JPH10273826A - Polytetrafluoroethylene-based sheath core composite fiber and production thereof - Google Patents

Polytetrafluoroethylene-based sheath core composite fiber and production thereof

Info

Publication number
JPH10273826A
JPH10273826A JP7740597A JP7740597A JPH10273826A JP H10273826 A JPH10273826 A JP H10273826A JP 7740597 A JP7740597 A JP 7740597A JP 7740597 A JP7740597 A JP 7740597A JP H10273826 A JPH10273826 A JP H10273826A
Authority
JP
Japan
Prior art keywords
polymer
core
sheath
component
polytetrafluoroethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7740597A
Other languages
Japanese (ja)
Inventor
Atsushi Taniguchi
敦 谷口
Mototada Fukuhara
基忠 福原
Shoichi Sugimura
祥一 杉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP7740597A priority Critical patent/JPH10273826A/en
Publication of JPH10273826A publication Critical patent/JPH10273826A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject fiber excellent in productivity, less in decomposition residue after its burning heat-treatment, capable of stretching in a high stretch ratio and becoming a high strength fiber by using a polytetreafluoroethylene-based polymer as a core component and a polymer having a coagulation capability to an aqueous inorganic salt solution as a sheath component. SOLUTION: This polytetrafluoroethylene-based sheath core composite fiber is obtained by using a polytetrafluoroethylene-based polymer as a core component and a polymer (preferably a polymer selected from among a viscose, an alginic acid and a polyvinyl alcohol) having a coagulation capability to an aqueous inorganic salt solution as a sheath component. Also, it is preferable to set a weight ratio of the core component polymer and the sheath component polymer as (90:10)-(40:60). Also, it is possible to produce the fiber by spinning the sheath core fiber using a grease like material consisting of a polytetrafluoroethylene-based polymer as a core component and a polymer having a coagulation capability to the aqueous inorganic salt solution as the sheath component.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐熱性、耐アルカ
リ性、耐酸性、耐溶剤性、耐薬品性、電気絶縁性、摩擦
特性、耐候性などに優れたポリテトラフルオロエチレン
(以下PTFEと略記する)系繊維の前駆体となるPT
FE系芯鞘複合繊維に関するものである。
The present invention relates to polytetrafluoroethylene (hereinafter abbreviated as PTFE) having excellent heat resistance, alkali resistance, acid resistance, solvent resistance, chemical resistance, electrical insulation, frictional properties, weather resistance and the like. PT) which is the precursor of the base fiber
The present invention relates to an FE core-sheath composite fiber.

【0002】[0002]

【従来の技術】従来よりPTFE系繊維は耐熱性、耐ア
ルカリ性、耐酸性、耐溶剤性、耐薬品性、電気絶縁性、
摩擦特性、耐候性などに優れるといった特徴があり、産
業資材用途において広く利用されている。
2. Description of the Related Art Conventionally, PTFE fibers have been used for heat resistance, alkali resistance, acid resistance, solvent resistance, chemical resistance, electrical insulation, and the like.
It has features such as excellent friction characteristics and weather resistance, and is widely used in industrial material applications.

【0003】しかしながら、PTFE系ポリマは、該ポ
リマの加熱溶融体の粘度が著しく高いため溶融成形に適
さず、また適当な溶媒が無いため湿式紡糸も困難であっ
た。そこで特公昭52−25453号公報、特開平1−
139840号公報には、ビスコース、ポリビニルアル
コール、アルギン酸ナトリウムなどのマトリックスポリ
マと、PTFE系ポリマを水に分散させた水ディスパー
ジョン・エマルジョンの混合液を湿式紡糸、あるいは湿
式成形してPTFE系繊維の前駆体である未焼成糸を形
成する、いわゆるエマルジョン紡糸法が開示されてい
る。
[0003] However, PTFE-based polymers are not suitable for melt molding due to the remarkably high viscosity of a heated melt of the polymer, and wet spinning is difficult due to lack of a suitable solvent. Accordingly, Japanese Patent Publication No. 52-25453,
139840 discloses that a mixture of a matrix polymer such as viscose, polyvinyl alcohol, and sodium alginate, and a water dispersion emulsion obtained by dispersing a PTFE-based polymer in water is wet-spun or wet-formed to form a PTFE-based fiber. A so-called emulsion spinning method for forming an unsintered yarn as a precursor is disclosed.

【0004】この方法においては、混合液を口金から吐
出し繊維状に成形され、凝固、精練後、熱処理工程とし
て、「焼成」が行われる。そして焼成を、マトリックス
ポリマ中に粒子状態で存在しているPTFE系ポリマの
融点以上の温度で行うことにより、マトリックスポリマ
の大部分を飛散させると同時に、PTFE系ポリマを溶
融して粒子間を融着させ、延伸性が付与されると共に要
求される繊維強度が発現されるのである。
In this method, a mixed liquid is discharged from a die to be formed into a fibrous shape, and after coagulation and scouring, "baking" is performed as a heat treatment step. By baking at a temperature equal to or higher than the melting point of the PTFE-based polymer present in the matrix polymer in the form of particles, most of the matrix polymer is scattered and, at the same time, the PTFE-based polymer is melted to melt the particles. In this case, stretchability is imparted and the required fiber strength is developed.

