JPH10267454A - Travel layer reaction heat recovery device of hydrogen occlusion alloy - Google Patents

Travel layer reaction heat recovery device of hydrogen occlusion alloy

Info

Publication number
JPH10267454A
JPH10267454A JP9067157A JP6715797A JPH10267454A JP H10267454 A JPH10267454 A JP H10267454A JP 9067157 A JP9067157 A JP 9067157A JP 6715797 A JP6715797 A JP 6715797A JP H10267454 A JPH10267454 A JP H10267454A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen storage
reaction
container
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9067157A
Other languages
Japanese (ja)
Inventor
Taichi Saito
太一 斎藤
Yoshimasa Ikeda
善正 池田
Koji Nishimura
幸次 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9067157A priority Critical patent/JPH10267454A/en
Publication of JPH10267454A publication Critical patent/JPH10267454A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To move a hydrogen occlusion alloy smoothly by installing a storage container for storing the hydrogen occlusion alloy at the upper and lower parts of a reaction container for occluding hydrogen and a reaction container for emitting hydrogen and arranging a plurality of heat transfer pipes in parallel with the direction of fall of the hydrogen occlusion alloy inside each reaction container. SOLUTION: A hydrogen occlusion alloy in a storage container 1 is moved into a reaction container 4 for occlusion and eliminates a hydrogenation reaction heat with a coolant in a heat transfer pipe 5 for coolant. Then, a low-pressure hydrogen is guided in from a pipe 7 and is moved into the storage pipe 10 while being vibrated by a vibrator for hydrogen occlusion reaction. Then, an alloy that has already occluded hydrogen is moved to a discharge container 16 by a conveyor 15 and is moved to a reaction container 17 for emitting hydrogen. In this case, the hydrogen is converted to a high-pressure hydrogen by heat transfer in a heat transfer pipe 18 for transferring heat and the hydrogen is emitted from a hydrogen discharge pipe 22. On the other hand, the hydrogen occlusion alloy is moved to the storage container 25 while being vibrated, thus promoting a hydrogen discharge reaction. Then, a discharged alloy is moved to the storage container 1 by a conveyor 30.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金を利
用したヒートポンプ、水素貯蔵装置及び熱の貯蔵装置に
共通に用いられる水素吸蔵合金の移動層反応熱回収装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy moving bed reaction heat recovery apparatus commonly used for a heat pump, a hydrogen storage device and a heat storage device using a hydrogen storage alloy.

【0002】[0002]

【従来の技術】近年、水素をある種の金属あるいは合金
に吸蔵させて金属水素化物という形で貯蔵、輸送した
り、水素の分離、精製に利用したり、ヒートポンプ、熱
の貯蔵などに利用する方法が提案されている。金属水素
化物をつくる合金のうち−20℃〜300℃において水
素を吸蔵放出できる合金として、LaNi5 ,CaNi
5,Mg2 Ni,FeTiなどが代表的なものである。
これらの合金は特に水素吸蔵合金と呼ばれる。水素吸蔵
合金は、水素の吸蔵放出を迅速に行わせるため、表面積
を増やすため通常粉末状で用いられる。
2. Description of the Related Art In recent years, hydrogen is stored and transported in the form of a metal hydride by storing hydrogen in a certain metal or alloy, used for separating and purifying hydrogen, and used for heat pumps and heat storage. A method has been proposed. Hydrogen as alloy capable of occluding and releasing at -20 ° C. to 300 ° C. Of the alloy making metal hydride, LaNi 5, CaNi
5 , Mg 2 Ni, FeTi and the like are typical.
These alloys are particularly called hydrogen storage alloys. Hydrogen storage alloys are usually used in powder form to increase the surface area in order to quickly store and release hydrogen.

