-mass-producing and economically disadvantageous. The temperature is maintained for 1 to 20 hours, or the temperature range is gradually cooled for 1 to 20 hours.

【0018】また、上記1次熱処理と時効処理を行う炉
内雰囲気は、熱処理中の粉末の酸化を防止するため、露
点管理された水素雰囲気とする。あるいは水素と窒素の
混合雰囲気にすることによって、粉末を窒化させ保持力
を向上させることができる。該熱処理を連続炉で行うこ
とは、工業的な量産に対し、特に粉末の均一熱処理を行
うためには有効であり、能率的である。かくして上記問
題点が解決され、磁気特性に優れた粒径150μm以下
のアルニコ合金粉末が、アトマイズ法によって安定して
製造することが可能になった。
The atmosphere in the furnace in which the primary heat treatment and the aging treatment are performed is a hydrogen atmosphere whose dew point is controlled in order to prevent oxidation of the powder during the heat treatment. Alternatively, by setting a mixed atmosphere of hydrogen and nitrogen, the powder can be nitrided to improve the holding power. Performing the heat treatment in a continuous furnace is effective and efficient for industrial mass production, especially for uniform heat treatment of powder. Thus, the above-mentioned problems have been solved, and alnico alloy powder having excellent magnetic properties and a particle size of 150 μm or less can be stably produced by the atomizing method.

【0019】[0019]

【実施例】次に、本発明の実施例について説明する。表
1に、500kg高周波大気溶解炉または1.5ton VI
M炉を用いて溶製した本発明実施例と比較例の取鍋下成
分を示し、表2に、300kg/cm2 高圧水を用いた水ア
トマイズ法によって製造した各例の金属粉末を、エアー
セパレーター等の分級器によって、分級して得た粒径1
5〜150μmの収率を示す。
Next, an embodiment of the present invention will be described. Table 1 shows a 500 kg high frequency air melting furnace or 1.5 ton VI.
The components under the ladle of Examples of the present invention and Comparative Examples melted using an M furnace are shown in Table 2. In Table 2, metal powder of each example manufactured by a water atomization method using 300 kg / cm 2 high-pressure water was air-cooled. Particle size obtained by classification with a classifier such as a separator 1
A yield of 5-150 μm is shown.

【0020】実施例1〜4の金属粉末は、炉内に水素ガ
スが流入し、炉均熱域を700〜800℃の範囲の所定
温度に加熱した連続熱処理炉の所定温度域を15〜60
分で通過(均熱)させ、次いで炉外抽出後の該粉末の酸
化防止のため、60℃以下の温度に冷却して炉外に抽出
する1次熱処理を行った。その後該粉末を、炉内に水素
ガスが流入する炉均熱ゾーンを、600℃に加熱した連
続熱処理炉の600℃温度域を3〜20時間で通過させ
た後、60℃以下の温度にして炉外に抽出した時効処理
を行った。
In the metal powders of Examples 1 to 4, the hydrogen gas flows into the furnace, and the furnace is heated to a predetermined temperature range of 700 to 800 ° C. to a predetermined temperature range of 15 to 60.
In order to prevent oxidation of the powder after extraction outside the furnace, the powder was cooled to a temperature of 60 ° C. or less and subjected to primary heat treatment for extraction outside the furnace. Thereafter, the powder is passed through a furnace soaking zone in which hydrogen gas flows into the furnace through a 600 ° C. temperature range of a continuous heat treatment furnace heated to 600 ° C. for 3 to 20 hours, and then heated to a temperature of 60 ° C. or less. The aging treatment extracted outside the furnace was performed.