【0005】しかしながら、焼成熱処理、さらにはその
後の熱延伸後においても、マトリックスポリマの分解残
渣(炭素成分)が繊維中に存在するため、得られた繊維
の色が褐色または黒色に着色したものとなってしまう。
また、この分解残渣が繊維中の欠陥部分となり強度低下
の原因となったり、PTFE繊維の特徴である電気絶縁
性や耐候性を低下させる原因となってしまうことがあ
る。そこで分解残渣である残存炭素成分を完全に除去す
るために漂白が行われているが、高温で長時間の熱処理
による強度低下が避けられず、高々1.0g/d程度と
いった低強度のものとなってしまう。また漂白工程を行
うことによるエネルギー消費、設備費アップによるコス
トアップといった問題点があった。
However, even after the heat treatment for sintering and the subsequent hot stretching, since the decomposition residue (carbon component) of the matrix polymer is present in the fibers, the color of the obtained fibers may be brown or black. turn into.
In addition, the decomposition residue may become a defective portion in the fiber and cause a decrease in strength, or may cause a decrease in electrical insulation and weather resistance characteristic of PTFE fiber. Therefore, bleaching is performed in order to completely remove the residual carbon component which is a decomposition residue. However, strength reduction due to prolonged heat treatment at a high temperature is unavoidable, and the strength is as low as 1.0 g / d at most. turn into. There are also problems such as energy consumption due to the bleaching step, and cost increase due to equipment cost increase.

【0006】一方、特公昭51−18991号公報、特
公昭58−30406号公報、特開平2−286220
号公報には、マトリックスポリマを用いず、低沸点のミ
ネラルスピリットなど可塑化助剤を添加したPTFE系
ポリマのペースト状物を押出し、(1)圧延ロールによ
ってフィルム状としたり、(2)円筒状の容器中に入れ
て丸棒(ロッド)状に圧縮加工したものを、ポリマの融
点以上の温度で焼結して得られた丸棒(プリカーサ)を
切削してフィルム状とするペースト押出し法と、これを
刃物でもって細く切り裂いて繊維状物とする割繊技術と
を組合せたPTFE系繊維の前駆体の成形法が知られて
いる。この製造法では前駆体中に分解残渣が存在しない
ため、高倍率延伸が可能となり高強度化に優位であると
いった特徴がある。
On the other hand, JP-B-51-18991, JP-B-58-30406, and JP-A-2-286220.
In the publication, a paste of a PTFE-based polymer to which a plasticizing aid such as a mineral spirit having a low boiling point is added without using a matrix polymer is extruded, and (1) a film is formed by a rolling roll; A paste extrusion method in which a round rod (precursor) obtained by sintering at a temperature equal to or higher than the melting point of a polymer obtained by compressing into a round rod (rod) shape in a container and cutting it into a film is obtained. There is known a method of forming a precursor of a PTFE-based fiber, which is combined with a splitting technique for making a fibrous material by finely cutting the fibrous material with a blade. This production method has a feature that since no decomposition residue is present in the precursor, stretching at a high magnification is possible, which is advantageous in increasing the strength.

【0007】しかしながら、このペースト押出し法を採
用すると、繊維化するにあたり割繊技術という特殊な工
程が必須であると共に、得られる繊維状物の断面形状が
矩形となり、しかもランダムで均一性に劣るといった欠
点があった。
However, when this paste extrusion method is employed, a special process called splitting technology is required for fiberization, and the cross-sectional shape of the obtained fibrous material is rectangular, and is random and poor in uniformity. There were drawbacks.

【0008】さらに、ペースト押出糸法によって得られ
た成形体(前駆体)が曳糸性に劣るため、押し出し速度
が0.5〜5m/分程度の低速でしか安定生産できない
といった工業的に重大な欠点があった。
Further, since the molded product (precursor) obtained by the paste extruding method has poor spinnability, it is industrially important that the extrusion speed can be stably produced only at a low speed of about 0.5 to 5 m / min. There were serious disadvantages.

【0009】[0009]

【発明が解決しようとする課題】本発明はかかる従来技
術の問題点を解決し、生産性に優れ、焼成熱処理後の分
解残渣(炭素成分)が少なく、高倍率延伸が可能で高強
度のPTFE系繊維となりうるPTFE系芯鞘複合繊維
を提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, is excellent in productivity, has little decomposition residue (carbon component) after heat treatment for calcination, can be stretched at a high magnification, and has high strength PTFE. An object of the present invention is to provide a PTFE core-sheath conjugate fiber that can be used as a base fiber.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するた
め、本発明は次の構成を有する。すなわち、芯成分がポ
リテトラフルオロエチレン系ポリマからなり、鞘成分が
無機塩水溶液に対し凝固能を有するポリマからなること
を特徴とするポリテトラフルオロエチレン系芯鞘複合繊
維である。
In order to solve the above problems, the present invention has the following arrangement. That is, the polytetrafluoroethylene-based core-sheath composite fiber is characterized in that the core component is composed of a polytetrafluoroethylene-based polymer, and the sheath component is composed of a polymer having a solidifying ability with respect to an aqueous solution of an inorganic salt.

