JPH10275925A - Photovoltaic device - Google Patents

Photovoltaic device

Info

Publication number
JPH10275925A
JPH10275925A JP9095278A JP9527897A JPH10275925A JP H10275925 A JPH10275925 A JP H10275925A JP 9095278 A JP9095278 A JP 9095278A JP 9527897 A JP9527897 A JP 9527897A JP H10275925 A JPH10275925 A JP H10275925A
Authority
JP
Japan
Prior art keywords
photovoltaic
heating element
heat storage
storage material
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9095278A
Other languages
Japanese (ja)
Other versions
JP3209701B2 (en
Inventor
Masaki Shima
正樹 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP09527897A priority Critical patent/JP3209701B2/en
Publication of JPH10275925A publication Critical patent/JPH10275925A/en
Application granted granted Critical
Publication of JP3209701B2 publication Critical patent/JP3209701B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the decline in characteristics for improving the conversion efficiency after the lapse of long time by a method wherein the heating elements such as heating wires, etc., or the heat regenerating materials such as polypropylene, etc., are provided as the heat generating elements giving off the heat to respective photovoltaic elements. SOLUTION: The heating elements 6 are arranged in the light incident side from respective submodules 1 in a sealing part 5 further on the upper side of the connecting wires 2 to be orthogonal to the wires 2 not to interfere the light receiving of respective submodules 1 for covering the connecting wires 2. That is, the submodules 1 series-connected by the connecting wires 2 are sealed together with the heating elements 6 in the sealing part 5. The device is provided with the heating elements 6 as the heat regenerating elements giving off the heat to the submodules 1 to be respective photovoltaic elements. Through these procedures, the decline in characteristics peculiar to amorphous semiconductor resultant from the light irradiation can be suppressed thereby enabling the energy conversion efficiency after the lapse of long time to be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アモルファス太陽
電池のサブモジュール等の複数の光起電力素子を接続し
たモジュール構成の光起電力装置に関し、詳しくはその
光照射に伴う特性劣化の改善に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photovoltaic device having a module configuration in which a plurality of photovoltaic elements such as sub-modules of an amorphous solar cell are connected, and more particularly to improvement of characteristic deterioration due to light irradiation.

【0002】[0002]

【従来の技術】従来、水素化アモルファスシリコン(a
−Si:H)に代表される薄膜の非晶質半導体は、安価
かつ容易に大面積化できる利点がある。
2. Description of the Related Art Conventionally, hydrogenated amorphous silicon (a
-Si: H) is advantageous in that a thin film amorphous semiconductor represented by -Si: H) can be formed inexpensively and easily with a large area.

【0003】そして、光起電力装置の1例である電力用
の太陽電池装置には、各太陽電池(光起電力素子)を、
発電層にa−Si:H等の非晶質半導体を用いた集積型
のサブモジュールにより形成し、大面積化を図るように
したアモルファス太陽電池装置がある。
[0003] In a solar cell device for electric power, which is an example of a photovoltaic device, each solar cell (photovoltaic element) includes:
2. Description of the Related Art There is an amorphous solar cell device formed with an integrated submodule using an amorphous semiconductor such as a-Si: H for a power generation layer to increase the area.

【0004】この電力用の太陽電池装置は、例えばスー
パーストレート方式の場合、その断面図である図12及
び平面図である図13に示すように、集積型構造の各サ
ブモジュール1をバスバー等の接続線(インターコネク
タ)2により直列接続して形成される。
In the case of a solar cell device for electric power, for example, in the case of the super straight type, as shown in FIG. 12 which is a sectional view and FIG. 13 which is a plan view, each sub-module 1 having an integrated structure is connected to a bus bar or the like. It is formed by connecting in series by a connection line (interconnector) 2.

【0005】そして、直列接続された各サブモジュール
1は、光入射側の支持体及び受光面保護体としてのガラ
ス基板3と樹脂材の裏面板4との間に位置し、その間に
注入して充填されたPVB(Poly Vinyl B
utylol),EVA(Ethylene Viny
l Acetate)等の封止材により封止される。
Each of the sub-modules 1 connected in series is located between a glass substrate 3 as a support on the light incident side and a light-receiving surface protector and a back plate 4 made of a resin material. Filled PVB (Poly Vinyl B)
utilol), EVA (Ethylene Viny)
l Acetate) or the like.

【0006】[0006]

【発明が解決しようとする課題】前記従来の電力用のア
モルファス太陽電池装置等のこの種光起電力装置におい
ては、ステブラー・ロンスキー(Staebler−W
ronski)効果(以下S−W効果という)と呼ばれ
る、現在の技術では完全には避けることができない、光
照射による変換効率の初期劣化が生じ、この初期劣化に
より長時間経過後の変換効率の向上が妨げられる問題点
があり、この光劣化をどのように改善するかが重要な課
題の1つである。
In this kind of photovoltaic device such as the above-mentioned conventional amorphous solar cell device for electric power, a Steebler-W (Staebler-W) is used.
ronski) effect (hereinafter referred to as SW effect), which cannot be completely avoided by the current technology, causes initial deterioration of conversion efficiency due to light irradiation, and this initial deterioration improves conversion efficiency after a long time elapses. Is one of the important issues. How to improve the light degradation is one of the important issues.

【0007】本発明は、発電層に非晶質半導体を用いた
この種光起電力装置において、光照射に伴う特性劣化が
各光起電力素子の温度(基板温度)に依存することに着
目して前記特性劣化を抑制するようにし、長時間経過後
の変換効率の向上を図ることを課題とする。
The present invention focuses on the fact that in this type of photovoltaic device using an amorphous semiconductor for the power generation layer, the deterioration of characteristics due to light irradiation depends on the temperature (substrate temperature) of each photovoltaic element. It is an object of the present invention to suppress the above-mentioned characteristic deterioration and to improve the conversion efficiency after a long time has passed.

【0008】[0008]

【課題を解決するための手段】前記の課題を解決するた
めに、本発明は、発電層に非晶質半導体を用いた光起電
力素子を複数個配列して接続したモジュール構成の光起
電力装置において、電熱線等の発熱体又はポリプロピレ
ン等の蓄熱材を、各光起電力素子に熱を供給する給熱体
として備える。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a photovoltaic module having a module configuration in which a plurality of photovoltaic elements using an amorphous semiconductor are arranged and connected in a power generation layer. In the apparatus, a heating element such as a heating wire or a heat storage material such as polypropylene is provided as a heat supply element for supplying heat to each photovoltaic element.