【0021】実施例5は該粉末を炉内に水素ガスが流入
し、炉均熱域を740℃に加熱した連続熱処理炉の74
0℃温度域を25分で通過させ、次いで炉外抽出後の該
粉末の酸化防止のため、60℃以下の温度に冷却して炉
外に抽出する1次熱処理を行った。その後該粉末を、炉
内に水素と窒素の混合ガスが流入する炉均熱ゾーンを、
600℃に加熱した連続熱処理炉の均熱温度域を10時
間で通過させ、その後60℃以下の温度に冷却して炉外
に抽出した時効処理を行った。
In Example 5, a hydrogen gas was introduced into the furnace, and the furnace was heated to 740 ° C. in a continuous heat treatment furnace.
The powder was passed through a 0 ° C. temperature range in 25 minutes, and then subjected to a primary heat treatment of cooling to a temperature of 60 ° C. or lower and extracting outside the furnace in order to prevent oxidation of the powder after the extraction outside the furnace. After that, the powder, a furnace soaking zone in which a mixed gas of hydrogen and nitrogen flows into the furnace,
After passing through the soaking temperature range of the continuous heat treatment furnace heated to 600 ° C. for 10 hours, it was cooled to a temperature of 60 ° C. or less and extracted outside the furnace to perform an aging treatment.

【0022】また、実施例6〜7は、炉内に水素ガスま
たは水素と窒素の混合ガスが流入した連続熱処理炉で、
該粉末が730℃に加熱された最高均熱温度域を40分
で通過し、その後、650〜550℃温度域を2時間で
通過後徐冷させた後、60℃以下の温度に冷却して炉外
に抽出されるように設定された連続熱処理炉を通過させ
る熱処理を行った。
Examples 6 and 7 are continuous heat treatment furnaces in which hydrogen gas or a mixed gas of hydrogen and nitrogen flows into the furnace.
The powder passed through the highest soaking temperature range heated to 730 ° C. in 40 minutes, then passed through the 650-550 ° C. temperature range in 2 hours, was gradually cooled, and was then cooled to a temperature of 60 ° C. or less. Heat treatment was performed by passing through a continuous heat treatment furnace set to be extracted outside the furnace.

【0023】実施例8は、水アトマイズ法によって製造
した金属粉末をエアーセパレーターなどの分級器によっ
て、分級して得られた粒径15〜150μmの粉末を射
出成形法によって磁石を成形し、1300℃で焼成し
た。その後、1次熱処理と時効処理を行った。
In Example 8, a metal powder produced by a water atomizing method was classified by a classifier such as an air separator, and a powder having a particle size of 15 to 150 μm obtained was molded into a magnet by an injection molding method. Was fired. Thereafter, a primary heat treatment and an aging treatment were performed.

【0024】これに対して比較例1〜3はSi量が少な
くNbの添加がないこと、およびTi量も少なく(比較
例2,3)、本発明範囲外の成分で構成されている。ま
た、比較例4は1次熱処理時間が長く、比較例5,6は
いずれも1次熱処理温度が本発明範囲外である。さらに
比較例7は、時効処理が行われていない。
On the other hand, Comparative Examples 1 to 3 have a small amount of Si and no addition of Nb, and a small amount of Ti (Comparative Examples 2 and 3), and are composed of components outside the scope of the present invention. In Comparative Example 4, the primary heat treatment time was long, and in Comparative Examples 5 and 6, the primary heat treatment temperature was outside the range of the present invention. Further, in Comparative Example 7, the aging treatment was not performed.

【0025】上記のアトマイズ粉末の乾燥・分級後の1
次熱処理と時効処理の条件を比較例と共に表3に示す。
また、図1に該熱処理パターンを示した。図1(a)は
1次熱処理後に時効処理を行うパターンであり、図1
(b)は1次熱処理後に徐冷することによって時効処理
を行うパターンを示す。
After drying and classification of the above atomized powder,
Table 3 shows the conditions of the secondary heat treatment and the aging treatment together with comparative examples.
FIG. 1 shows the heat treatment pattern. FIG. 1A shows a pattern in which aging treatment is performed after the primary heat treatment.
(B) shows a pattern in which aging treatment is performed by slow cooling after the first heat treatment.