【0011】[0011]

【発明の実施の形態】本発明において芯成分であるPT
FE系ポリマとは、ポリテトラフルオロエチレン、ポリ
クロロトリフルオロエチレンなどホモポリマ、テトラフ
ルオロエチレンーヘキサフルオロプロピレン共重合体、
テトラフルオロエチレンーパーフルオロアルキルビニル
エーテル共重合体、テトラフルオロエチレンーエチレン
共重合体などテトラフルオロエチレンを主体とした共重
合体単独あるいはこれらの混合物などが挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION PT as a core component in the present invention
FE-based polymers include polytetrafluoroethylene, homopolymers such as polychlorotrifluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer,
Examples of such copolymers include tetrafluoroethylene-based copolymers alone such as tetrafluoroethylene-perfluoroalkylvinyl ether copolymers and tetrafluoroethylene-ethylene copolymers, and mixtures thereof.

【0012】さらにPTFE系ポリマの分子量は、その
製造コストや、高重合度のもの程、分子鎖末端といった
欠陥部が減少するためより高強度化のポテンシャルを有
することから、50万〜2000万程度のものが好まし
い。
Further, the molecular weight of the PTFE-based polymer is about 500,000 to 20,000,000, since the production cost and the higher the degree of polymerization, the higher the strength of the PTFE-based polymer due to the reduced number of defects such as molecular chain terminals. Are preferred.

【0013】一方、鞘成分である無機塩水溶液に対し凝
固能を有するポリマとしては、ビスコース、ポリビニル
アルコール、アルギン酸などが好ましく挙げられる。
On the other hand, as a polymer having a solidifying ability with respect to an aqueous solution of an inorganic salt as a sheath component, viscose, polyvinyl alcohol, alginic acid and the like are preferably exemplified.

【0014】ビスコースは、一般にセルロース濃度3〜
10重量%、アルカリ濃度2〜12重量%、二硫化炭素
27〜32重量%(セルロースに対し)の組成範囲であ
るが、本発明において特に通常レーヨン製造用に用いら
れているもの、すなわちセルロース濃度6〜10重量
%、アルカリ濃度6〜9重量%、二硫化炭素28〜30
重量%(セルロースに対し)の組成のビスコースが好ま
しい。そして鞘成分がビスコースの場合、凝固浴液とし
ては、無機鉱酸及び/または無機塩の水溶液がよく、時
には飽和塩類水溶液中に吐出されたあと、無機酸中で再
生する2浴成形法などの組合せも有効である。一般には
硫酸−硫酸ナトリウムの混合水溶液が好ましい。
Viscose generally has a cellulose concentration of 3 to 3.
The composition range is 10% by weight, alkali concentration is 2 to 12% by weight, and carbon disulfide is 27 to 32% by weight (relative to cellulose). 6-10% by weight, alkali concentration 6-9% by weight, carbon disulfide 28-30
Viscose having a composition by weight (relative to cellulose) is preferred. When the sheath component is viscose, the coagulation bath liquid is preferably an aqueous solution of an inorganic mineral acid and / or an inorganic salt, and is sometimes discharged into an aqueous solution of a saturated salt and then regenerated in an inorganic acid. Is also effective. Generally, a mixed aqueous solution of sulfuric acid-sodium sulfate is preferable.

【0015】また、ポリビニルアルコールは、重合度が
500以上5000以下でケン化度は88モル%以上の
ものが、製糸性の点から好ましく、ポリマ濃度が10〜
30重量%の水溶液として鞘成分に用いることが好まし
い。この時凝固浴液としてはボウ硝を含有し、必要に応
じて水酸化ナトリウムなどアルカリを微量添加させた水
溶液が好適に用いられる。当然ながら無機塩水溶液に対
する凝固能を損なわないものであれば、主鎖中にエチレ
ンやプロピレンなどオレフィン系モノマーが少量共重合
されたポリビニルアルコール系ポリマを用いることがで
きる。また同様にpH調整剤などを添加してもかまわな
い。
Polyvinyl alcohol having a degree of polymerization of 500 or more and 5,000 or less and a degree of saponification of 88 mol% or more is preferable from the viewpoint of the spinning property, and has a polymer concentration of 10 to 10.
It is preferable to use a 30% by weight aqueous solution for the sheath component. At this time, as the coagulation bath solution, an aqueous solution containing boat nitrate and optionally containing a small amount of an alkali such as sodium hydroxide is suitably used. Naturally, a polyvinyl alcohol-based polymer in which a small amount of an olefin-based monomer such as ethylene or propylene is copolymerized in the main chain can be used as long as it does not impair the solidifying ability of the inorganic salt aqueous solution. Similarly, a pH adjuster or the like may be added.

【0016】アルギン酸としては、アルカリ金属塩であ
るアルギン酸カリウム、アルギン酸ナトリウムなども含
むものであり、繊維化に適した溶液粘度50〜1000
0ポイズの範囲のものが好ましく、ポリマ濃度が1〜1
0重量%の水溶液として鞘成分に用いることが好まし
い。この時、凝固浴液としては塩化カルシウムを1〜1
5重量%含有する水溶液が好ましい。
Alginic acid also includes potassium alginate and sodium alginate which are alkali metal salts, and has a solution viscosity of 50 to 1000 suitable for fiberization.
It is preferably in the range of 0 poise, and the polymer concentration is 1 to 1
It is preferable to use a 0% by weight aqueous solution for the sheath component. At this time, calcium chloride was used as a coagulation bath solution in the range of 1 to 1
An aqueous solution containing 5% by weight is preferred.