【0009】したがって、発熱体又は蓄熱材によりサブ
モジュール等の各光起電力素子の動作中の温度が高く保
たれる。
Therefore, the operating temperature of each photovoltaic element such as a submodule is kept high by the heating element or the heat storage material.

【0010】そして、各光起電力素子の動作中の温度が
高くなると、前記のS−W効果による光照射に伴う特性
劣化が抑制され、安定化後の変換効率が向上する。
When the temperature of each photovoltaic element during operation increases, the deterioration of characteristics due to light irradiation due to the SW effect is suppressed, and the conversion efficiency after stabilization is improved.

【0011】そして、発熱体又は蓄熱材は、各光起電力
素子より光入射側に各光起電力素子間の接続線を覆うよ
うに設けることが好ましい。
The heating element or the heat storage material is preferably provided on the light incident side of each photovoltaic element so as to cover a connection line between the photovoltaic elements.

【0012】この場合、発熱体又は蓄熱材により、各光
起電力素子の受光の妨げにならないようにして光照射に
伴う非晶質半導体特有の特性劣化が抑制され、同時に、
発熱体又は蓄熱材により各光起電力素子間の接続線が覆
い隠される利点もある。また、発熱体又は蓄熱材は、各
光起電力素子より裏面側に設けてもよい。
In this case, the heating element or the heat storage material does not hinder the light reception of each photovoltaic element, so that the characteristic deterioration unique to the amorphous semiconductor due to the light irradiation is suppressed.
There is also an advantage that the connection line between the photovoltaic elements is covered by the heating element or the heat storage material. Further, the heating element or the heat storage material may be provided on the back side of each photovoltaic element.

【0013】この場合、光入射側に設ける場合のような
発熱体又は蓄熱材の形状や配置等の制約がなく、例えば
各光起電力素子の裏面側全体に発熱体又は蓄熱材を配設
して特性劣化の抑制効果を向上し得る。
In this case, there is no restriction on the shape and arrangement of the heating element or the heat storage material as provided on the light incident side. For example, the heating element or the heat storage material is provided on the entire back side of each photovoltaic element. As a result, the effect of suppressing characteristic deterioration can be improved.

【0014】さらに、発熱体又は蓄熱材を各光起電力素
子より光入射側或いは裏面側に設ける場合、発熱体又は
蓄熱材は、各光起電力素子を包むように封止材を充填し
た封止部内に設けることが実用的である。
Further, when the heating element or the heat storage material is provided on the light incident side or the back side of each photovoltaic element, the heating element or the heat storage material is filled with a sealing material so as to surround each photovoltaic element. It is practical to provide it inside the unit.

【0015】つぎに、各光起電力素子に一層効果的に給
熱する場合は、発熱体又は蓄熱材を、各光起電力素子の
基板内又は基板表面に設けることが好ましい。
Next, when heat is supplied to each photovoltaic element more effectively, it is preferable to provide a heating element or a heat storage material in the substrate or on the substrate surface of each photovoltaic element.

【0016】このとき、各光起電力素子の基板は、透光
性で発電層より光入射側にあってもよく、発電層の裏面
側にあってもよい。
At this time, the substrate of each photovoltaic element may be translucent and may be on the light incident side of the power generation layer, or may be on the back side of the power generation layer.

【0017】さらに、各光起電力素子が集積型のサブモ
ジュール構成に形成される場合には、受光の妨げになら
ないように、発熱体又は蓄熱材を、光起電力素子の基板
内又は基板表面の透明電極除去部分の位置に設けること
が好ましい。
Further, when each photovoltaic element is formed in an integrated sub-module configuration, a heating element or a heat storage material is provided inside or on the substrate of the photovoltaic element so as not to hinder light reception. Is preferably provided at the position where the transparent electrode is removed.

【0018】[0018]

【発明の実施の形態】本発明の実施の形態につき、図1
ないし図11を参照して説明する。 (第1の形態)まず、本発明の実施の第1の形態につ
き、図1〜図5を参照して説明する。図1,図2は図1
2,図13と同様のスーパーストレート方式のアモルフ
ァス太陽電池装置(太陽電池モジュール)に適用した場
合の断面図,平面図であり、それらの図面において、図
12,図13と同一符号は同一もしくは相当するものを
示し、6は封止部5の各サブモジュール1より光入射側
に設けられた発熱体であり、例えばニクロム線等の電熱
線からなり、各サブモジュール1の受光の妨げにならな
いように、各サブモジュール1間の接続線2の上部に接
続線2に直交するように配設されて接続線2を覆い隠し
ている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG.
This will be described with reference to FIG. (First Embodiment) First, a first embodiment of the present invention will be described with reference to FIGS. 1 and 2 show FIG.
2 and 13 are a cross-sectional view and a plan view when applied to the same superstrate type amorphous solar cell device (solar cell module) as in FIG. 13, and the same reference numerals in FIGS. Reference numeral 6 denotes a heating element provided on the light incident side of each of the sub-modules 1 of the sealing portion 5 and is made of, for example, a heating wire such as a nichrome wire so as not to hinder the light reception of each of the sub-modules 1. In addition, the connection line 2 is disposed above the connection line 2 between the sub-modules 1 so as to be orthogonal to the connection line 2 and covers the connection line 2.

【0019】ところで、各サブモジュール1は、ステン
レス,ガラス等の基板上に太陽電池を形成する,いわゆ
るステンレス基板タイプ(逆タイプ)又はガラス基板の
光入射面と反対側の面を太陽電池形成面とする,いわゆ
るガラス基板タイプ(順タイプ)のいずれであってもよ
く、例えばガラス基板タイプの場合、図3の断面図に示
すように、ガラス基板7の太陽電池形成面(裏面)に、
表面電極(TCO)としてのITO等の金属酸化物膜の
透明電極8が、一部を溝状に除去しセル毎に分割して設
けられる。
Each sub-module 1 is a so-called stainless steel substrate type (reverse type) in which a solar cell is formed on a substrate such as stainless steel or glass, or a surface opposite to a light incident surface of a glass substrate is a solar cell forming surface. For example, in the case of the glass substrate type, as shown in the cross-sectional view of FIG.
A transparent electrode 8 of a metal oxide film such as ITO as a surface electrode (TCO) is provided by dividing a part of each cell and removing it in a groove shape.