【0026】表4はアトマイズ法によってできた該粉末
の時効処理後の磁気特性測定結果である。粉末の磁気特
性はサンプル性状や測定方法によって該測定値が異なる
ため、絶対値を比較するためには同一条件で測定する必
要がある。ここでは各試料とも、粉末100gに対して
2.5gのフェノール樹脂を混合した後に、該混合物
3.55gを径10mmφ×長さ10mmにプレス成形し、
さらに150℃で1時間乾燥したサンプルとし、これを
BHトレーサーで保持力Hc、残留磁束密度Br、最大
磁気エネルギー(BH)max を測定した。
Table 4 shows the results of measuring the magnetic properties of the powder obtained by the atomizing method after aging treatment. Since the measured values of the magnetic properties of the powder vary depending on the properties of the sample and the measuring method, it is necessary to measure under the same conditions in order to compare the absolute values. Here, for each sample, after mixing 2.5 g of phenol resin with 100 g of powder, 3.55 g of the mixture was press-molded to a diameter of 10 mmφ and a length of 10 mm.
The sample was further dried at 150 ° C. for 1 hour, and the coercive force Hc, the residual magnetic flux density Br, and the maximum magnetic energy (BH) max were measured with a BH tracer.

【0027】本発明実施例は比較例に比べ、いずれも粒
径150μm以下の良好な磁気特性のアルニコ粉末が歩
留良く製造できた。表4の結果により、実施例は比較例
よりいずれも磁気特性が優れている。
In each of the examples of the present invention, as compared with the comparative example, alnico powder having a good magnetic property and a particle size of 150 μm or less was produced with a good yield. According to the results shown in Table 4, all of the examples have better magnetic properties than the comparative examples.

【0028】なお、該粉末とバインダーから成形された
ブラウン管に使用されたコンパージェンスコア用磁石
は、鋳塊破砕粉末から製造された磁石以上の磁気特性が
得られた。また、実施例8は射出成形法によって成形
し、焼結した後の磁石であり、これに図1(a)に示す
熱処理された磁石も、従来の鋳塊破砕粉末から製造され
た磁石と遜色のない磁気特性が得られた。
Incidentally, the magnet for the compres- sion score used for the cathode ray tube formed from the powder and the binder had magnetic properties higher than those of the magnet manufactured from the ingot crushed powder. Example 8 is a magnet molded and sintered by an injection molding method, and the heat-treated magnet shown in FIG. 1A is also inferior to the magnet manufactured from the conventional ingot crushed powder. No magnetic properties were obtained.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【表4】 [Table 4]

【0033】[0033]

【発明の効果】この発明に従って製造されたアルニコ合
金粉末は、経済的に粒径150μm以下の高磁気特性の
粉末が安定して得られるので、産業上に及ぼす効果は極
めて大きい。
According to the alnico alloy powder produced according to the present invention, a powder having a high magnetic property having a particle size of 150 μm or less can be stably obtained economically, so that the effect on industry is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1次熱処理と、時効処理のパターンを
示す説明図であり、(a)は1次熱処理後に時効処理を
行うパターン、(b)は1次熱処理後の徐冷により時効
処理を行うパターンを示す。
FIG. 1 is an explanatory view showing a pattern of a primary heat treatment and an aging treatment according to the present invention. FIG. 1 (a) is a pattern in which aging treatment is performed after the primary heat treatment, and FIG. 1 (b) is aging by slow cooling after the primary heat treatment. 3 shows a pattern for performing processing.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 欽之 東京都千代田区大手町1−6−1 大平洋 金属株式会社内 (72)発明者 平居 正純 東京都千代田区大手町1−6−1 大平洋 金属株式会社内 (72)発明者 池田 功 東京都千代田区大手町1−6−1 大平洋 金属株式会社内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Kinyuki Kato 1-6-1 Otemachi, Chiyoda-ku, Tokyo Inside Taiheiyo Metal Co., Ltd. (72) Inventor Masazumi Hirai 1-6-1, Otemachi, Chiyoda-ku, Tokyo (72) Inventor, Isao Ikeda 1-6-1, Otemachi, Chiyoda-ku, Tokyo