【0003】水素吸蔵合金を用いたシステムで重要なポ
イントは、水素の吸蔵ー放出速度を増大させることであ
り、水素の吸蔵−放出速度を増大させるためには、水素
の吸蔵においては合金充填層内における反応熱を効率良
く水素吸蔵合金充填容器の外部へ取り除き、また、水素
を放出する際には外部から合金充填層内へ反応熱に相当
する熱を効率よく供給しなければならない。
An important point in a system using a hydrogen storage alloy is to increase the speed of absorbing and releasing hydrogen. In order to increase the speed of storing and releasing hydrogen, an alloy-filled layer is required in the storage of hydrogen. It is necessary to efficiently remove the heat of reaction in the inside to the outside of the hydrogen storage alloy-filled container, and to efficiently release heat corresponding to the reaction heat from the outside into the alloy-filled layer when releasing hydrogen.

【0004】合金充填層の熱伝導改善の方法として、本
発明と最も近い技術では水素吸蔵合金を流動化させるこ
とにより、容器内熱媒管との伝熱を促進させる方法があ
る。水素吸蔵合金を流動化させる方法については、合金
粉末を外部より容器を貫通するシャフトを用いて攪拌
し、流動化させることにより伝熱を良好にする方法(特
開昭60−60400号公報)がある。また、本発明者
らによる外部から振動を与えることにより容器内部の水
素吸蔵合金粉末を振動流動させることで伝熱促進を行わ
せる方法(特開平4−160001号公報)、また本発
明者らによる水素吸蔵合金を容器用間で移動させること
により伝熱促進、熱効率向上を行わせる方法(特願平0
8−056502号)等がある。
[0004] As a method of improving the heat conduction of the alloy-filled layer, there is a method closest to the present invention in which the hydrogen storage alloy is fluidized to promote heat transfer with the heat transfer pipe in the container. As a method of fluidizing the hydrogen storage alloy, a method of improving heat transfer by stirring and fluidizing the alloy powder from the outside using a shaft penetrating a container (Japanese Patent Application Laid-Open No. 60-60400) is known. is there. Further, a method of promoting heat transfer by causing the hydrogen storage alloy powder in the container to vibrate and flow by applying vibration from the outside by the present inventors (Japanese Patent Laid-Open No. 4-160001). A method for promoting heat transfer and improving thermal efficiency by moving a hydrogen storage alloy between containers (Japanese Patent Application No.
8-056562) and the like.

【0005】[0005]

【発明が解決しようとする課題】水素吸蔵合金を容器間
で移動させることにより伝熱促進、熱効率向上を行わせ
る方法(特願平08−056502号)に用いた熱交換
器は、内部に複数の熱媒管を平行に配置した熱交換器で
あり、水素吸蔵合金の均一な移動を促進するために加振
機が設置されている。一方で通常用いられる内部の熱媒
管が平行に設置されている熱交換器構造を用いているこ
とから、水素吸蔵合金が降下により熱媒管表面に接触す
る際に、均一な降下の促進をするために振動を付加した
場合においても、熱媒管表面の下面は有効に接触されず
熱交換面積が有効に利用されないという問題がある。ま
た、水素吸蔵合金は流動性が悪いため、排出部のコニカ
ル部では熱媒管が挿入しにくいという問題があった。
The heat exchanger used in the method for promoting heat transfer and improving thermal efficiency by moving the hydrogen storage alloy between containers (Japanese Patent Application No. 08-056562) has a plurality of internal heat exchangers. This is a heat exchanger in which the heat transfer tubes are arranged in parallel, and a vibrator is installed to promote uniform movement of the hydrogen storage alloy. On the other hand, the use of a heat exchanger structure in which the commonly used internal heat transfer tubes are installed in parallel makes it possible to promote a uniform drop when the hydrogen storage alloy comes into contact with the surface of the heat transfer tubes due to the drop. Therefore, even when vibration is applied, there is a problem that the lower surface of the heat medium pipe surface is not effectively contacted and the heat exchange area is not effectively used. In addition, since the hydrogen storage alloy has poor fluidity, there is a problem that it is difficult to insert a heat medium pipe in the conical portion of the discharge portion.