【0020】さらに、各セルの透明電極8の膜面上に非
晶質半導体部9,裏面金属電極10が積層形成され、各
セルが裏面電極10を介して直列接続される。
Further, an amorphous semiconductor portion 9 and a back metal electrode 10 are laminated on the film surface of the transparent electrode 8 of each cell, and the cells are connected in series via the back electrode 10.

【0021】また、各セルの非晶質半導体部9は発電層
が単層構造,複数層の積層構造のいずれであってもよ
く、各サブモジュール1がa−Si:H/a−Si:H
の2層のタンデム構造の逆タイプの太陽電池に形成され
る場合、図4の拡大断面図に示すように、p型a−S
i:Hのp層,発電層である真性a−Si:Hのi層,
n型a−Si:Hのn層が、表面電極8の側から、第1
のpin接合を形成するp層,i層,n層,第2のpi
n接合を形成するp層,i層,n層の順に形成される。
The amorphous semiconductor portion 9 of each cell may have either a single-layer power generation layer or a multi-layered power generation layer, and each sub-module 1 may be composed of a-Si: H / a-Si: H
When formed in a two-layer tandem structure reverse type solar cell, as shown in the enlarged sectional view of FIG.
i: p layer of H, i-layer of intrinsic a-Si: H which is a power generation layer,
An n layer of n-type a-Si: H is formed on the first side from the surface electrode 8 side.
, P-layer, i-layer, n-layer and second pi
A p-layer, an i-layer, and an n-layer forming an n-junction are formed in this order.

【0022】なお、図4から明らかなように、透明電極
8はi層に効果的に光閉じ込めが行なわれるようにその
裏面がピラミッド形状に加工され、いわゆるテクスチャ
構造に形成される。
As is apparent from FIG. 4, the back surface of the transparent electrode 8 is processed into a pyramid shape so that light is effectively confined in the i-layer, and is formed in a so-called textured structure.

【0023】ところで、上記透明電極8の製造には、例
えば図5の連続式の反応装置が用いられる。
In the meantime, for manufacturing the transparent electrode 8, for example, a continuous reaction apparatus shown in FIG. 5 is used.

【0024】この図5の反応装置は、基板の取入れ部
(取入れ室)11,反応室12,基板の取出し部(取出
し室)13が大気圧で連通し、取入れ部11と反応室1
2の間,反応室12と取出し部13の間は、それぞれ窒
素(N2 )シャワーのカーテン(シャッタ)14で仕切
られている。
In the reaction apparatus shown in FIG. 5, a substrate intake section (intake chamber) 11, a reaction chamber 12, and a substrate exit section (extraction chamber) 13 communicate with each other at atmospheric pressure, and the intake section 11 and the reaction chamber 1 are connected.
2 and between the reaction chamber 12 and the take-out unit 13 are respectively separated by a curtain (shutter) 14 of a nitrogen (N 2 ) shower.

【0025】さらに、取入れ部11,取出し部13は乾
燥空気導入ダクト15を介して低湿度化装置16に接続
され、運転中はこの装置16からダクト15を介して取
入れ部11,取出し部13に湿度35%以下,温度21
〜27℃の低湿度空気が供給され、取入れ部11,反応
室12,取出し部13が低湿度に保たれる。
Further, the intake section 11 and the extraction section 13 are connected to a humidity reducing device 16 via a dry air introduction duct 15, and are connected to the intake section 11 and the extraction section 13 via the duct 15 during operation. Humidity 35% or less, temperature 21
Low-humidity air of about 27 ° C. is supplied, and the intake section 11, the reaction chamber 12, and the extraction section 13 are kept at low humidity.

【0026】そして、ガラス基板7は、ベルトコンベア
等に載置されて取入れ部13から反応室12,取出し部
13に移動し、反応室12において、各原料ガス導入口
部17からSnCl4 を導入することにより、基板7に
SnO2 からなる透明電極8が形成される。
Then, the glass substrate 7 is placed on a belt conveyor or the like and moves from the intake section 13 to the reaction chamber 12 and the extraction section 13, where SnCl 4 is introduced from each raw material gas inlet 17 into the reaction chamber 12. Thereby, the transparent electrode 8 made of SnO 2 is formed on the substrate 7.

【0027】そして、プラズマCVD法による非晶質半
導体部9の形成後、この半導体部9の表面(裏面)に裏
面金属電極10の形成及びパターニングの処理が施され
て各サブモジュール1が形成される。
After the formation of the amorphous semiconductor portion 9 by the plasma CVD method, the surface (back surface) of the semiconductor portion 9 is subjected to the formation and patterning of the back metal electrode 10 to form each submodule 1. You.

【0028】なお、各サブモジュール1は、具体的に
は、例えばつぎの(i),(ii),(iii) の条件で形
成される。
Each sub-module 1 is specifically formed under the following conditions (i), (ii) and (iii), for example.

【0029】(i)透明電極8は約7000Åの膜厚の
酸化錫である。 (ii)非晶質半導体部9において、両pin接合部のp
層の膜厚は100Å,n層の膜厚は150Åであり、第
1のpin接合のi層の膜厚は900Å,第2のpin
接合のi層の膜厚は3500Åである。 (iii) 裏面金属電極10は銀である。
(I) The transparent electrode 8 is made of tin oxide having a thickness of about 7,000 °. (Ii) In the amorphous semiconductor section 9, the p of both pin junctions
The thickness of the layer is 100 °, the thickness of the n-layer is 150 °, the thickness of the i-layer of the first pin junction is 900 °, and the thickness of the second pin is
The thickness of the i-layer at the junction is 3500 °. (Iii) The back metal electrode 10 is silver.

【0030】このようにして形成された各サブモジュー
ル1は接続線2により直列に接続され、ガラス基板3と
裏面板4との間の封止部5に発熱体6とともに封入され
る。
The sub-modules 1 formed in this way are connected in series by a connection line 2, and are sealed together with a heating element 6 in a sealing portion 5 between the glass substrate 3 and the back plate 4.