【0017】本発明において、芯成分と鞘成分の重量比
は90:10〜40:60であることが、芯鞘構造の形
成および製糸性の点や本発明のPTFE系芯鞘複合繊維
の焼成時に可塑化助剤を分解飛散させる点で好ましい。
より好ましくは90:10〜60:40である。
In the present invention, the weight ratio of the core component and the sheath component is preferably 90:10 to 40:60, in view of the formation of the core-sheath structure and the spinning properties, and the firing of the PTFE-based sheath-core composite fiber of the present invention. This is preferable in that the plasticizing aid is sometimes decomposed and scattered.
More preferably, it is 90:10 to 60:40.

【0018】次に、本発明のPTFE系芯鞘複合繊維の
好ましい製造法について説明する。
Next, a preferred method for producing the PTFE core-sheath composite fiber of the present invention will be described.

【0019】本発明のPTFE系芯鞘複合繊維は、例え
ば、芯成分をPTFE系ポリマからなるグリース状物と
し、鞘成分を無機塩水溶液に対し凝固能を有するポリマ
として芯鞘複合紡糸することによって製造することがで
きる。
The PTFE core-sheath composite fiber of the present invention is obtained, for example, by subjecting the core component to a grease-like material composed of a PTFE-based polymer and subjecting the sheath component to a core-sheath composite spinning as a polymer having coagulability with an aqueous inorganic salt solution. Can be manufactured.

【0020】芯成分のPTFE系ポリマからなるグリー
ス状物は、例えばPTFE系ポリマに可塑化助剤を混合
することにより、グリース状物中のPTFE系ポリマ濃
度を50〜80重量%程度とし、さらに該ポリマの変性
を防ぐ目的で20℃以下の温度で数分間〜数時間かけて
充分に可塑化助剤とPTFE系ポリマとをなじませるこ
とにより作製することができる。作製されたグリース状
物は圧力5〜100kg/cm2 で圧縮し、グリース状物中
のエアー抜きを行ってもよい。
The grease-like material composed of a PTFE-based polymer as a core component is adjusted to a concentration of about 50 to 80% by weight of the PTFE-based polymer in the grease-like material by, for example, mixing a plasticizing aid with the PTFE-based polymer. In order to prevent denaturation of the polymer, it can be produced by sufficiently mixing the plasticizing aid with the PTFE-based polymer at a temperature of 20 ° C. or less for several minutes to several hours. The produced grease-like material may be compressed at a pressure of 5 to 100 kg / cm 2 to remove air from the grease-like material.

【0021】なおPTFE系ポリマは、水系ディスパー
ジョン、モールディングパウダー、ファインパウダーな
ど、その製造時における使用形態は特に限定されない
が、グリース状物の押出し圧や成形性の点からファイン
パウダーや水系ディスパージョンを用いるのが好まし
い。
The form of use of the PTFE-based polymer, such as an aqueous dispersion, a molding powder, and a fine powder, is not particularly limited. It is preferable to use

【0022】この時用いられる可塑化助剤としては、ソ
ルベントナフサなどミネラルスピリットやパーフルオロ
エーテル、シリコーンオイル、フッ素系界面活性剤など
有機系の非水溶剤や水分散系の親水性フッ素系界面活性
剤が好ましく用いられる。
Examples of the plasticizing aid used at this time include mineral spirits such as solvent naphtha, perfluoroethers, silicone oils, organic non-aqueous solvents such as fluorine-based surfactants, and water-dispersed hydrophilic fluorine-based surfactants. Agents are preferably used.

【0023】なおここで親水性フッ素系界面活性剤と
は、パーフルオロアルキルカルボン酸、およびその塩化
合物、パーフルオロアルキルリン酸エステル、パーフル
オロアルキルトリメチルアンモニウム塩、パーフルオロ
アルキルベタイン、パーフルオロアルキルアミンオキサ
イド、パーフルオロアルキルスルホン酸塩、パーフルオ
ロアルキルEO付加物など水への分散性に優れたものを
意味するものとする。
Here, the hydrophilic fluorine-based surfactant includes perfluoroalkylcarboxylic acid and its salt compound, perfluoroalkylphosphate ester, perfluoroalkyltrimethylammonium salt, perfluoroalkylbetaine, perfluoroalkylamine Oxides, perfluoroalkyl sulfonates, perfluoroalkyl EO adducts, and the like having excellent dispersibility in water are meant.

【0024】前述したようなPTFE系ポリマからなる
グリース状物を芯成分とし、無機塩水溶液に対し凝固能
を有するポリマ溶液を鞘成分とし、通常の芯鞘複合紡糸
に用いられる口金を用いて、芯鞘構造を有する円断面の
複合連続繊維とすることができる。
A grease-like material composed of the above-mentioned PTFE-based polymer is used as a core component, a polymer solution having a solidifying ability with respect to an inorganic salt aqueous solution is used as a sheath component, and a spinneret used for ordinary core-sheath composite spinning is used. A composite continuous fiber having a core-sheath structure and a circular cross section can be obtained.