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 Al:5〜12%、 Ni:10〜30%、 Co:40%以下、 Cu:1〜6%、 Si:0.1〜0.5%、 Mn:0.10%以下、 Ti:1〜10%、 Nb:3%以下 を含有し、残部はFeおよび不可避的不純物成分からな
る溶融金属を噴霧法によって金属粉末とした後に、乾燥
・分級を行うことを特徴とするアルニコ合金粉末の製造
方法。
1. Al: 5 to 12%, Ni: 10 to 30%, Co: 40% or less, Cu: 1 to 6%, Si: 0.1 to 0.5%, Mn: 0 by weight% 0.1% or less, Ti: 1 to 10%, Nb: 3% or less, with the balance being that a molten metal composed of Fe and inevitable impurity components is turned into metal powder by a spraying method, and then dried and classified. A method for producing an alnico alloy powder, which is a feature.
【請求項2】 重量%で、 Al:5〜12%、 Ni:10〜30%、 Co:40%以下、 Cu:1〜6%、 Si:0.1〜0.5%、 Mn:0.10%以下、 Ti:1〜10%、 Nb:3%以下 を含有し、残部はFeおよび不可避的不純物成分からな
る溶融金属を噴霧法によって金属粉末にした後に、乾燥
・分級を行い、該金属粉末を700〜800℃の範囲の
温度で10〜60分間保持する1次熱処理をした後に、
550〜650℃の範囲の温度で1〜20時間保持する
時効処理を行うことを特徴とするアルニコ合金粉末の製
造方法。
2. In% by weight, Al: 5 to 12%, Ni: 10 to 30%, Co: 40% or less, Cu: 1 to 6%, Si: 0.1 to 0.5%, Mn: 0 .10% or less, Ti: 1 to 10%, Nb: 3% or less, the remainder being molten metal composed of Fe and unavoidable impurity components, turned into metal powder by spraying, and then dried and classified. After a first heat treatment of holding the metal powder at a temperature in the range of 700 to 800 ° C. for 10 to 60 minutes,
A method for producing an alnico alloy powder, comprising performing an aging treatment at a temperature in a range of 550 to 650 ° C for 1 to 20 hours.
【請求項3】 重量%で、 Al:5〜12%、 Ni:10〜30%、 Co:40%以下、 Cu:1〜6%、 Si:0.1〜0.5%、 Mn:0.10%以下、 Ti:1〜10%、 Nb:3%以下 を含有し、残部はFeおよび不可避的不純物成分からな
る溶融金属を噴霧法によって金属粉末とした後に、乾燥
・分級を行い、該金属粉末を700〜800℃の範囲の
温度で10〜60分間保持する1次熱処理をした後に、
550〜650℃の範囲を1〜20時間で徐冷する時効
処理を行うことを特徴とするアルニコ合金粉末の製造方
法。
3. Weight%: Al: 5 to 12%, Ni: 10 to 30%, Co: 40% or less, Cu: 1 to 6%, Si: 0.1 to 0.5%, Mn: 0 .10% or less, Ti: 1 to 10%, Nb: 3% or less, the balance being molten metal consisting of Fe and unavoidable impurity components, after being turned into metal powder by a spraying method, followed by drying and classification. After a first heat treatment of holding the metal powder at a temperature in the range of 700 to 800 ° C. for 10 to 60 minutes,
A method for producing an alnico alloy powder, comprising performing an aging treatment of gradually cooling a temperature in a range of 550 to 650 ° C. for 1 to 20 hours.
【請求項4】 粉末粒径が150μm以下であることを
特徴とする請求項1乃至3のいずれか1項に記載のアル
ニコ合金粉末の製造方法。
4. The method for producing an alnico alloy powder according to claim 1, wherein the powder particle size is 150 μm or less.
【請求項5】 溶融金属にさらに重量%で、Ca:0.
001〜0.010%を添加することを特徴とする請求
項1乃至3のいずれか1項に記載のアルニコ合金粉末の
製造方法。
5. The molten metal further contains Ca: 0.4% by weight.
The method for producing an alnico alloy powder according to any one of claims 1 to 3, wherein 001 to 0.010% is added.
JP9087026A 1997-04-04 1997-04-04 Production of alnico alloy powder Withdrawn JPH10280011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9087026A JPH10280011A (en) 1997-04-04 1997-04-04 Production of alnico alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9087026A JPH10280011A (en) 1997-04-04 1997-04-04 Production of alnico alloy powder