【0031】そして、この太陽電池装置が屋根等に設置
されて使用される際、発熱体6は外部接続リード(図示
せず)を介して外部の直流又は交流の電源に接続され、
この電源から給電されて発熱する。
When the solar cell device is installed and used on a roof or the like, the heating element 6 is connected to an external DC or AC power supply via an external connection lead (not shown).
Power is supplied from this power source to generate heat.

【0032】この発熱で生じた熱が各サブモジュール1
に伝わり、各サブモジュール1の動作中のモジュール温
度(基板温度)が例えば60℃〜70℃程度の高温に保
たれる。
The heat generated by this heat generation is applied to each sub-module 1
The module temperature (substrate temperature) during operation of each submodule 1 is maintained at a high temperature, for example, about 60 ° C. to 70 ° C.

【0033】そして、各サブモジュール1が動作中に高
温に保たれると、S−W効果による光照射時の劣化が抑
制されて長時間経過後のエネルギー変換効率が向上す
る。
When each submodule 1 is maintained at a high temperature during operation, deterioration during light irradiation due to the SW effect is suppressed, and the energy conversion efficiency after a long time has elapsed is improved.

【0034】このとき、発熱体6がサブモジュール1間
の各接続線2を覆い隠すため、発熱体6の表面の色,模
様等を適当に選定することにより、サブモジュール1間
の煩雑な接続線2が隠れて目立たなくなり、意匠的効果
が生じる等の利点もある。
At this time, since the heating element 6 covers each connection line 2 between the sub-modules 1, the color, pattern, etc. of the surface of the heating element 6 are appropriately selected, so that complicated connection between the sub-modules 1 is performed. There is also an advantage that the line 2 is hidden and inconspicuous, and a design effect is produced.

【0035】(第2の形態)つぎに、本発明の実施の第
2の形態について図6を参照して説明する。図6におい
て、図1と同一符号は同一もしくは相当するものを示
し、図1と異なる点は発熱体6がガラス基板3の光入射
面(表面)にほぼ図2のパターンで設けられた点であ
る。
(Second Embodiment) Next, a second embodiment of the present invention will be described with reference to FIG. In FIG. 6, the same reference numerals as those in FIG. 1 denote the same or corresponding elements, and the difference from FIG. is there.

【0036】このとき、発熱体6は第1の形態の場合と
同様、各サブモジュール1間の接続線2を覆い隠す。
At this time, the heating element 6 covers the connection line 2 between the sub-modules 1 as in the first embodiment.

【0037】本形態の場合、発熱体6を封止部5に封入
する第1の形態の場合より極めて簡単に発熱体6を設け
て第1の形態と同様の効果が得られる。
In this embodiment, the same effect as in the first embodiment can be obtained by providing the heating element 6 much more easily than in the first embodiment in which the heating element 6 is sealed in the sealing portion 5.

【0038】(第3の形態)つぎに、本発明の実施の第
3の形態について、図7を参照して説明する。図7にお
いて、図1と同一符号は同一もしくは相当するものを示
し、図1と異なる点は、発熱体6を同図のものより幅広
に形成し、封止部5の各サブモジュール1より裏面側に
設けた点である。
(Third Embodiment) Next, a third embodiment of the present invention will be described with reference to FIG. 7, the same reference numerals as those in FIG. 1 denote the same or corresponding components, and the difference from FIG. 1 is that the heating element 6 is formed wider than that in FIG. It is a point provided on the side.

【0039】すなわち、各サブモジュール1より裏面側
に発熱体6を設ける場合は、発熱体6が各サブモジュー
ル1の裏面に重なっても各サブモジュール1の受光の妨
げにはならない。
That is, when the heating element 6 is provided on the back surface side of each sub-module 1, even if the heating element 6 overlaps the back surface of each sub-module 1, it does not hinder the light reception of each sub-module 1.

【0040】そして、発熱体6の面積が広くなる程、そ
の発熱量が多くなって各サブモジュール1が高温になる
ため、この形態においては、発熱体6を封止部5の各サ
ブモジュール1より裏面側に設け、その幅を第1,第2
の形態より広くする。
As the area of the heating element 6 increases, the amount of heat generated increases and the temperature of each sub-module 1 rises. In this embodiment, the heating element 6 is connected to each sub-module 1 of the sealing portion 5. On the back side, the width of which is
Make it wider than the form.

【0041】この場合、各サブモジュール1が一層高温
に保たれて、長時間経過後のエネルギー変換効率が一層
向上する。
In this case, each submodule 1 is kept at a higher temperature, and the energy conversion efficiency after a long time has elapsed is further improved.

【0042】なお、発熱体6の形状,配置等はどのよう
であってもよく、例えば発熱体6が封止部5の全平面を
1枚でカバーする面状発熱体又は一定間隔に配列された
多数の線状発熱体であってもよく、また、発熱体6を第
1の形態と同じ幅に形成して封止部5の接続線2の裏面
側に設けてもよい。
The shape, arrangement, etc. of the heating elements 6 may be any. For example, the heating elements 6 are arranged in a planar heating element that covers the entire plane of the sealing portion 5 with one sheet, or are arranged at regular intervals. A large number of linear heating elements may be used, or the heating element 6 may be formed in the same width as in the first embodiment and provided on the back surface side of the connection line 2 of the sealing portion 5.

【0043】(第4の形態)つぎに、本発明の実施の第
4の形態について、図8を参照して説明する。図8にお
いて、図7と異なる点は、発熱体6を裏面板4の裏面に
一体に設けた点である。
(Fourth Embodiment) Next, a fourth embodiment of the present invention will be described with reference to FIG. 8 differs from FIG. 7 in that the heating element 6 is provided integrally on the back surface of the back plate 4.

【0044】この場合は、発熱体6の加熱により裏面板
4の裏面全体から各サブモジュール1に熱が伝わり、第
3の形態の場合と同様の効果が得られる。
In this case, heat is transmitted to the sub-modules 1 from the entire back surface of the back plate 4 by heating the heating element 6, and the same effect as that of the third embodiment can be obtained.

【0045】(第5の形態)つぎに、本発明の実施の第
5の形態について、図9を参照して説明する。この形態
にあっては、図9に示すように発熱体6を各サブモジュ
ール1のガラス基板7の光入射側の表面に貼付けて設け
る。
(Fifth Embodiment) Next, a fifth embodiment of the present invention will be described with reference to FIG. In this embodiment, as shown in FIG. 9, the heating element 6 is attached to the surface of the glass substrate 7 of each submodule 1 on the light incident side.