【0025】この時口金の孔径は好ましくは0.1〜
2.0mm、より好ましくは0.2〜1.0mmであり、紡
糸方法は口金より鞘成分ポリマを凝固させる浴液中に押
し出す、いわゆる湿式成形法が採用されるが、従来のペ
ースト押出し法に比べ、高速においても安定した押し出
しを行うことができる。
At this time, the diameter of the die is preferably 0.1 to
2.0 mm, more preferably 0.2 to 1.0 mm, and the spinning method employs a so-called wet molding method in which a sheath component polymer is extruded from a die into a bath solution for coagulation. In comparison, stable extrusion can be performed even at a high speed.

【0026】口金から押し出された芯鞘複合繊維は、水
で洗浄し、凝固浴中の無機塩などの付着物を除去した
後、精練することが好ましい。精練浴としてはアルカリ
金属の水酸化物の水溶液が良く、時には水に溶けてアル
カリ性を示す有機化合物、例えばパラベンゼンスルホン
酸ソーダなども有効であるが、一般には苛性ソーダ水溶
液が使われる。
The core-sheath conjugate fiber extruded from the die is preferably washed with water to remove deposits such as inorganic salts in the coagulation bath, and then scoured. As the scouring bath, an aqueous solution of an alkali metal hydroxide is preferable, and an organic compound which dissolves in water and exhibits alkalinity, such as sodium parabenzenesulfonate, is also effective, but an aqueous solution of caustic soda is generally used.

【0027】こうして得られた本発明のPTFE系芯鞘
複合繊維をそのまま、または一旦乾燥して、好ましくは
330℃以上450℃以下の、さらに好ましくは350
℃以上420℃以下の温度で焼成熱処理することによ
り、鞘成分ポリマや芯成分のPTFE系ポリマに混合さ
れていた可塑化助剤が分解飛散し、併せてPTFE系粒
子が繊維状に熱融着してPTFE系ポリマからなる焼成
体が得られる。
The thus obtained PTFE core-sheath conjugate fiber of the present invention as it is or once dried, preferably at a temperature of 330 ° C. or more and 450 ° C. or less, more preferably 350 ° C. or less.
By baking and heat treatment at a temperature of not less than 420 ° C. and not more than 420 ° C., the plasticizing aid mixed with the sheath component polymer and the PTFE polymer of the core component is decomposed and scattered, and the PTFE particles are heat-fused in a fibrous state. As a result, a fired body made of the PTFE-based polymer is obtained.

【0028】該焼成体をさらに、PTFE系ポリマの融
点近傍の高温で熱延伸することにより、目的とするPT
FE系繊維が製造されるが、繊維の均一性や熱延伸時の
張力に耐えうる強度を付与するために、熱延伸の前にP
TFE系ポリマの融点以下、好ましくは200℃以下の
低温延伸を施してもよい。
The fired body is further hot-stretched at a high temperature near the melting point of the PTFE-based polymer to obtain the desired PT.
FE-based fibers are manufactured, but in order to impart uniformity of the fibers and strength that can withstand the tension during hot stretching, P
Low-temperature stretching at a temperature equal to or lower than the melting point of the TFE-based polymer, preferably 200 ° C. or lower, may be performed.

【0029】この時焼成体は、芯成分中の炭素成分含有
率が1重量%以下であり、繊維の着色が無くしかも異物
となるものが少ないため、延伸倍率を12倍以上、好ま
しくは14倍以上といった高倍率とすることが可能であ
り、得られるPTFE系繊維の引張強度を0.41GP
a(2g/d)以上といった高強度のものとすることが
できる。これは、従来のエマルジョン紡糸法による漂白
処理を施した繊維の強度レベルに比べ非常に高いもので
あるといえる。
At this time, since the fired body has a carbon component content of 1% by weight or less in the core component, there is no coloring of the fiber and there are few foreign matters, the stretching ratio is 12 times or more, preferably 14 times. It is possible to achieve a high magnification as described above, and the tensile strength of the obtained PTFE-based fiber is 0.41 GP.
a (2 g / d) or more. This can be said to be much higher than the strength level of fibers that have been bleached by the conventional emulsion spinning method.

【0030】なお熱延伸は、熱ローラなどを用いる接触
方式で行ってもよいが、327℃以上400℃以下の、
さらに好ましくは327℃以上380℃以下の加熱雰囲
気の中で、非接触の状態で熱延伸を行うと、繊維束内部
の伝熱が均一となり、繊維が均一に延伸される点で好ま
しい。
The hot stretching may be performed by a contact method using a heat roller or the like.
More preferably, in a heating atmosphere of 327 ° C. or more and 380 ° C. or less, performing thermal stretching in a non-contact state is preferable in that the heat transfer inside the fiber bundle becomes uniform and the fiber is uniformly stretched.

【0031】[0031]

【実施例】以下、実施例によりさらに詳細に説明する
が、本発明はこれらの実施例に限定されるものではな
い。なお、実施例中の各特性値は次のようにして測定さ
れたものである。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. In addition, each characteristic value in an Example is measured as follows.