Publications (1)

Publication Number Publication Date
JPH10280011A true JPH10280011A (en) 1998-10-20

Family

ID=13903453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9087026A Withdrawn JPH10280011A (en) 1997-04-04 1997-04-04 Production of alnico alloy powder

Country Status (1)

Country Link
JP (1) JPH10280011A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104464994A (en) * 2013-09-16 2015-03-25 中国科学院宁波材料技术与工程研究所 High-performance permanent magnet material and production method thereof
WO2016071177A1 (en) * 2014-11-03 2016-05-12 Nuovo Pignone Srl Metal alloy for additive manufacturing of machine components
CN115233111A (en) * 2022-06-14 2022-10-25 杭州永磁集团有限公司 High-performance powder sintered alnico magnetic material and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104464994A (en) * 2013-09-16 2015-03-25 中国科学院宁波材料技术与工程研究所 High-performance permanent magnet material and production method thereof
WO2016071177A1 (en) * 2014-11-03 2016-05-12 Nuovo Pignone Srl Metal alloy for additive manufacturing of machine components
CN115233111A (en) * 2022-06-14 2022-10-25 杭州永磁集团有限公司 High-performance powder sintered alnico magnetic material and preparation method thereof

Similar Documents

Publication Publication Date Title
EP0215168B1 (en) Method for making rare-earth element containing permanent magnets
US6296720B1 (en) Rare earth/iron/boron-based permanent magnet alloy composition
JPWO2016133067A1 (en) Method for producing RTB-based sintered magnet
JPH09125108A (en) Production of powder for sendust core with little loss
JP3435223B2 (en) Method for producing sendust-based sintered alloy
US4992234A (en) Method for the preparation of rare earth-base permanent magnet
JPH10102105A (en) Manufacture of fine metallic powder
JPH10280011A (en) Production of alnico alloy powder
JPH0715121B2 (en) Fe-Co alloy fine powder for injection molding and Fe-Co sintered magnetic material
JPH0750648B2 (en) Method for manufacturing Fe-Si-A1 alloy powder magnetic core
US4601876A (en) Sintered Fe-Cr-Co type magnetic alloy and method for producing article made thereof
KR101683439B1 (en) Permanent Magnet Powder containing Rare Earth Element and a Method thereof
JPH09157803A (en) Rare earth-iron base alloy
WO2020172744A1 (en) Metallic iron powder
JPS61208807A (en) Permanent magnet
JP2000087194A (en) Alloy for electromagnet and its manufacture
JPH08120393A (en) Production of iron-silicon soft magnetic sintered alloy
JPH04173901A (en) Iron powder for powder metallurgy
JPS5959810A (en) Steel powder for powder metallurgy and its manufacture
JPS58193336A (en) Permanent magnet material
JP2000144345A (en) Silicon steel, its production, production of rolled silicon steel sheet and electric apparatus provided with the silicon steel
JPS62122106A (en) Sintered permanent magnet
JP2000239702A (en) Fe-Ni ALLOY POWDER AND ITS MANUFACTURE
JP2003138335A (en) Method of producing rare earth sintered magnet
JPS61127848A (en) Manufacture of sintered alnico magnet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061101