【0046】このとき、発熱体6は各太陽電池セルの受
光の妨げにならないように、図3の透明電極8のセル毎
の分割溝(透明電極切除部分)の位置に沿うように配置
されて直列に接続される。
At this time, the heating element 6 is arranged along the position of the dividing groove (transparent electrode cut portion) for each cell of the transparent electrode 8 in FIG. 3 so as not to hinder the light reception of each solar cell. Connected in series.

【0047】したがって、この形態の場合は、各サブモ
ジュール1がそれぞれのガラス基板7の表面の発熱体6
から給熱され、前記第1ないし第4の形態の場合より高
温に保たれる利点がある。
Therefore, in the case of this embodiment, each sub-module 1 is provided with a heating element 6 on the surface of each glass substrate 7.
This is advantageous in that the temperature is higher than in the first to fourth embodiments.

【0048】(第6の形態)つぎに、本発明の実施の第
6の形態について、図10を参照して説明する。図10
において、図9と異なる点は、発熱体6をガラス基板7
内に封入して設けた点である。
(Sixth Embodiment) Next, a sixth embodiment of the present invention will be described with reference to FIG. FIG.
9 is different from FIG. 9 in that the heating element 6 is
This is a point that is provided by being enclosed inside.

【0049】そして、この形態の場合は、発熱体6が封
入されたガラス基板7を用いることにより、発熱体6の
貼付け等の工程を省いて前記第5の形態と同様の効果が
得られる。
In the case of this embodiment, by using the glass substrate 7 in which the heating element 6 is sealed, the same effect as in the fifth embodiment can be obtained without the step of attaching the heating element 6 or the like.

【0050】(実験結果)つぎに、発熱体6によるエネ
ルギー変換効率の向上を示す実験結果について、図11
を参照して説明する。まず、各サブモジュール1の光劣
化の基板温度依存性を測定するため、非晶質半導体部9
と同条件,すなわち前記(ii)の形成条件で形成したa
−Si/a−Siの2層タンデム構造のセル面積1cm2
の太陽電池につき、そのエネルギー変換効率の光照射時
の基板温度依存性を測定したところ、図11の結果が得
られた。
(Experimental Result) Next, an experimental result showing the improvement of the energy conversion efficiency by the heating element 6 is shown in FIG.
This will be described with reference to FIG. First, in order to measure the substrate temperature dependence of the optical degradation of each submodule 1, the amorphous semiconductor portion 9 is measured.
A formed under the same conditions as above, ie, under the formation conditions of (ii) above.
-Si / a-Si 2-layer tandem cell area 1 cm 2
When the dependence of the energy conversion efficiency on the substrate temperature at the time of light irradiation was measured for the solar cell of, the result of FIG. 11 was obtained.

【0051】図11において、横軸は光照射時間の対数
であり、縦軸は測定した変換効率を初期変換効率で除算
して規格化した変換効率である。
In FIG. 11, the horizontal axis is the logarithm of the light irradiation time, and the vertical axis is the conversion efficiency obtained by dividing the measured conversion efficiency by the initial conversion efficiency.

【0052】また、×,○,+,□は基板温度(セル温
度)を30℃,48℃,65℃,80℃にしたときの測
定値のプロットである。なお、光照射強度は125mW
/cm2 ,光照射時には太陽電池は開放状態とした。
X, ,, +, and □ are plots of measured values when the substrate temperature (cell temperature) was set at 30 ° C., 48 ° C., 65 ° C., and 80 ° C. The light irradiation intensity was 125 mW
/ Cm 2 , and the solar cell was kept open during light irradiation.

【0053】そして、図11から明らかなように、発電
層に非晶質半導体を用いたサブモジュール1等のこの種
光起電力素子は、光照射時の基板温度が高いと、S−W
効果による光照射時の初期劣化が抑制され、長時間経過
後のエネルギー変換効率が向上することが確かめられ
た。
As is apparent from FIG. 11, this type of photovoltaic element such as the submodule 1 using an amorphous semiconductor for the power generation layer has a high SW temperature when the substrate temperature during light irradiation is high.
It was confirmed that the initial deterioration at the time of light irradiation due to the effect was suppressed, and the energy conversion efficiency after a long time had elapsed was improved.

【0054】つぎに、サブモジュール1と同じ形成条
件,すなわち前記(i),(ii),(iii) の形成条件
でセル面積1200cm2 のa−Si/a−Siタンデム
構造のシングルセル・サブモジュール構造の太陽電池モ
ジュールを作成し、この太陽電池モジュールのガラス基
板の光入射側表面に、太さ0.5mmのニクロム線から
なる発熱体6を貼付けたものを本発明モジュールとし、
発熱体6を貼付けないものを従来例モジュールとし、本
発明モジュールは発熱体6を給電加熱しながら両モジュ
ールにつき、125mW/cm2 ,開放状態の条件で光を
照射したところ、つぎの表1の測定結果が得られた。
Next, under the same forming conditions as the sub-module 1, that is, under the conditions (i), (ii), and (iii), a single cell sub-unit having an a-Si / a-Si tandem structure having a cell area of 1200 cm 2 is formed. A solar cell module having a module structure was prepared, and a heating element 6 made of a 0.5 mm-thick nichrome wire was adhered to the light incident side surface of the glass substrate of the solar cell module as a module of the present invention.
A module without the heating element 6 is referred to as a conventional module. The module of the present invention was irradiated with light under the conditions of 125 mW / cm 2 and an open state for both modules while heating and heating the heating element 6. The measurement results were obtained.

【0055】[0055]

【表1】 [Table 1]

【0056】この表1から明らかなように、本発明モジ
ュールは発熱体6の加熱によりその基板温度(モジュー
ル温度)が従来例モジュールより20℃高い65℃の高
温に保たれ、この結果、本発明モジュールは、劣化率が
従来例モジュールより低く抑えられ、長時間経過後のエ
ネルギー変換効率が向上することが判明した。
As is apparent from Table 1, the substrate temperature (module temperature) of the module of the present invention is maintained at 65 ° C., which is 20 ° C. higher than that of the conventional module, by heating the heating element 6. It was found that the deterioration rate of the module was suppressed lower than that of the conventional module, and the energy conversion efficiency after a long time had elapsed was improved.