【0032】A.強度、伸度 繊維サンプルを18℃、65%RHに温湿度調整された
部屋で24時間放置後、10cmあたり8ターンの撚りを
掛けたものを”テンシロン”UTM−3L型引張試験機
(東洋MEASURING INSTRUMENTS (株)製)を使用して、
試長25cm、引張速度30cm/分で測定した。チャック
はコード用エアージョーを使用した。
A. Strength and Elongation A fiber sample was left standing for 24 hours in a room adjusted to a temperature and humidity of 18 ° C. and 65% RH, and then twisted for 8 turns per 10 cm. Using a testing machine (Toyo MEASURING INSTRUMENTS Co., Ltd.)
The measurement was performed at a test length of 25 cm and a tensile speed of 30 cm / min. The chuck used a cord air jaw.

【0033】B.繊維中の炭素成分含有率 繊維サンプルを300℃の加熱空気中で24時間連続熱
処理した前後の質量変化率を算出して炭素成分含有率と
した。
B. Content of Carbon Component in Fiber The mass change rate before and after continuous heat treatment of the fiber sample in heated air at 300 ° C. for 24 hours was calculated to be the content of carbon component.

【0034】実施例1 分子量約50万のポリテトラフルオロエチレン・ファイ
ンパウダー(旭硝子(株)製”CD−4”)にパーフル
オロエーテルを混和し、ポリマ濃度65重量%のグリー
ス状物を得た。これに50Kg/cm2の圧力を20分間かけ
てグリース状物中のエアを抜いて芯成分とした。一方、
アルギン酸ナトリウム4重量%水溶液(1000 pois
e)を鞘成分とし、芯成分ポリマと鞘成分ポリマとの比
が90:10となるよう孔径0.3mmの円形断面形状を
有する芯鞘複合口金から塩化カルシウム10重量%を含
有する水溶液中(40℃)に押出しPTFE系芯鞘複合
繊維を得た。押出し速度が40m/分まで安定して押出
しが可能であった。次いで得られた繊維を360℃の熱
風雰囲気中で4%のリッラクス状態で焼成して焼成体を
得た。これを温度335℃の雰囲気中で熱ローラや熱板
など加熱体に接触させずに熱延伸を行った。得られた繊
維の特性は表1のとおりであり、優れたものであった。
Example 1 Perfluoroether was mixed with polytetrafluoroethylene fine powder having a molecular weight of about 500,000 ("CD-4" manufactured by Asahi Glass Co., Ltd.) to obtain a grease having a polymer concentration of 65% by weight. . Then, a pressure of 50 kg / cm 2 was applied for 20 minutes to remove air from the grease-like material to obtain a core component. on the other hand,
4% by weight aqueous solution of sodium alginate (1000 pois
e) is used as a sheath component, and an aqueous solution containing 10% by weight of calcium chloride is obtained from a core-sheath composite die having a circular cross-sectional shape with a pore diameter of 0.3 mm so that the ratio of the core component polymer to the sheath component polymer is 90:10 ( (40 ° C.) to obtain a PTFE core-sheath composite fiber. Extrusion was possible stably at an extrusion speed of up to 40 m / min. Next, the obtained fiber was fired in a hot air atmosphere at 360 ° C. in a relaxed state of 4% to obtain a fired body. This was thermally stretched in an atmosphere at a temperature of 335 ° C. without contacting a heating element such as a heating roller or a heating plate. The properties of the obtained fiber are as shown in Table 1, and were excellent.

【0035】実施例2 平均分子量約300万のポリテトラフルオロエチレン・
ファインパウダーに白灯油を混和し、ポリマ濃度65重
量%のグリース状物を得た。これに20Kg/cm2の圧力を
15分間かけてグリース中のエアを抜いて芯成分とし
た。一方、重合度1200、ケン化度98モル%のポリ
ビニルアルコールを20重量%となるよう調整した水溶
液を鞘成分として、芯成分ポリマと鞘成分ポリマとの比
が80:20となるよう孔径0.3mmの芯鞘複合口金か
ら飽和ボウ硝水溶液中に押出した。押出し速度が56m
/分まで安定して押し出しが可能であった。得られた水
洗したあと360℃の熱ローラに接触させながら焼成し
て焼成体を得た。これを温度335℃の雰囲気中で加熱
体に接触させずに熱延伸を行って得られた繊維の特性は
表1のとおり優れたものであった。
Example 2 Polytetrafluoroethylene having an average molecular weight of about 3,000,000
White kerosene was mixed with the fine powder to obtain a grease having a polymer concentration of 65% by weight. A pressure of 20 kg / cm 2 was applied to the grease for 15 minutes to remove air from the grease to obtain a core component. On the other hand, an aqueous solution prepared by adjusting polyvinyl alcohol having a polymerization degree of 1200 and a saponification degree of 98 mol% to 20% by weight is used as a sheath component, and the pore size is adjusted so that the ratio of the core component polymer to the sheath component polymer becomes 80:20. It was extruded from a 3 mm core-sheath composite die into a saturated aqueous solution of nitrate. Extrusion speed 56m
/ Min. After being washed with water, it was fired while being in contact with a heat roller at 360 ° C. to obtain a fired body. The fiber obtained by subjecting this to hot stretching in an atmosphere at a temperature of 335 ° C. without contacting the heating body had excellent properties as shown in Table 1.