【0006】本発明は、かかる課題を解決するため、水
素吸蔵合金と熱媒管との熱交換を促進し、円滑な水素吸
蔵合金の移動を可能とした、熱回収効率の高いヒートポ
ンプ、水素貯蔵装置及び熱の貯蔵装置に共通に用いられ
る水素吸蔵合金の移動層反応熱回収装置を提供すること
を目的とする。
[0006] In order to solve the above-mentioned problems, the present invention promotes heat exchange between the hydrogen storage alloy and the heat transfer pipe, and enables a smooth movement of the hydrogen storage alloy. An object of the present invention is to provide a moving bed reaction heat recovery device for a hydrogen storage alloy which is commonly used for a device and a heat storage device.

【0007】[0007]

【課題を解決するための手段】その発明の要旨とすると
ころは、 (1)水素吸蔵合金に水素を吸蔵放出させる際の反応熱
を熱媒管により熱交換して回収する水素吸蔵用および水
素放出用反応容器を有する水素吸蔵合金の移動層反応熱
回収装置において、水素吸蔵用反応容器および水素放出
用反応容器のそれぞれ上部及び下部に、水素吸蔵合金を
貯留する貯留容器を設置し、該水素吸蔵用および水素放
出用反応容器の内部に水素吸蔵合金の降下方向に対して
平行に複数の熱媒管を配置したことを特徴とする水素吸
蔵合金の移動層反応熱回収装置。
SUMMARY OF THE INVENTION The gist of the present invention is as follows: (1) A hydrogen storage and hydrogen recovery method in which the heat of reaction when hydrogen is stored and released in a hydrogen storage alloy is exchanged with a heat medium pipe for recovery. In a moving bed reaction heat recovery apparatus for a hydrogen storage alloy having a reaction vessel for release, a storage vessel for storing the hydrogen storage alloy is installed at the upper and lower parts of the reaction vessel for hydrogen storage and the reaction vessel for hydrogen release, respectively. A moving bed reaction heat recovery apparatus for a hydrogen storage alloy, wherein a plurality of heat medium tubes are arranged in the storage vessel and the hydrogen release reaction vessel in parallel to the descending direction of the hydrogen storage alloy.

【0008】(2)水素吸蔵用または水素放出用反応容
器の外壁に加振器を設けたことを特徴とする前記(1)
記載の水素吸蔵合金の移動層反応熱回収装置。 (3)水素吸蔵用または水素放出用反応容器内部の熱媒
管の支持板に加振器を設けたことを特徴とする前記
(1)記載の水素吸蔵合金の移動層反応熱回収装置。 (4)水素吸蔵用または水素放出用反応容器内部の熱媒
管の外表面に長手方向にそって複数のフィンを設けたこ
とを特徴とする前記(1)、(2)または(3)記載の
水素吸蔵合金の移動層反応熱回収装置にある。
(2) A vibrator is provided on an outer wall of a hydrogen storage or hydrogen release reaction vessel (1).
3. A moving bed reaction heat recovery apparatus for a hydrogen storage alloy according to claim 1. (3) The moving bed reaction heat recovery apparatus for a hydrogen storage alloy according to the above (1), wherein a vibrator is provided on a support plate of a heat medium tube inside the hydrogen storage or hydrogen release reaction vessel. (4) The above (1), (2) or (3), wherein a plurality of fins are provided along the longitudinal direction on the outer surface of the heat transfer tube inside the hydrogen storage or release reactor. In a moving bed reaction heat recovery apparatus for a hydrogen storage alloy.

【0009】[0009]

【発明の実施の形態】次に、本発明の実施の形態につい
て、図面に基づいて説明する。図1は、本発明の水素吸
蔵合金の移動層反応熱回収装置の全体構成図であり、こ
の図を用いて水素吸蔵合金の反応熱の回収方法について
説明する。上部貯留容器1に充填されている水素吸蔵合
金は、切り出し量調整機構として設けたバタフライ弁
2、ボール弁3を開にして、吸蔵用反応容器4中に移動
させ、バタフライ弁2、ボール弁3を閉にして吸蔵用反
応容器4を密閉する。吸蔵用反応容器4内の冷却水用伝
熱管5中には25℃程度の冷却水が流れており、水素化
反応熱を除去するようになっている。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an overall configuration diagram of a moving-bed reaction heat recovery apparatus for a hydrogen storage alloy according to the present invention, and a method for recovering reaction heat of the hydrogen storage alloy will be described with reference to FIG. The hydrogen storage alloy filled in the upper storage container 1 is moved into the storage reaction container 4 by opening the butterfly valve 2 and the ball valve 3 provided as a cut-out amount adjusting mechanism, and is moved to the butterfly valve 2 and the ball valve 3. Is closed, and the storage reaction container 4 is sealed. Cooling water of about 25 ° C. flows through the cooling water heat transfer tube 5 in the storage reaction vessel 4 so as to remove heat of the hydrogenation reaction.

【0010】ここにボール弁6を開にして、水素供給配
管7より1〜2kg/cm2 程度の低圧水素を導入し、
水素吸蔵用反応容器4に設置した加振器で加振させなが
ら、バタフライ弁8、ボール弁9を開け、水素吸蔵用反
応容器4中の水素吸蔵合金を貯留容器10の中に移動さ
せ、水素吸蔵合金に水素吸蔵反応を行わせる。反応が終
了したら、ボール弁6を閉にして、バタフライ弁8、ボ
ール弁9を閉じた後に、バタフライ弁11、13、ボー
ル弁12、14を開にし、水素吸蔵済みの合金をコンベ
アー15を用いて下部貯留容器10から上部貯留容器1
6に移動させる。水素放出用反応容器17中には、熱媒
用伝熱管18があり、この中には95℃程度の熱媒が流
れており、この熱を脱水素化の反応熱として回収し、高
圧の水素に変換するようになっている。
Here, the ball valve 6 is opened, and low-pressure hydrogen of about 1 to 2 kg / cm 2 is introduced from the hydrogen supply pipe 7.
The butterfly valve 8 and the ball valve 9 are opened while vibrating with the vibrator provided in the hydrogen storage reaction container 4, and the hydrogen storage alloy in the hydrogen storage reaction container 4 is moved into the storage container 10, The storage alloy is caused to perform a hydrogen storage reaction. When the reaction is completed, the ball valve 6 is closed, the butterfly valve 8 and the ball valve 9 are closed, the butterfly valves 11 and 13 and the ball valves 12 and 14 are opened, and the hydrogen-absorbed alloy is used on the conveyor 15. From the lower storage container 10 to the upper storage container 1
Move to 6. A heat transfer tube 18 for a heat medium is provided in the hydrogen release reaction vessel 17, and a heat medium of about 95 ° C. flows therein. This heat is recovered as reaction heat for dehydrogenation, and high-pressure hydrogen Is to be converted to

【0011】ここでバタフライ弁11、13、ボール弁
12、14を閉じた後、バタフライ弁19、ボール弁2
0を開にし、上部放出容器16中の水素吸蔵合金は、水
素放出用反応容器17に移動する。ここでバタフライ弁
19、ボール弁20を閉にし、水素放出用反応容器17
を密閉する。水素吸蔵合金の温度が90℃程度に上昇
し、水素圧が上昇して10kg/cm2 程度の圧力にな
った後、ボール弁21を開にし、圧縮された水素を水素
放出管22より放出する。バタフライ弁23、ボール弁
24を開にし、水素放出用反応容器17に設置した加振
器で加振させながら、水素吸蔵合金を貯留容器25に移
動させ、水素放出反応を促進させる。
Here, after closing the butterfly valves 11 and 13 and the ball valves 12 and 14, the butterfly valve 19 and the ball valve 2 are closed.
When 0 is opened, the hydrogen storage alloy in the upper release container 16 moves to the hydrogen releasing reaction container 17. Here, the butterfly valve 19 and the ball valve 20 are closed, and the hydrogen releasing reaction vessel 17 is closed.
Seal. After the temperature of the hydrogen storage alloy rises to about 90 ° C. and the hydrogen pressure rises to about 10 kg / cm 2 , the ball valve 21 is opened, and the compressed hydrogen is released from the hydrogen discharge pipe 22. . The hydrogen storage alloy is moved to the storage container 25 while the butterfly valve 23 and the ball valve 24 are opened and vibrated by the vibrator provided in the hydrogen release reaction container 17 to accelerate the hydrogen release reaction.

【0012】放出が終わったらボール弁21を閉にし、
バタフライ弁23、ボール弁24を閉にした状態でバタ
フライ弁26、28、ボール弁27、29を開にし、放
出済の合金をコンベアー30を用いて、水素吸蔵合金を
貯留容器25から貯留容器1に移動させる。バタフライ
弁26、28、ボール弁27、29を閉にした後、再
度、貯留容器1に充填されている水素吸蔵合金は、バタ
フライ弁2、ボール弁3を開にして、吸蔵用反応容器4
中に移動させることにより、水素吸蔵反応を繰り返す。
When the discharge is completed, the ball valve 21 is closed,
With the butterfly valve 23 and the ball valve 24 closed, the butterfly valves 26 and 28 and the ball valves 27 and 29 are opened, and the released alloy is transferred from the storage container 25 to the storage container 1 using the conveyor 30. Move to After closing the butterfly valves 26 and 28 and the ball valves 27 and 29, the hydrogen storage alloy filled in the storage container 1 is opened again by opening the butterfly valve 2 and the ball valve 3, and
By moving it in, the hydrogen storage reaction is repeated.

【0013】図2は、本発明に係わる水素吸蔵用反応容
器4および水素放出用反応容器17の詳細図である。水
素吸蔵用反応容器4および水素放出用反応容器17は、
同一の反応容器を用いることが出来るため、以下では水
素吸蔵用反応容器4を用いて説明する。この図に示すよ
うに、水素吸蔵用反応容器4は上部に設置した上部保持
体32によって支持され、水素吸蔵用反応容器4内には
熱媒管39を内蔵し、一方、上部には熱媒及び水素を供
給及び排出するジョイント34を設けて、熱媒35は熱
媒管39に供給し、水素36は焼結フィルター37を介
して水素吸蔵用反応容器4内に供給される構造よりな
る。
FIG. 2 is a detailed view of the hydrogen storage reaction container 4 and the hydrogen release reaction container 17 according to the present invention. The hydrogen storage reaction container 4 and the hydrogen release reaction container 17
Since the same reaction vessel can be used, the following description will be made using the hydrogen storage reaction vessel 4. As shown in this figure, the hydrogen storage reaction vessel 4 is supported by an upper holder 32 installed on the upper part, and a heat medium pipe 39 is built in the hydrogen storage reaction vessel 4, while a heat medium And a joint 34 for supplying and discharging hydrogen, a heating medium 35 is supplied to a heating medium pipe 39, and hydrogen 36 is supplied to the hydrogen storage reaction container 4 via a sintering filter 37.

【0014】水素吸蔵用反応容器の外部に設置した加振
器33は、ガス駆動型や電気駆動型のものを用い、ガス
駆動型であれば駆動ガス38を、また電気駆動型であれ
ば電気を供給して振動を起こさせるものである。加振器
は水素吸蔵用反応容器の内部にも設置する事が出来、こ
の場合は熱媒管を支持する支持板等に設置することにな
る。この場合,支持板は、圧力容器ではなく水素吸蔵合
金に振動を加える役割を担えばよいのであるから、軽く
できるため振動動力は小さくてすむ。一方で内部に設置
することより、構造は若干複雑となり、容器体積が大き
くなるデメリットがある。
As the vibrator 33 installed outside the hydrogen storage reaction vessel, a gas driven type or an electric driven type is used, and a driving gas 38 is used for a gas driven type, and an electric driving type is used for an electric driven type. Is supplied to cause vibration. The vibrator can also be installed inside the hydrogen storage reaction vessel, and in this case, it is installed on a support plate or the like that supports the heat transfer pipe. In this case, since the support plate only has to play the role of applying vibration to the hydrogen storage alloy instead of the pressure vessel, the support plate can be made lighter and the vibration power is small. On the other hand, there is a demerit that the structure becomes slightly complicated and the volume of the container becomes large by installing it inside.

【0015】このように水素吸蔵用反応容器4に貯留し
た水素吸蔵合金を、水素吸蔵用反応容器4に設置した加
振器33で振動させながら、図1に示すように、下部貯
留容器10に降下させるとともに水素を吸蔵させる。こ
の水素の吸蔵時に発熱した水素吸蔵合金に熱媒管37と
接触させて熱交換して反応熱を回収する。その後、水素
を吸蔵した水素吸蔵合金をコンベアー15を用いて、上
部貯留容器16に搬送する。この場合に、熱媒管39
は、水素吸蔵用反応容器4の内部で、図3に示すように
往復構造であるとともに、図4に示すように管軸方向に
対して平行方向にフィンを設けている。
While the hydrogen storage alloy stored in the hydrogen storage reaction container 4 is vibrated by the vibrator 33 installed in the hydrogen storage reaction container 4, as shown in FIG. Lower and absorb hydrogen. The heat of the reaction is recovered by bringing the hydrogen storage alloy, which has generated heat during the storage of hydrogen, into contact with the heating medium tube 37 to exchange heat. Thereafter, the hydrogen storage alloy storing the hydrogen is transported to the upper storage container 16 using the conveyor 15. In this case, the heat medium pipe 39
Has a reciprocating structure as shown in FIG. 3 inside the hydrogen storage reaction container 4, and has fins provided in a direction parallel to the tube axis direction as shown in FIG.

【0016】フィンと熱媒管との伝熱については、熱媒
管と一体型のものは優れているが、フィンを熱媒管にか
しめるタイプのものでもよい。フィン間隔は1mm〜1
0mmが望ましい。間隔狭いほど伝熱特性には優れる
が、フィンの熱容量も増加すること、また水素吸蔵合金
の移動の抵抗にもなるので、目的に応じて選択を行う。
この構成をとることによって、水素吸蔵合金の降下時に
伝熱面積を有効に使用することが可能になり、反応容器
から下部貯留容器への均一な排出も可能になる。
With respect to the heat transfer between the fin and the heat medium tube, the one integrated with the heat medium tube is excellent, but the type in which the fin is swaged by the heat medium tube may be used. Fin spacing is 1mm ~ 1
0 mm is desirable. The narrower the interval, the better the heat transfer characteristics, but the increase in the heat capacity of the fins and the resistance to the movement of the hydrogen storage alloy, so selection is made according to the purpose.
With this configuration, the heat transfer area can be effectively used when the hydrogen storage alloy descends, and uniform discharge from the reaction vessel to the lower storage vessel becomes possible.

【0017】[0017]

【発明の効果】以上述べたように、本発明によれば、水
素吸蔵合金と熱媒管との伝熱促進を行うため水素吸蔵用
及び水素放出用反応容器内に加振器を設置するとともに
水素吸蔵合金の移動する方向に対して平行に熱媒管を配
置し、熱媒管の外表面に熱媒管の外表面に長手方向にそ
って複数のフィンを設けたことにより、水素吸蔵合金と
熱媒管との有効な伝熱面積を増大させ、円滑な水素吸蔵
合金の移動を可能とすることから、水素吸蔵合金利用装
置として工業上極めて優れた効果を奏するものである。
As described above, according to the present invention, in order to promote heat transfer between the hydrogen storage alloy and the heating medium tube, the vibrator is installed in the hydrogen storage and hydrogen release reaction vessel. By disposing a heat transfer pipe parallel to the direction in which the hydrogen storage alloy moves, and by providing a plurality of fins on the outer surface of the heat transfer pipe along the longitudinal direction on the outer surface of the heat transfer pipe, the hydrogen storage alloy Since the effective heat transfer area between the heat absorbing pipe and the heat transfer pipe is increased and the smooth movement of the hydrogen storage alloy is made possible, the hydrogen storage alloy utilization apparatus has an industrially excellent effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の水素吸蔵合金の移動層反応熱回収装置
の全体構成図、
FIG. 1 is an overall configuration diagram of a moving bed reaction heat recovery apparatus for a hydrogen storage alloy according to the present invention;

【図2】本発明に係る水素吸蔵用反応容器の詳細図、FIG. 2 is a detailed view of a reaction container for hydrogen storage according to the present invention,

【図3】本発明に係る水素吸蔵用反応容器の軸方向に垂
直な断面図、
FIG. 3 is a sectional view perpendicular to the axial direction of the hydrogen storage reaction vessel according to the present invention;

【図4】本発明に係る水素吸蔵用反応容器の熱媒管に関
する説明図である.
FIG. 4 is an explanatory diagram relating to a heating medium tube of the hydrogen storage reaction container according to the present invention.

【符号の説明】[Explanation of symbols]

1 上部貯留容器 2、8、11、13、19、23、26、28 バタフ
ライ弁 3、6、9、12、14、20、21、24、27、2
9 ボール弁 4 水素吸蔵用反応容器 5 冷却水用伝熱管 7 水素供給配管 10、25 貯留容器 15、30 コンベアー 16 上部放出容器 17 水素放出用反応容器 18 熱媒用伝熱管 22 水素放出管 31 水素吸蔵用熱交換器 32 上部保持体 33 加振器 34 ジョイントモーター 35 熱媒 36 水素 37 焼結管フィルター 38 駆動ガス 39 熱媒管 40 フィン
1 Upper storage container 2, 8, 11, 13, 19, 23, 26, 28 Butterfly valve 3, 6, 9, 12, 14, 20, 21, 24, 27, 2
9 Ball Valve 4 Hydrogen Storage Reaction Container 5 Cooling Water Heat Transfer Tube 7 Hydrogen Supply Pipe 10, 25 Storage Container 15, 30 Conveyor 16 Upper Release Container 17 Hydrogen Release Reaction Container 18 Heat Medium Heat Transfer Tube 22 Hydrogen Release Tube 31 Hydrogen Storage heat exchanger 32 Upper holder 33 Vibrator 34 Joint motor 35 Heat medium 36 Hydrogen 37 Sintered tube filter 38 Driving gas 39 Heat medium tube 40 Fin

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金に水素を吸蔵放出させる際
の反応熱を熱媒管により熱交換して回収する水素吸蔵用
および水素放出用反応容器を有する水素吸蔵合金の移動
層反応熱回収装置において、水素吸蔵用反応容器および
水素放出用反応容器のそれぞれ上部及び下部に、水素吸
蔵合金を貯留する貯留容器を設置し、該水素吸蔵用およ
び水素放出用反応容器の内部に水素吸蔵合金の降下方向
に対して平行に複数の熱媒管を配置したことを特徴とす
る水素吸蔵合金の移動層反応熱回収装置。
1. A moving bed reaction heat recovery apparatus for a hydrogen storage alloy having a hydrogen storage and a hydrogen release reaction vessel for recovering heat by exchanging the heat of reaction when storing and releasing hydrogen in the hydrogen storage alloy by a heat medium pipe. , A storage container for storing a hydrogen storage alloy is installed at the upper and lower portions of the hydrogen storage reaction container and the hydrogen release reaction container, respectively, and the hydrogen storage alloy is dropped inside the hydrogen storage and hydrogen release reaction container. A moving bed reaction heat recovery apparatus for a hydrogen storage alloy, comprising a plurality of heat medium tubes arranged in parallel to a direction.
【請求項2】 水素吸蔵用または水素放出用反応容器の
外壁に加振器を設けたことを特徴とする請求項1記載の
水素吸蔵合金の移動層反応熱回収装置。
2. The moving bed reaction heat recovery apparatus for a hydrogen storage alloy according to claim 1, wherein a vibrator is provided on an outer wall of the hydrogen storage or hydrogen release reaction vessel.
【請求項3】 水素吸蔵用または水素放出用反応容器内
部の熱媒管の支持板に加振器を設けたことを特徴とする
請求項1記載の水素吸蔵合金の移動層反応熱回収装置。
3. A moving bed reaction heat recovery apparatus for a hydrogen storage alloy according to claim 1, wherein a vibrator is provided on a support plate of a heat medium pipe inside the hydrogen storage or hydrogen release reaction vessel.
【請求項4】 水素吸蔵用または水素放出用反応容器内
部の熱媒管の外表面に長手方向にそって複数のフィンを
設けたことを特徴とする請求項1、2または3記載の水
素吸蔵合金の移動層反応熱回収装置。
4. The hydrogen storage device according to claim 1, wherein a plurality of fins are provided along the longitudinal direction on the outer surface of the heat transfer tube inside the reaction container for hydrogen storage or hydrogen release. Moving bed reaction heat recovery system for alloys.
JP9067157A 1997-03-21 1997-03-21 Travel layer reaction heat recovery device of hydrogen occlusion alloy Withdrawn JPH10267454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9067157A JPH10267454A (en) 1997-03-21 1997-03-21 Travel layer reaction heat recovery device of hydrogen occlusion alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9067157A JPH10267454A (en) 1997-03-21 1997-03-21 Travel layer reaction heat recovery device of hydrogen occlusion alloy

Publications (1)

Publication Number Publication Date
JPH10267454A true JPH10267454A (en) 1998-10-09

Family

ID=13336790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9067157A Withdrawn JPH10267454A (en) 1997-03-21 1997-03-21 Travel layer reaction heat recovery device of hydrogen occlusion alloy

Country Status (1)

Country Link
JP (1) JPH10267454A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113793949A (en) * 2021-08-24 2021-12-14 嘉寓氢能源科技(辽宁)有限公司 Power system for hydrogen fuel cell passenger car

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113793949A (en) * 2021-08-24 2021-12-14 嘉寓氢能源科技(辽宁)有限公司 Power system for hydrogen fuel cell passenger car

Similar Documents

Publication Publication Date Title
CN101932898B (en) Improved latent heat storage device
EP0053737B1 (en) Heat pump device
WO2012138978A2 (en) Dome shaped capsules of thermal energy storage material for improved heat storage
JPH01252501A (en) Hydrogen occlusion alloy reactor
JPH10267454A (en) Travel layer reaction heat recovery device of hydrogen occlusion alloy
JP2005009549A (en) Capsule container and hydrogen storage tank
JP2007327534A (en) Hydrogen storage container and hydrogen occlusion/release device
JP2007315546A (en) Hydrogen storage vessel and hydrogen absorption and desorption device
KR102420124B1 (en) Hydrogen storage device
JP4098043B2 (en) Method for producing hydrogen storage alloy storage container
JP3425253B2 (en) Method and apparatus for recovering reaction heat of hydrogen storage alloy
JP4082857B2 (en) Hydrogen storage alloy tank
KR20170104254A (en) Hydrogen storage device
JPH09250835A (en) Hydrogen occlusive metallic alloy reaction heat recovery device
JP2002295798A (en) Hydrogen transport vessel
JPH0650498A (en) Hydrogen storing and emitting device
JP3626371B2 (en) Hydrogen supply device for fuel cell
JPS6145440Y2 (en)
JPH07149501A (en) Vessel holding hydrogen-occluding alloy
JPH03105172A (en) Cooling device utilizing metal hydride
KR970009520B1 (en) Reaction container of hydrogen accumulate alloy
JPH01294501A (en) Hydrogen gas purifier and method for purification
JP3032998B2 (en) Hydrogen storage alloy holding container
JPH06249400A (en) Hydrogen storage alloy holding container
JP2003130292A (en) Hydrogen absorbing alloy container

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040601