【0057】ところで、前記各実施の形態において、発
熱体6の給電には商用交流電源を用いてもよいが、とく
に、このアモルファス太陽電池装置を屋根等に設置する
場合は、風力発電と併用してその発電出力を用いてもよ
く、また、太陽電池装置の裏側を吹き抜ける風、或いは
屋根面を加熱されながら移動する空気の上昇気流を利用
してダイナモを回転させ、その発電出力を用いてもよ
い。
In each of the above embodiments, a commercial AC power supply may be used to supply power to the heating element 6. In particular, when the amorphous solar cell device is installed on a roof or the like, it is used together with wind power generation. Alternatively, the dynamo may be rotated using the wind that blows through the backside of the solar cell device or the rising airflow of the air moving while heating the roof surface, and using the generated output. Good.

【0058】そして、発熱体6は電熱線以外のペルチェ
素子等の種々の発熱体であってもよく、その形状等は前
記各実施の形態のものには限られない。
The heating element 6 may be various heating elements such as a Peltier element other than the heating wire, and the shape and the like are not limited to those of the above embodiments.

【0059】つぎに、前記各実施の形態において、発熱
体6の代わりにポリプロピレン等の蓄熱材を設けてもよ
い。
Next, in each of the above embodiments, a heat storage material such as polypropylene may be provided instead of the heating element 6.

【0060】この場合は、主に太陽熱により蓄熱材が暖
められ、その蓄熱エネルギーにより各サブモジュール1
が高温に保たれるため、蓄熱材への給電が不要で経済的
に発熱体6を設けた場合と同様の効果を得ることができ
る。
In this case, the heat storage material is heated mainly by solar heat, and each sub-module 1 is heated by the heat storage energy.
Is maintained at a high temperature, so that it is not necessary to supply power to the heat storage material, and the same effect as when the heating element 6 is provided economically can be obtained.

【0061】つぎに、前記各実施の形態においては、光
起電力素子としての各サブモジュール1を、a−Si:
H/a−Si:Hの2層の発電層を有するタンデム構造
としたが、各サブモジュール1は、前記したように発電
層が3層以上の多層構造或いは単層構造であってもよ
い。
Next, in each of the above embodiments, each sub-module 1 as a photovoltaic element is replaced by a-Si:
Although the tandem structure has two power generation layers of H / a-Si: H, each sub-module 1 may have a multilayer structure having three or more power generation layers or a single-layer structure as described above.

【0062】さらに、各サブモジュール1は、光入射側
と反対側に基板が位置する前記のステンレス基板タイプ
であってもよい。
Further, each of the sub-modules 1 may be the above-mentioned stainless steel substrate type in which the substrate is located on the side opposite to the light incident side.

【0063】つぎに、各サブモジュール1の発電層はa
−Si:H以外の非晶質半導体であってもよく、とく
に、発電層をa−SiGe:Hにより形成した場合は、
発電層をa−Si:Hにより形成した場合よりさらに大
きな効果が得られた。
Next, the power generation layer of each sub-module 1 is a
-Si: H may be an amorphous semiconductor other than H. In particular, when the power generation layer is formed of a-SiGe: H,
An even greater effect was obtained than when the power generation layer was formed of a-Si: H.

【0064】そして、装置内の各光起電力素子は、集積
型のサブモジュールでなくてもよく、発電層に種々の非
晶質半導体を用いた単層,多層構造の種々の太陽電池素
子等であってよいのは勿論であり、本発明は、スーパー
ストレート方式の太陽電池モジュールだけでなく、裏面
板4をステンレス基板,ガラス基板としてその上に直接
太陽電池を形成するサブストレート方式,ガラス基板一
体型モジュール等の種々の方式の電力用をはじめとする
種々の用途の太陽電池モジュール等に適用することがで
きる。
Each photovoltaic element in the device does not have to be an integrated sub-module, and various single-layer and multi-layer solar cell elements using various amorphous semiconductors for the power generation layer, etc. Needless to say, the present invention is not limited to a solar cell module of a superstrate type, but also to a substrate type, a glass substrate in which a solar cell is formed directly on the back plate 4 as a stainless steel substrate or a glass substrate. The present invention can be applied to solar cell modules and the like for various uses including various types of electric power such as an integrated module.

【0065】[0065]

【発明の効果】本発明は、以下に記載する効果を奏す
る。まず、電熱線等の発熱体6又はポリプロピレン等の
蓄熱材を、各光起電力素子(サブモジュール1)に熱を
供給する給熱体として備えたため、発熱体又は蓄熱材に
よりサブモジュール1等の各光起電力素子の動作中の温
度を高く保つことができ、光照射に伴う非晶質半導体特
有の特性劣化を抑制し、長時間経過後のエネルギー変換
効率を向上することができる。
The present invention has the following effects. First, a heating element 6 such as a heating wire or a heat storage material such as polypropylene is provided as a heat supply element for supplying heat to each photovoltaic element (submodule 1). The temperature during the operation of each photovoltaic element can be kept high, deterioration of characteristics unique to an amorphous semiconductor due to light irradiation can be suppressed, and energy conversion efficiency after a long time has elapsed can be improved.

【0066】そして、発熱体又は蓄熱材を、各光起電力
素子より光入射側に各光起電力素子間の接続線を覆うよ
うに設けた場合は、発熱体又は蓄熱材により各光起電力
素子の受光の妨げにならないようにして光照射に伴う特
性劣化を抑制することができ、同時に、発熱体又は蓄熱
材により各光起電力素子間の接続線2が覆い隠されて意
匠的効果を奏する利点もある。
When the heating element or the heat storage material is provided on the light incident side of each photovoltaic element so as to cover the connection line between the photovoltaic elements, each photovoltaic element is provided by the heating element or the heat storage material. The deterioration of characteristics due to light irradiation can be suppressed so as not to hinder the light reception of the element, and at the same time, the connection line 2 between each photovoltaic element is covered and hidden by the heating element or the heat storage material, and the design effect is improved. There are also benefits to play.