【0036】実施例3 平均分子量約50万のポリテトラフルオロエチレン・フ
ァインパウダー(旭硝子(株)製”CD−4”)にパー
フルオロポリエーテルを混和し、ポリマ濃度60重量%
のグリース状物を得た。これに50Kg/cm2の圧力を10
分間かけてグリース状中のエアを抜いて芯成分とした。
一方、ビスコース熟成度(塩点)5.0、セルロース濃
度9.0重量%、アルカリ濃度6.0重量%、二硫化炭
素29重量%(セルロースに対し)のビスコース溶液を
鞘成分として、芯成分ポリマと鞘成分ポリマとの比が8
5:15となるよう孔径0.3mmの芯鞘複合口金から押
出し凝固浴液中に吐出した。凝固液は硫酸濃度10重量
%、硫酸ナトリウム濃度21.0%の混合水溶液であ
り、温度は10℃であった。押出し速度が50m/分ま
で安定して押し出し可能であった。次いで温度70℃の
温水で洗浄して大部分の硫酸及び硫酸ナトリウムを除い
た後、濃度0.2重量%の苛性ソーダ水溶液中に導いて
精練し、酸成分を完全に除去した。精練後の糸条をニッ
プローラーに導き、含水率50%のPTFE系芯鞘複合
繊維を得た。これを380℃の熱風雰囲気中で6%のリ
ッラクス状態で焼成して焼成体を得、次いで温度335
℃の雰囲気中で加熱体に接触させずに熱延伸を行って得
られた繊維の特性は表1のとおり優れたものであった。
Example 3 Perfluoropolyether was mixed with polytetrafluoroethylene fine powder having an average molecular weight of about 500,000 ("CD-4" manufactured by Asahi Glass Co., Ltd.), and the polymer concentration was 60% by weight.
Grease was obtained. A pressure of 50 kg / cm 2 is applied to this for 10
Air was removed from the grease over a period of minutes to obtain a core component.
On the other hand, a viscose solution having a viscose ripening degree (salt point) of 5.0, a cellulose concentration of 9.0% by weight, an alkali concentration of 6.0% by weight, and carbon disulfide of 29% by weight (based on cellulose) was used as a sheath component. The ratio of the core component polymer to the sheath component polymer is 8
The mixture was extruded from a core-sheath composite die having a pore diameter of 0.3 mm so as to give a ratio of 5:15, and was discharged into a coagulation bath liquid. The coagulation liquid was a mixed aqueous solution having a sulfuric acid concentration of 10% by weight and a sodium sulfate concentration of 21.0%, and the temperature was 10 ° C. The extrusion speed could be stably extruded up to 50 m / min. Next, after washing with hot water at a temperature of 70 ° C. to remove most of sulfuric acid and sodium sulfate, the solution was introduced into an aqueous solution of caustic soda having a concentration of 0.2% by weight and scoured to completely remove acid components. The scoured yarn was guided to a nip roller to obtain a PTFE core-sheath conjugate fiber having a water content of 50%. This was fired in a hot air atmosphere at 380 ° C. in a relaxed state of 6% to obtain a fired body.
As shown in Table 1, the properties of the fibers obtained by hot stretching without contacting the heating element in an atmosphere of ° C were excellent.

【0037】実施例4 芯成分ポリマと鞘成分ポリマとの比を50:50とした
以外は実施例3と同様に行った。押出し速度は70m/
分まで安定していた。焼成、延伸して得られた繊維の特
性は表1のとおり優れたものであった。
Example 4 The procedure of Example 3 was repeated, except that the ratio of the core component polymer to the sheath component polymer was changed to 50:50. The extrusion speed is 70m /
It was stable for a minute. The properties of the fiber obtained by firing and drawing were excellent as shown in Table 1.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【発明の効果】本発明のPTFE系芯鞘複合繊維は、生
産性が良好であると共に、これを焼成することにより分
解残渣(炭素成分)が少なく高倍率の延伸可能な繊維と
なり、PTFE系ポリマの優れた諸特性、すなわち、耐
熱性、耐アルカリ性、耐酸性、耐溶剤性、耐薬品性、電
気絶縁性、摩擦特性、耐候性などを有する高強度のPT
FE系繊維を得ることができる。
Industrial Applicability The PTFE core-sheath composite fiber of the present invention has good productivity, and when it is fired, it has a low decomposition residue (carbon component) and becomes a drawable fiber with a high magnification. High strength PT with excellent properties such as heat resistance, alkali resistance, acid resistance, solvent resistance, chemical resistance, electrical insulation, frictional properties, weather resistance, etc.
FE-based fibers can be obtained.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】芯成分がポリテトラフルオロエチレン系ポ
リマからなり、鞘成分が無機塩水溶液に対し凝固能を有
するポリマからなることを特徴とするポリテトラフルオ
ロエチレン系芯鞘複合繊維。
1. A polytetrafluoroethylene-based core-sheath composite fiber, wherein the core component is composed of a polytetrafluoroethylene-based polymer, and the sheath component is composed of a polymer capable of coagulating an aqueous solution of an inorganic salt.
【請求項2】無機塩水溶液に対し凝固能を有するポリマ
がビスコース、アルギン酸、ポリビニルアルコールから
選ばれたポリマであることを特徴とする請求項1記載の
ポリテトラフルオロエチレン系芯鞘複合繊維。
2. The polytetrafluoroethylene-based core-sheath composite fiber according to claim 1, wherein the polymer capable of coagulating an inorganic salt aqueous solution is a polymer selected from viscose, alginic acid and polyvinyl alcohol.
【請求項3】芯成分ポリマと鞘成分ポリマの重量比が9
0:10〜40:60であることを特徴とする請求項1
または2記載のポリテトラフルオロエチレン系芯鞘複合
繊維。
3. The weight ratio of the core component polymer to the sheath component polymer is 9
The ratio is 0:10 to 40:60.
Or the polytetrafluoroethylene-based core-sheath conjugate fiber according to item 2.
【請求項4】芯成分をポリテトラフルオロエチレン系ポ
リマからなるグリース状物とし、鞘成分を無機塩水溶液
に対し凝固能を有するポリマとして芯鞘複合紡糸するこ
とを特徴とするポリテトラフルオロエチレン系芯鞘複合
繊維の製造法。
4. A polytetrafluoroethylene-based spinning wherein the core component is a grease-like material made of a polytetrafluoroethylene-based polymer, and the sheath component is a core-sheath composite spinning as a polymer having coagulability in an aqueous solution of an inorganic salt. Manufacturing method of core-sheath composite fiber.
【請求項5】無機塩水溶液に対し凝固能を有するポリマ
がビスコース、アルギン酸、ポリビニルアルコールから
選ばれたポリマであり、芯成分ポリマと鞘成分ポリマの
重量比が90:10〜40:60の比率となるよう芯鞘
複合紡糸することを特徴とする請求項4記載のポリテト
ラフルオロエチレン系繊維の製造法。
5. The polymer having a solidifying ability with respect to an aqueous solution of an inorganic salt is a polymer selected from viscose, alginic acid and polyvinyl alcohol, and the weight ratio of the core component polymer and the sheath component polymer is 90:10 to 40:60. The method for producing a polytetrafluoroethylene-based fiber according to claim 4, wherein the core-sheath composite spinning is performed so as to have a ratio.
JP7740597A 1997-03-28 1997-03-28 Polytetrafluoroethylene-based sheath core composite fiber and production thereof Pending JPH10273826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7740597A JPH10273826A (en) 1997-03-28 1997-03-28 Polytetrafluoroethylene-based sheath core composite fiber and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7740597A JPH10273826A (en) 1997-03-28 1997-03-28 Polytetrafluoroethylene-based sheath core composite fiber and production thereof

Publications (1)

Publication Number Publication Date
JPH10273826A true JPH10273826A (en) 1998-10-13

Family

ID=13633010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7740597A Pending JPH10273826A (en) 1997-03-28 1997-03-28 Polytetrafluoroethylene-based sheath core composite fiber and production thereof

Country Status (1)

Country Link
JP (1) JPH10273826A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008102878A1 (en) * 2007-02-22 2010-05-27 ダイキン工業株式会社 Method for producing polytetrafluoroethylene molded article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008102878A1 (en) * 2007-02-22 2010-05-27 ダイキン工業株式会社 Method for producing polytetrafluoroethylene molded article

Similar Documents

Publication Publication Date Title
US3984601A (en) Acrylonitrile polymer filaments
KR100470368B1 (en) Dispersion Spinning Process for Poly(tetrafluoroethylene) and Related Polymers
JPWO2007089008A1 (en) Meta-type wholly aromatic polyamide fiber excellent in high-temperature processability and method for producing the same
JP6192835B2 (en) Polytetrafluoroethylene (PTFE) fiber with improved wear and method for producing the same
JPH07102413A (en) Polytetrafluoroethylene filament
JP2007100230A (en) Inorganic particle-bearing polytetrafluoroethylene fiber and method for producing the same
US4094948A (en) Improved acrylonitrile polymer spinning process
KR100470367B1 (en) Dispersion Spinning Process for Poly(tetrafluoroethylene) and Related Polymers
DE1256838B (en) Process for producing threads by wet spinning a polyvinylidene fluoride solution
JP2009120976A (en) Easily dyeable meta-type wholly aromatic polyamide fiber
JP4396536B2 (en) Method for producing fineness polytetrafluoroethylene fiber
JP3327027B2 (en) Method for producing polytetrafluoroethylene fiber
JPH10273826A (en) Polytetrafluoroethylene-based sheath core composite fiber and production thereof
JP3259572B2 (en) Method for producing polytetrafluoroethylene fiber
JPH10273818A (en) Production of polytetrafluoroethylene-based fiber
JPH08199421A (en) Polytetrafluoroethylene-base fiber and its production
JP4240387B2 (en) Method for producing polytetrafluoroethylene fiber
JPH08296113A (en) Polytetrafluoroethylene-based fiber and its production
JP2007270389A (en) Polytetrafluoroethylene fiber and method for producing the same
JP2011162928A (en) Conductive polytetrafluoroethylene fiber and production method therefor
JPH10158928A (en) Splittable acrylic synthetic yarn and its production
JP4396549B2 (en) Polytetrafluoroethylene fiber mixed with different fineness and fabric using the same
JP2002302829A (en) Fluororesin-based fiber and method for producing the same
JPH0429765B2 (en)
JPS63126911A (en) Ultrafine fiber of tetrafluoroethylene resin and production thereof