【0067】また、発熱体又は蓄熱材を、各光起電力素
子より裏面側に設けた場合は、光入射側に設ける場合の
ような発熱体又は蓄熱材の形状や配置等の制約がなく、
例えば各光起電力素子の裏面側全体に発熱体又は蓄熱材
を配設して特性劣化の抑制効果を著しく向上することが
できる。
When the heating element or the heat storage material is provided on the back side of each photovoltaic element, there is no restriction on the shape and arrangement of the heating element or the heat storage material as in the case where it is provided on the light incident side.
For example, a heating element or a heat storage material is provided on the entire back surface side of each photovoltaic element, so that the effect of suppressing deterioration of characteristics can be significantly improved.

【0068】さらに、発熱体又は蓄熱材を各光起電力素
子より光入射側或いは裏面側に設ける場合、発熱体又は
蓄熱材を、各光起電力素子を包むように樹脂材を充填し
た封止部5内に設けることにより、極めて実用的で長時
間経過後のエネルギー変換効率が向上した光起電力装置
を提供することができる。
Further, when the heating element or the heat storage material is provided on the light incident side or the back side of each photovoltaic element, the heating element or the heat storage material is filled with a resin material so as to surround each photovoltaic element. By providing the photovoltaic device within 5, it is possible to provide a photovoltaic device that is extremely practical and has improved energy conversion efficiency after a long time has passed.

【0069】つぎに、発熱体又は蓄熱材を、各光起電力
素子の基板内に設けた場合は、発熱体又は蓄熱材から各
光起電力素子に直接給熱され、極めて効率よく各光起電
力素子の動作中の温度を高く保つことができ、長時間経
過後のエネルギー変換効率を一層向上することができ
る。
Next, when the heating element or the heat storage material is provided in the substrate of each photovoltaic element, heat is directly supplied from the heating element or the heat storage material to each photovoltaic element, and each photovoltaic element is extremely efficiently used. The temperature during operation of the power element can be kept high, and the energy conversion efficiency after a long time has elapsed can be further improved.

【0070】この場合、各光起電力素子の基板は、透光
性で発電層より光入射側にあってもよく、発電層の裏面
側にあってもよい。
In this case, the substrate of each photovoltaic element may be translucent and may be on the light incident side of the power generation layer, or may be on the back side of the power generation layer.

【0071】さらに、各光起電力素子が集積型のサブモ
ジュール構成に形成される場合、発熱体又は蓄熱材を、
光起電力素子の基板内又は基板表面の透明電極除去部分
の位置に設けることにより、各光起電力素子の受光の妨
げにならないようにしてこの種サブモジュール構成の光
起電力装置のエネルギー変換効率を向上することができ
る。
Further, when each photovoltaic element is formed in an integrated sub-module configuration, a heating element or a heat storage material is used.
By providing the photovoltaic device in the substrate or at the position of the transparent electrode removed portion on the substrate surface, the energy conversion efficiency of the photovoltaic device of this type of sub-module configuration is prevented so as not to hinder the light reception of each photovoltaic device. Can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の1形態の太陽電池モジュールの
断面図である。
FIG. 1 is a cross-sectional view of a solar cell module according to one embodiment of the present invention.

【図2】図1の太陽電池モジュールの平面図である。FIG. 2 is a plan view of the solar cell module of FIG.

【図3】図1のサブモジュールの断面図である。FIG. 3 is a sectional view of the submodule of FIG. 1;

【図4】図3の非晶質半導体部の拡大断面図である。FIG. 4 is an enlarged cross-sectional view of the amorphous semiconductor section of FIG.

【図5】図1のサブモジュールの製造に用いられるプラ
ズマ反応装置の模式図である。
FIG. 5 is a schematic view of a plasma reactor used for manufacturing the submodule of FIG.

【図6】本発明の実施の第2の形態の太陽電池モジュー
ルの断面図である。
FIG. 6 is a sectional view of a solar cell module according to a second embodiment of the present invention.

【図7】本発明の実施の第3の形態の太陽電池モジュー
ルの断面図である。
FIG. 7 is a sectional view of a solar cell module according to a third embodiment of the present invention.

【図8】本発明の実施の第4の形態の太陽電池モジュー
ルの断面図である。
FIG. 8 is a sectional view of a solar cell module according to a fourth embodiment of the present invention.

【図9】本発明の実施の第5の形態のサブモジュールの
斜視図である。
FIG. 9 is a perspective view of a submodule according to a fifth embodiment of the present invention.

【図10】本発明の実施の第6の形態のサブモジュール
の斜視図である。
FIG. 10 is a perspective view of a submodule according to a sixth embodiment of the present invention.

【図11】ガラス基板タイプの太陽電池モジュールのエ
ネルギー変換効率の光照射時の温度依存特性図である。
FIG. 11 is a graph showing the temperature dependence of the energy conversion efficiency of a glass substrate type solar cell module during light irradiation.

【図12】従来例の太陽電池モジュールの断面図であ
る。
FIG. 12 is a cross-sectional view of a conventional solar cell module.

【図13】図12の太陽電池モジュールの平面図であ
る。
FIG. 13 is a plan view of the solar cell module of FIG.

【符号の説明】[Explanation of symbols]

1 光起電力素子としてのサブモジュール 2 接続線 5 封止部 6 発熱体 7 ガラス基板 9 非晶質半導体部 DESCRIPTION OF SYMBOLS 1 Sub-module as a photovoltaic element 2 Connection line 5 Sealing part 6 Heating element 7 Glass substrate 9 Amorphous semiconductor part

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 発電層に非晶質半導体を用いた光起電力
素子を複数個配列して接続したモジュール構成の光起電
力装置において、 発熱体又は蓄熱材を、前記各光起電力素子に熱を与える
給熱体として備えたことを特徴とする光起電力装置。
1. A photovoltaic device having a module configuration in which a plurality of photovoltaic elements using an amorphous semiconductor are arranged and connected to a power generation layer, wherein a heating element or a heat storage material is provided for each of the photovoltaic elements. A photovoltaic device provided as a heat supply body for applying heat.
【請求項2】 発熱体又は蓄熱材が、各光起電力素子よ
り光入射側に前記各光起電力素子間の接続線を覆うよう
に設けられたことを特徴とする請求項1記載の光起電力
装置。
2. The light according to claim 1, wherein the heating element or the heat storage material is provided on the light incident side of each photovoltaic element so as to cover a connection line between the photovoltaic elements. Electromotive device.
【請求項3】 発熱体又は蓄熱材が、各光起電力素子よ
り裏面側に設けられたことを特徴とする請求項1記載の
光起電力装置。
3. The photovoltaic device according to claim 1, wherein the heating element or the heat storage material is provided on the back side of each photovoltaic element.
【請求項4】 発熱体又は蓄熱材が、各光起電力素子を
包むように封止材を充填した封止部内に設けられたこと
を特徴とする請求項2又は請求項3記載の光起電力装
置。
4. The photovoltaic device according to claim 2, wherein the heating element or the heat storage material is provided in a sealing portion filled with a sealing material so as to surround each photovoltaic element. apparatus.
【請求項5】 発熱体又は蓄熱材が、各光起電力素子の
基板内又は基板表面に設けられたことを特徴とする請求
項1記載の光起電力装置。
5. The photovoltaic device according to claim 1, wherein the heating element or the heat storage material is provided in the substrate of each photovoltaic element or on the substrate surface.
【請求項6】 各光起電力素子の基板が、透光性で発電
層より光入射側にあることを特徴とする請求項5記載の
光起電力装置。
6. The photovoltaic device according to claim 5, wherein the substrate of each photovoltaic element is translucent and is on the light incident side of the power generation layer.
【請求項7】 各光起電力素子の基板が、発電層の裏面
側にあることを特徴とする請求項5記載の光起電力装
置。
7. The photovoltaic device according to claim 5, wherein the substrate of each photovoltaic element is on the back side of the power generation layer.
【請求項8】 各光起電力素子が集積型のサブモジュー
ル構成に形成され、発熱体又は蓄熱材が、前記光起電力
素子の基板内又は基板表面の透明電極除去部分の位置に
設けられたことを特徴とする請求項6又は請求項7記載
の光起電力装置。
8. Each photovoltaic element is formed in an integrated sub-module configuration, and a heating element or a heat storage material is provided in the substrate of the photovoltaic element or at a position of a transparent electrode removed portion on the substrate surface. The photovoltaic device according to claim 6 or 7, wherein:
JP09527897A 1997-03-28 1997-03-28 Photovoltaic device Expired - Fee Related JP3209701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09527897A JP3209701B2 (en) 1997-03-28 1997-03-28 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09527897A JP3209701B2 (en) 1997-03-28 1997-03-28 Photovoltaic device

Publications (2)

Publication Number Publication Date
JPH10275925A true JPH10275925A (en) 1998-10-13
JP3209701B2 JP3209701B2 (en) 2001-09-17

Family

ID=14133316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09527897A Expired - Fee Related JP3209701B2 (en) 1997-03-28 1997-03-28 Photovoltaic device

Country Status (1)

Country Link
JP (1) JP3209701B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017157539A (en) * 2016-02-26 2017-09-07 エコホールディングス株式会社 Photovoltaic power generation module with snow melting function and building having photovoltaic power generation module
KR20220168022A (en) * 2021-06-15 2022-12-22 재단법인 구미전자정보기술원 Apparatus for analyzing light-induced degradation and lid healing process characteristic of solar cell module and the method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6258056U (en) * 1985-09-30 1987-04-10
JPS62103271U (en) * 1985-12-19 1987-07-01
JPH06244445A (en) * 1993-02-20 1994-09-02 Kanegafuchi Chem Ind Co Ltd Solar battery module panel and operating method thereof
JPH08250756A (en) * 1995-03-07 1996-09-27 Sharp Corp Solar cell module with snow melting function and solar generating system with snow melting function

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6258056U (en) * 1985-09-30 1987-04-10
JPS62103271U (en) * 1985-12-19 1987-07-01
JPH06244445A (en) * 1993-02-20 1994-09-02 Kanegafuchi Chem Ind Co Ltd Solar battery module panel and operating method thereof
JPH08250756A (en) * 1995-03-07 1996-09-27 Sharp Corp Solar cell module with snow melting function and solar generating system with snow melting function

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017157539A (en) * 2016-02-26 2017-09-07 エコホールディングス株式会社 Photovoltaic power generation module with snow melting function and building having photovoltaic power generation module
KR20220168022A (en) * 2021-06-15 2022-12-22 재단법인 구미전자정보기술원 Apparatus for analyzing light-induced degradation and lid healing process characteristic of solar cell module and the method thereof

Also Published As

Publication number Publication date
JP3209701B2 (en) 2001-09-17

Similar Documents

Publication Publication Date Title
JP3754841B2 (en) Photovoltaic element and manufacturing method thereof
US7952016B2 (en) Photovoltaic module comprising a terminal box attached to the rear surface
US6288323B1 (en) Thin film photoelectric conversion module and method of manufacturing the same
AU747121B2 (en) Photoelectric conversion element and building material using the same
US6215060B1 (en) Method for manufacturing a solar cell module
JP3618802B2 (en) Solar cell module
JP3288876B2 (en) Solar cell module and method of manufacturing the same
US20160225931A1 (en) Bifacial photovoltaic module using heterojunction solar cells
KR102323460B1 (en) P-type PERC double-sided solar cell and its module, system and manufacturing method
US4914044A (en) Method of making tandem solar cell module
JP7023976B2 (en) Manufacturing method of P-type PERC double-sided solar cell
US10790402B2 (en) Degradation-resistant photovoltaic devices
JP2000164910A (en) Solar battery module
JPH09116182A (en) Solar battery module and manufacture of solar battery module
TWI667877B (en) Method for measuring solar cell IV, IV measuring device for solar cell, manufacturing method of solar cell, manufacturing method of solar cell module, and solar cell module
JP3209701B2 (en) Photovoltaic device
WO2014050193A1 (en) Photoelectric conversion module
TWI630788B (en) Hybrid solar module
JP2008053303A (en) Solar cell panel
TW201214727A (en) Photovoltaic module including transparent sheet with channel
KR101145180B1 (en) Heating the rear of low degradation silicon thin film photovoltaics using own power
JP2004186443A (en) Solar cell with translucent thin film and module thereof
JPH11298020A (en) Thin-film solar cell module
CN220796756U (en) Silicon heterojunction solar cell, solar photovoltaic module and photovoltaic system
JP3246732B2 (en) Thin film photoelectric conversion module and method of manufacturing the same

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees