JPH10265885A - Aluminum alloy sheet minimal in dispersion of flange width, and its production - Google Patents

Aluminum alloy sheet minimal in dispersion of flange width, and its production

Info

Publication number
JPH10265885A
JPH10265885A JP7677097A JP7677097A JPH10265885A JP H10265885 A JPH10265885 A JP H10265885A JP 7677097 A JP7677097 A JP 7677097A JP 7677097 A JP7677097 A JP 7677097A JP H10265885 A JPH10265885 A JP H10265885A
Authority
JP
Japan
Prior art keywords
aluminum alloy
weight
flange width
temperature
hot rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7677097A
Other languages
Japanese (ja)
Inventor
Kenji Kuroda
健司 黒田
Koji Yamamura
浩司 山村
Takashi Inaba
隆 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP7677097A priority Critical patent/JPH10265885A/en
Publication of JPH10265885A publication Critical patent/JPH10265885A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy sheet minimal in dispersion of flange width, occurring at the time of reduction of neck diameter and its production. SOLUTION: This aluminum alloy sheet, minimal in dispersion of flange width, has a composition consisting of, by weight, 0.85-1.5% Mn, 0.5-1.5% Mg, 0.3-0.7% Fe, 0.1-0.5% Si, 0.15-0.50% Cu, and the balance Al with inevitable impurities. An ingot of an aluminum alloy with the above composition is subjected to homogenizing treatment at 590-630 deg.C, cooled, and then hot-rolled at 450-550 deg.C initial temp. and 300-350 deg.C finishing temp. The resultant hot rolled plate is heated to 400-600 deg.C, held for <=10 min, and then cooled to undergo continuous annealing. Subsequently, the hot rolled plate after annealing is cold- rolled at 83-84.5% rolling rate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、飲料缶などに用い
られる2ピース缶の缶胴体に使用されるアルミニウム合
金板及びその製造方法に関し、特に、キャンエンドの材
料コスト低減のためにネック径を小径化した場合にもフ
ランジ幅のバラツキが小さいアルミニウム合金板及びそ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy plate used for a body of a two-piece can used for a beverage can or the like, and a method for producing the same. The present invention relates to an aluminum alloy plate having a small variation in flange width even when the diameter is reduced, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来より、JIS3004合金は強度を
上げるために高圧延率で冷間圧延しても良好な成形性を
有しているため、アルミニウム缶の缶胴体としてJIS
3004合金硬質板が広く使用されている。
2. Description of the Related Art Conventionally, JIS 3004 alloy has good formability even when cold-rolled at a high rolling ratio in order to increase strength.
A 3004 alloy hard plate is widely used.

【0003】JIS3004合金は熱間圧延した後、焼
鈍を施し若しくは施さずに冷間加工を行って製品板厚に
するか(特開平3−90549)、又は熱間圧延後、冷
間圧延し、更に中間焼鈍(CAL)した後に最終の冷間
圧延を行う(特公昭61−7465)ことにより製造さ
れる。素材の耳率は均質化処理、熱間圧延及び焼鈍後の
耳率並びに冷間圧延の圧延率によって決まる。一般的に
は、必要な強度を得るために、冷間圧延の圧延率を40
%以上とし、缶胴体の素材耳率が大きくなると、絞りカ
ップの搬送不具合及びトリミングによる歩留低下等の問
題が発生してしまうため、耳率は4%以下としている。
[0003] The JIS 3004 alloy is hot-rolled and then subjected to cold working with or without annealing to obtain a product sheet thickness (Japanese Patent Laid-Open No. 3-90549), or cold-rolled after hot rolling. Furthermore, it is manufactured by performing final cold rolling after intermediate annealing (CAL) (Japanese Patent Publication No. 61-7465). The ear ratio of the material is determined by the ear ratio after homogenization, hot rolling and annealing, and the rolling ratio of cold rolling. Generally, in order to obtain the required strength, the rolling reduction of cold rolling is set to 40.
% Or more, if the material ear ratio of the can body becomes large, problems such as defective conveyance of the squeeze cup and a decrease in yield due to trimming will occur. Therefore, the ear ratio is set to 4% or less.

【0004】また、缶胴体はDI加工後、トリミングさ
れ、洗浄、表面処理、塗装及び焼き付けを経て、ネッキ
ング加工及びフランジング加工が施される。内容物は、
フランジング加工された缶胴体に注入され、別途製造さ
れたキャンエンドを缶胴体の開口部に巻締めることによ
り密封される。
[0004] Further, after the DI processing, the can body is trimmed, subjected to cleaning, surface treatment, painting and baking, and then subjected to necking processing and flanging processing. The contents are
It is poured into a flanged can body and is sealed by winding a separately manufactured can end around the opening of the can body.

【0005】近年では、キャンエンドの材料コスト削減
を目的として、キャンエンドの小径化が促進されてい
る。211径の缶胴体の場合、エンド径は主流である2
06径から204又は204径に小径化され、これに伴
いネック径に関しても小径化が推進されている。
In recent years, reduction in the diameter of the can end has been promoted in order to reduce the material cost of the can end. In the case of a 211-diameter can body, the end diameter is the mainstream 2
The diameter has been reduced from 06 to 204 or 204, and the neck diameter has been reduced accordingly.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、ネック
の小径化によりネッキング加工及びフランジング加工後
のフランジ幅のバラツキが発生し、キャンエンドとの巻
締め時に巻締め量の不足が発生するという問題点があ
る。また、フランジ幅のバラツキは、素材径と最終深絞
り径との比が高いほど、また缶胴径とネック径との比が
高くなるほど発生し易くなり、前者が2.1以上及び後
者が1.2以上のときにフランジ幅のバラツキが大きく
なり、巻締めに問題が生じる。
However, when the diameter of the neck is reduced, the flange width varies after necking and flanging, and the amount of tightening becomes insufficient when tightening the can end. There is. In addition, variations in the flange width are more likely to occur as the ratio between the material diameter and the final deep drawing diameter increases and as the ratio between the can body diameter and the neck diameter increases, and the former is 2.1 or more and the latter is 1 or more. In the case of 2 or more, the variation of the flange width becomes large, and a problem occurs in winding.

【0007】本発明はかかる問題点に鑑みてなされたも
のであって、ネック径を小径化した場合に生じやすいフ
ランジ幅のバラツキを低減することができるアルミニウ
ム合金板及びその製造方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and provides an aluminum alloy plate capable of reducing the variation in flange width which is likely to occur when the neck diameter is reduced, and a method of manufacturing the same. With the goal.

【0008】[0008]

【課題を解決するための手段】本発明に係るフランジ幅
のバラツキが小さいアルミニウム合金板は、Mn:0.
85乃至1.5重量%、Mg:0.5乃至1.5重量
%、Fe:0.3乃至0.7重量%、Si:0.1乃至
0.5重量%及びCu:0.15乃至0.50重量%を
含有し、残部がAl及び不可避的不純物からなる組成を
有し、一次絞りカップの絞り比1.67にて測定した4
5°方向の耳率が0.5乃至1.5%であることを特徴と
する。
According to the present invention, an aluminum alloy sheet having a small variation in flange width according to the present invention has an Mn of 0.1.
85 to 1.5% by weight, Mg: 0.5 to 1.5% by weight, Fe: 0.3 to 0.7% by weight, Si: 0.1 to 0.5% by weight, and Cu: 0.15 to 0.1% 0.50% by weight, the balance being composed of Al and inevitable impurities, measured at a drawing ratio of 1.67 of the primary drawing cup.
The ear ratio in the direction of 5 ° is 0.5 to 1.5%.

【0009】本発明に係るフランジ幅のバラツキが小さ
いアルミニウム合金板の製造方法は、Mn:0.85乃
至1.5重量%、Mg:0.5乃至1.5重量%、F
e:0.3乃至0.7重量%、Si:0.1乃至0.5
重量%及びCu:0.15乃至0.50重量%を含有
し、残部がAl及び不可避的不純物からなるアルミニウ
ム合金鋳塊を590乃至630℃の温度で均質化処理し
冷却を行う熱処理工程と、前記熱処理工程後の鋳塊を、
450乃至550℃の開始温度及び300乃至350℃
の終了温度で熱間圧延する熱間圧延工程と、前記熱間圧
延工程後の圧延板を、83乃至84.5%の圧延率で冷
間圧延する冷間圧延工程とを有することを特徴とする。
The method for producing an aluminum alloy sheet having a small flange width variation according to the present invention is as follows: Mn: 0.85 to 1.5% by weight, Mg: 0.5 to 1.5% by weight,
e: 0.3 to 0.7% by weight, Si: 0.1 to 0.5
A heat treatment step of homogenizing an aluminum alloy ingot containing Al and inevitable impurities at a temperature of 590 to 630 ° C. and cooling, containing 0.15 to 0.50% by weight of Cu and 0.15 to 0.50% by weight; The ingot after the heat treatment step,
450-550 ° C starting temperature and 300-350 ° C
A hot rolling step of hot rolling at an end temperature of, and a cold rolling step of cold rolling the rolled plate after the hot rolling step at a rolling rate of 83 to 84.5%. I do.

【0010】この場合に、前記熱間圧延工程後の圧延板
を、400乃至600℃の温度に加熱し、この温度を1
0分間以下保持した後、冷却する連続焼鈍工程を有する
ことが好ましい。
In this case, the rolled sheet after the hot rolling step is heated to a temperature of 400 to 600 ° C.
It is preferable to have a continuous annealing step of cooling after holding for 0 minute or less.

【0011】更に、1次絞りカップの絞り比を1.67
として、45°方向の耳発生で、その耳率が0.5乃至
1.5%であることが好ましい。
Further, the drawing ratio of the primary drawing cup is set to 1.67.
It is preferable that the ear ratio in the direction of 45 ° is 0.5 to 1.5%.

【0012】[0012]

【発明の実施の形態】本願発明者等が前記課題を解決す
べく、実験研究を重ねた結果、アルミニウム合金板の組
成を規定すると共に、均質化処理、熱間圧延、連続焼鈍
及び冷間圧延の各条件を所定範囲内に管理すること並び
に冷間圧延後の素材の耳率を所定範囲内に規定すること
により、フランジ幅のバラツキが小さいアルミニウム合
金板を得ることができることを見い出した。
BEST MODE FOR CARRYING OUT THE INVENTION As a result of repeated experiments and studies by the present inventors to solve the above-mentioned problems, the composition of an aluminum alloy sheet is defined, and homogenization treatment, hot rolling, continuous annealing and cold rolling are performed. It has been found that an aluminum alloy sheet with small flange width variation can be obtained by controlling each of the above conditions within a predetermined range and defining the ear ratio of the material after cold rolling within the predetermined range.

【0013】以下、本発明に係るアルミニウム合金板の
成分添加理由及び組成限定理由について説明する。アル
ミニウム合金中の成分は、強度を高めると共に、耳率及
び成形性を制御するために添加する。
The reasons for adding the components of the aluminum alloy sheet according to the present invention and the reasons for limiting the composition will be described below. The components in the aluminum alloy are added to increase the strength and control the ear ratio and formability.

【0014】Mn:0.85乃至1.15重量% Mnはアルミニウム合金板の強度上昇に寄与すると共
に、化合物であるAl−Mn−Fe−Si(α相)を適
正に分布させる作用があり、このため、しごき加工性の
向上に有効な成分である。アルミニウム合金中のMn含
有量が0.85重量%未満では、いずれの効果も少なく
なってしまう。一方、Mn含有量が1.15重量%を超
えると、MnAl6の初晶巨大金属化合物が晶出し、成
形性が低下する。従って、アルミニウム合金中のMn含
有量は0.85乃至1.15重量%とする。
Mn: 0.85 to 1.15% by weight Mn contributes to an increase in the strength of the aluminum alloy plate and has an effect of appropriately distributing the compound Al—Mn—Fe—Si (α phase), Therefore, it is an effective component for improving ironing workability. When the Mn content in the aluminum alloy is less than 0.85% by weight, both effects are reduced. On the other hand, if the Mn content exceeds 1.15% by weight, a primary crystal giant metal compound of MnAl 6 is crystallized, and the formability is reduced. Therefore, the Mn content in the aluminum alloy is set to 0.85 to 1.15% by weight.

【0015】Mg:0.5乃至1.5重量% Mgは単独で固溶強化によるアルミニウム合金板の強度
上昇に有効であると共に、アルミニウム合金板を連続焼
鈍した場合に、Cuとの組み合わせによりAl−Cu−
Mgを析出させる。このため、Mgは製缶時のベーキン
グによる軟化防止に有効な成分である。アルミニウム合
金中のMg含有量が0.5重量%未満では、いずれの効
果も得られない。一方、Mg含有量が1.5重量%を超
えると、加工硬化が大きくなり、成形性が低下する。従
って、アルミニウム合金中のMg含有量は0.5乃至
1.5重量%とする。
Mg: 0.5 to 1.5% by weight Mg is effective alone for increasing the strength of the aluminum alloy sheet by solid solution strengthening, and when the aluminum alloy sheet is continuously annealed, it is combined with Cu to form Al. -Cu-
Mg is deposited. For this reason, Mg is an effective component for preventing softening due to baking during can making. If the Mg content in the aluminum alloy is less than 0.5% by weight, no effect can be obtained. On the other hand, if the Mg content exceeds 1.5% by weight, work hardening increases, and moldability decreases. Therefore, the content of Mg in the aluminum alloy is set to 0.5 to 1.5% by weight.

【0016】Fe:0.3乃至0.7重量% Feは結晶粒の微細化を促進し、化合物(α相)を適正
に分布させる作用を有する。このため、Feの添加によ
る成形性の向上に有効である。アルミニウム合金中のF
e含有率が0.3重量%未満ではこの効果を得にくい。
一方、Fe含有量が0.7重量%を超えると、化合物の
粗大化により成形性が低下する。従って、アルミニウム
合金中のFe含有量は0.3乃至0.7重量%とする。
Fe: 0.3 to 0.7 wt% Fe has an effect of promoting the refinement of crystal grains and appropriately distributing the compound (α phase). Therefore, the addition of Fe is effective in improving the formability. F in aluminum alloy
If the e content is less than 0.3% by weight, it is difficult to obtain this effect.
On the other hand, if the Fe content exceeds 0.7% by weight, the formability is reduced due to the coarsening of the compound. Therefore, the Fe content in the aluminum alloy is set to 0.3 to 0.7% by weight.

【0017】Si:0.1乃至0.5重量% Siは化合物であるα相を形成して、成形性を向上させ
る元素である。アルミニウム合金中のSi含有量が、
0.1重量%未満ではこの効果が少ない。一方、Si含
有量が0.5重量%を超える場合には、Mg2Siによ
る強度上昇が大きくなり、成形性が低下してしまう。従
って、アルミニウム合金中のSi含有量は0.1乃至
0.5重量%とする。
Si: 0.1 to 0.5% by weight Si is an element that forms an α phase as a compound and improves formability. Si content in the aluminum alloy,
If less than 0.1% by weight, this effect is small. On the other hand, when the Si content exceeds 0.5% by weight, the strength increase due to Mg 2 Si increases, and the formability decreases. Therefore, the Si content in the aluminum alloy is set to 0.1 to 0.5% by weight.

【0018】Cu:0.15乃至0.5重量% Cuはアルミニウム合金板の強度上昇に有効であると共
に、アルミニウム合金を連続焼鈍した場合に、Mgとの
組み合わせによりAl−Cu−Mgを析出させる。これ
により、Cuの添加は製缶時のベーキングによるアルミ
ニウム合金の軟化防止に有効である。アルミニウム合金
中のCu含有量が0.15重量%未満ではこれらの効果
が得られない。一方、Cu含有量が0.5重量%を超え
ると、強度上昇が大きく、成形性を低下させてしまう。
従って、アルミニウム合金中のCu含有量は0.15乃
至0.5重量%とする。
Cu: 0.15 to 0.5% by weight Cu is effective in increasing the strength of the aluminum alloy plate, and precipitates Al—Cu—Mg in combination with Mg when the aluminum alloy is continuously annealed. . Thus, the addition of Cu is effective in preventing the aluminum alloy from softening due to baking during can making. When the Cu content in the aluminum alloy is less than 0.15% by weight, these effects cannot be obtained. On the other hand, if the Cu content exceeds 0.5% by weight, the increase in strength is large and the moldability is reduced.
Therefore, the Cu content in the aluminum alloy is set to 0.15 to 0.5% by weight.

【0019】次に、上記組成のアルミニウム合金板の製
造方法について説明する。本発明においては、上述の組
成を有するアルミニウム合金鋳塊に均質化処理を行い、
更に熱間圧延及び冷間圧延を施して最終製品であるアル
ミニウム合金板を得る。なお、必要に応じて、熱間圧延
後に連続焼鈍を行う。以下に、各熱処理及び圧延におけ
る数値限定理由について説明する。
Next, a method for manufacturing an aluminum alloy sheet having the above composition will be described. In the present invention, the aluminum alloy ingot having the above composition is subjected to homogenization treatment,
Further, hot rolling and cold rolling are performed to obtain an aluminum alloy plate as a final product. In addition, if necessary, continuous annealing is performed after hot rolling. The reasons for limiting the numerical values in each heat treatment and rolling will be described below.

【0020】均質化処理の温度:590乃至630℃ 本発明においては、先ず鋳塊に均質化処理を施すことに
より、Al−Fe−Mn晶出物からAl−Fe−Mn−
Si系化合物(α相)への変態を促進し、しごき加工性
を向上させ、鋳塊中のフランジ幅のバラツキを減少させ
ることができる。均質化処理の温度が590℃未満で
は、析出物の大きさが十分でないため、析出物が再結晶
形成の核になりにくい。一方、均質化処理の温度が63
0℃を超えると、炉内でバーニングを起こす虞がある。
従って、均質化処理の温度は590乃至630℃とす
る。なお、十分な均質化処理効果を得るために、前記温
度への保持時間は2時間以上が好ましい。
Temperature of homogenization treatment: 590 to 630 ° C. In the present invention, first, the ingot is subjected to homogenization treatment to remove Al—Fe—Mn—
Transformation into a Si-based compound (α phase) can be promoted, ironing workability can be improved, and variation in flange width in the ingot can be reduced. If the temperature of the homogenization treatment is lower than 590 ° C., the size of the precipitate is not sufficient, so that the precipitate is unlikely to be a nucleus for recrystallization formation. On the other hand, when the temperature of the homogenization treatment is 63
If it exceeds 0 ° C., burning may occur in the furnace.
Therefore, the temperature of the homogenization treatment is set to 590 to 630 ° C. In order to obtain a sufficient homogenization effect, the holding time at the above-mentioned temperature is preferably 2 hours or more.

【0021】熱間圧延の開始温度:450乃至550℃ 熱間圧延の開始温度を低温にすることにより、熱間圧延
時に再結晶の駆動力となる歪みをアルミニウム合金中に
積極的に導入し、結晶粒を微細化することができる。熱
間圧延の開始温度が550℃を超えるとその効果は少な
い。一方、熱間圧延の開始温度を450℃未満とする
と、粗圧延のパス数が増加し、生産性が劣化する。従っ
て、熱間圧延開始温度は450乃至550℃とする。
Hot rolling start temperature: 450 to 550 ° C. By setting the hot rolling start temperature to a low temperature, strain which is a driving force for recrystallization during hot rolling is positively introduced into the aluminum alloy, Crystal grains can be refined. If the hot rolling start temperature exceeds 550 ° C., the effect is small. On the other hand, if the starting temperature of the hot rolling is less than 450 ° C., the number of passes of the rough rolling increases, and the productivity deteriorates. Therefore, the hot rolling start temperature is set to 450 to 550 ° C.

【0022】熱間圧延の終了温度:300乃至350℃ 熱間圧延の終了温度を300℃未満とすると、熱間圧延
板全体を再結晶化することができない。一方、熱間圧延
の終了温度が350℃を超えると、熱間圧延板の結晶粒
が粗大化してしまう。従って、熱間圧延の終了温度は3
00乃至350℃とする。
Hot rolling end temperature: 300 to 350 ° C. If the hot rolling end temperature is less than 300 ° C., the entire hot rolled sheet cannot be recrystallized. On the other hand, if the end temperature of the hot rolling exceeds 350 ° C., the crystal grains of the hot-rolled sheet become coarse. Therefore, the end temperature of hot rolling is 3
The temperature is set to 00 to 350 ° C.

【0023】なお、熱間圧延の最終板厚は特に限定され
るものではないが、熱間圧延の最終板厚が2.5mmを
超えると、この厚いアルミニウム合金を冷間圧延して所
定の製品板厚にするために、冷間圧延における圧延率が
高くなる。一方、熱間圧延の最終板厚を1.8mm未満
とすると、冷間圧延における圧延率が低くなりすぎ、所
望の強度が得られにくい。従って、熱間圧延の最終板厚
は1.8乃至2.5mmであることが好ましい。
Although the final thickness of the hot rolling is not particularly limited, if the final thickness of the hot rolling exceeds 2.5 mm, the thick aluminum alloy is cold-rolled to a predetermined product. In order to increase the sheet thickness, the rolling reduction in cold rolling increases. On the other hand, when the final thickness of the hot rolling is less than 1.8 mm, the rolling reduction in the cold rolling is too low, and it is difficult to obtain a desired strength. Therefore, the final thickness of the hot rolling is preferably 1.8 to 2.5 mm.

【0024】連続焼鈍の加熱温度:400乃至600℃ Cu及びMgの固容量をコントロールして、適度な強度
及び成形性を得るために、熱間圧延後に連続焼鈍(CA
L)を行う場合がある。連続焼鈍の加熱温度を400℃
未満とすると、Cu及びMgの固溶量が少なく、製缶時
のベーキング強度を得ることができない。一方、加熱温
度が600℃を超えると、Cu及びMgの固溶量が多く
なり、成形性の低下につながる。従って、連続焼鈍の加
熱温度は400乃至600℃とする。
Heating temperature of continuous annealing: 400 to 600 ° C. In order to control the solid capacities of Cu and Mg to obtain appropriate strength and formability, continuous annealing (CA) is performed after hot rolling.
L) may be performed. 400 ° C heating temperature for continuous annealing
If it is less than 3, the amount of solid solution of Cu and Mg is small, and baking strength at the time of can making cannot be obtained. On the other hand, if the heating temperature exceeds 600 ° C., the solid solution amounts of Cu and Mg increase, leading to a decrease in formability. Therefore, the heating temperature of the continuous annealing is set to 400 to 600 ° C.

【0025】なお、400℃以上に加熱すると、表面酸
化が著しく進行するため、連続焼鈍温度における保持時
間は10分間以下とする。
Since heating at a temperature of 400 ° C. or more significantly promotes surface oxidation, the holding time at the continuous annealing temperature is set to 10 minutes or less.

【0026】なお、連続焼鈍の加速速度及び冷却速度は
特に限定されるものではないが、連続焼鈍の加熱速度及
び冷却速度が100℃/分未満であると、Cu及びMg
の固溶量の低下を招き、製品強度が低下することがあ
る。従って、連続焼鈍の加熱速度及び冷却速度は100
℃/分以上であることが好ましい。
The acceleration rate and cooling rate of the continuous annealing are not particularly limited, but if the heating rate and the cooling rate of the continuous annealing are less than 100 ° C./min, Cu and Mg
May cause a decrease in the amount of solid solution, resulting in a decrease in product strength. Therefore, the heating rate and the cooling rate of the continuous annealing are 100
C./min or higher is preferred.

【0027】冷間圧延の圧延率:83乃至84.5% 熱間圧延板は必要に応じて連続焼鈍された後、冷間圧延
を施されて製品となる。この冷間圧延の圧延率は本発明
の目的を達成する上で重要な要素である。即ち、冷間圧
延率が冷間圧延後の素材の耳率に大きく影響し、この素
材の耳率がフランジ幅のバラツキと相関関係を有する。
Rolling rate of cold rolling: 83 to 84.5% The hot-rolled sheet is continuously annealed if necessary, and then cold-rolled to obtain a product. The reduction ratio of this cold rolling is an important factor in achieving the object of the present invention. That is, the cold rolling rate greatly affects the ear ratio of the material after the cold rolling, and the ear ratio of the material has a correlation with the variation in the flange width.

【0028】図1は横軸に素材板の耳率(%)をとり、
縦軸にフランジ幅のバラツキ(mm)をとって両者の関
係を示すグラフ図である。なお、素材板の耳率は一次絞
りカップの絞り比1.67にて測定した値である。ま
た、フランジ幅のバラツキは、総絞り比が2.2で、ネ
ック絞り比が1.26であるネッキング加工及びフラン
ジング加工した後、フランジ幅を全周にわたって測定し
たときの最大幅と最小幅との差である。図1に示すよう
に、フランジ幅のバラツキは素材板の耳率と相関関係が
あり、耳率が高くなるにつれフランジ幅のバラツキが大
きくなることが判明した。そして、図1からわかるよう
に、即ち、素材板の耳率を1.5%以下に規制すること
により、フランジ幅のバラツキを0.1mm以下に抑え
ることができる。本発明はこのような知見を得て完成さ
れたものであり、耳率を0.5乃至1.5%に規定す
る。耳率が1.5%を超えると、前述の如く、フランジ
幅のバラツキが大きくなる。一方、耳率が0.5%より
も低いと、圧延方向に対し0又は180°の耳が発生す
る。このため、耳率は0.5乃至1.5%にする。
FIG. 1 shows the ear ratio (%) of the material plate on the horizontal axis.
FIG. 5 is a graph showing the relationship between the flange width and the variation (mm) on the vertical axis. The ear ratio of the material plate is a value measured at a draw ratio of the primary draw cup of 1.67. The variation of the flange width is the maximum width and the minimum width when the flange width is measured over the entire circumference after necking and flanging with a total drawing ratio of 2.2 and a neck drawing ratio of 1.26. And the difference. As shown in FIG. 1, the variation in the flange width has a correlation with the ear ratio of the material plate, and it has been found that the variation in the flange width increases as the ear ratio increases. As can be seen from FIG. 1, that is, by regulating the ear ratio of the material plate to 1.5% or less, the variation in the flange width can be suppressed to 0.1 mm or less. The present invention has been completed based on these findings, and the ear ratio is defined as 0.5 to 1.5%. If the ear ratio exceeds 1.5%, as described above, the variation in the flange width increases. On the other hand, if the ear ratio is lower than 0.5%, ears at 0 or 180 ° to the rolling direction are generated. For this reason, the ear ratio is set to 0.5 to 1.5%.

【0029】また、前述の如く、素材板の耳率は、冷間
圧延の圧延率に大きく影響されるため、耳率の範囲を前
述の範囲に規制するため、圧延率を83乃至84.5%
に規定する。
Further, as described above, the ear ratio of the raw material sheet is greatly affected by the rolling ratio of the cold rolling. Therefore, in order to restrict the range of the ear ratio to the above range, the rolling ratio is 83 to 84.5. %
Defined in

【0030】圧延率が84.5%を超えると、耳率が
1.5%よりも高くなり、フランジ幅のバラツキが大き
くなる。一方、冷間圧延の圧延率を83%未満とする
と、DI缶として必要な缶底強度を得られず、また耳率
が0.5%よりも低くなるため、圧延方向に対して0又
は180°の耳が発生し、カップの搬送不具合及びDI
加工において耳切れなどの問題が生じる。従って、冷間
圧延の圧延率は83乃至84.5%とする。
When the rolling ratio exceeds 84.5%, the ear ratio becomes higher than 1.5%, and the variation in the flange width increases. On the other hand, if the cold rolling reduction is less than 83%, the required bottom strength of the DI can cannot be obtained, and the ear ratio is lower than 0.5%. ° ears, cup transport failure and DI
Problems such as ear breaks occur in processing. Therefore, the cold rolling reduction is 83 to 84.5%.

【0031】なお、DI成形性には引っ張り強度と耐力
の比が1.05以上及び伸び率が5%以上必要であるた
め、冷間圧延の終了温度は130℃以上であることが好
ましい。
Since the DI formability requires a ratio of tensile strength to proof stress of 1.05 or more and an elongation of 5% or more, the end temperature of cold rolling is preferably 130 ° C. or more.

【0032】[0032]

【実施例】以下、本発明の実施例について、その特許請
求の範囲から外れる比較例と比較して説明する。
EXAMPLES Examples of the present invention will be described below in comparison with comparative examples that depart from the scope of the claims.

【0033】先ず、下記表1に示す化学組成のアルミニ
ウム合金を鋳造した。
First, an aluminum alloy having a chemical composition shown in Table 1 below was cast.

【0034】[0034]

【表1】 [Table 1]

【0035】次に、下記表2に示す条件により、均質化
処理、熱間圧延、焼鈍及び冷間圧延を施して、アルミニ
ウム合金板を製造した。
Next, under the conditions shown in Table 2 below, homogenization treatment, hot rolling, annealing and cold rolling were performed to produce an aluminum alloy sheet.

【0036】[0036]

【表2】 [Table 2]

【0037】次に、各実施例及び比較例のアルミニウム
合金板について、総絞り比を2.2として211径の缶
胴体をもつDI缶を製造するDI加工、トリミング、洗
浄、ベーキング及びネック径を202径までネッキング
加工した後、フランジング加工を施した。次いで、各実
施例及び比較例のアルミニウム合金板の耳率並びにフラ
ンジング加工後のフランジ幅のバラツキを測定した。な
お、フランジ幅のバラツキの測定においては、フランジ
幅を全周にわたって測定し最大値と最小値の差をフラン
ジ幅のバラツキとした。これらの評価結果を表3に示
す。
Next, with respect to the aluminum alloy plates of the respective Examples and Comparative Examples, DI processing, trimming, cleaning, baking and neck diameter for manufacturing a DI can having a 211-diameter can body with a total drawing ratio of 2.2 were performed. After necking to a diameter of 202, flanging was performed. Next, the edge ratio of the aluminum alloy plates of each of the examples and comparative examples and the variation of the flange width after the flanging were measured. In the measurement of the flange width variation, the flange width was measured over the entire circumference, and the difference between the maximum value and the minimum value was defined as the flange width variation. Table 3 shows the evaluation results.

【0038】[0038]

【表3】 [Table 3]

【0039】上記表3に示すように、実施例1乃至3に
おいては、均質化処理、熱間圧延、焼鈍及び冷間圧延の
条件が本発明で規定した範囲内であったため、素材の耳
率はどちらも適正な範囲となり、フランジ幅のバラツキ
も小さくすることができた。
As shown in Table 3 above, in Examples 1 to 3, the conditions of the homogenization treatment, hot rolling, annealing and cold rolling were within the ranges specified in the present invention. Were both within appropriate ranges, and the variation in flange width could be reduced.

【0040】比較例4においては、均質化処理の温度が
本発明範囲の下限未満であるので、均質化処理時に細か
い析出物が多数発生し、熱間圧延後の再結晶の成長を阻
害し、冷間圧延後の耳率が高くなり、フランジ幅のバラ
ツキが大きくなり、巻締め時に不具合が生じた。比較例
5では、均質化処理の温度が本発明範囲の上限を超えた
ため、スラブがバーにングを起こし熱間圧延以降の工程
が実行不可能となった。このため、耳率等の測定も行え
なかった。
In Comparative Example 4, since the temperature of the homogenization treatment was lower than the lower limit of the range of the present invention, many fine precipitates were generated during the homogenization treatment, and the growth of recrystallization after hot rolling was hindered. The ear ratio after cold rolling was increased, the variation in flange width was increased, and a problem occurred during tightening. In Comparative Example 5, since the temperature of the homogenization treatment exceeded the upper limit of the range of the present invention, the slab caused burring of the bar, and the steps after hot rolling became impossible. For this reason, the ear ratio and the like could not be measured.

【0041】比較例6においては、熱間圧延の開始温度
が本発明の下限未満であるので、熱間圧延中に歪みが多
く導入され圧延集合組織が残ったので、冷間圧延後の耳
率が高くなった。このため、フランジ幅のバラツキが大
きく、巻締め時に不具合が生じた。一方、比較例7で
は、熱間圧延の開始温度が本発明の上限を超えているの
で、熱間圧延終了温度が下がらず再結晶が発達した。こ
のため、冷間圧延後にマイナス耳が発生し、DI加工時
に胴切れが生じた。
In Comparative Example 6, since the starting temperature of hot rolling was lower than the lower limit of the present invention, a large amount of strain was introduced during hot rolling and a rolling texture remained. Became higher. For this reason, the variation in the flange width was large, and a problem occurred during tightening. On the other hand, in Comparative Example 7, since the hot rolling start temperature exceeded the upper limit of the present invention, the hot rolling end temperature did not decrease and recrystallization developed. For this reason, a minus edge was generated after cold rolling, and the body was cut during DI processing.

【0042】比較例8においては、熱間圧延の終了温度
が本発明範囲の下限未満であるので、ホットコイルでの
再結晶が十分起こらず、その後の焼鈍によっても未再結
晶が残るため、冷間圧延後の耳率が高くなり、フランジ
幅のバラツキが大きくなり、巻締め加工を行うことが不
可能となった。一方、比較例9では、熱間圧延の終了温
度が本発明の上限を超えているので、再結晶粒が粗大に
なり、冷間圧延後にマイナス耳が発生し、DI加工時に
胴切れが発生した。
In Comparative Example 8, since the end temperature of hot rolling was lower than the lower limit of the range of the present invention, recrystallization in a hot coil did not sufficiently occur, and unrecrystallized remained even after annealing. The ear ratio after the inter-rolling was increased, the variation in the flange width became large, and it became impossible to perform the winding work. On the other hand, in Comparative Example 9, since the end temperature of the hot rolling exceeded the upper limit of the present invention, the recrystallized grains became coarse, a minus edge was generated after cold rolling, and the body was cut during DI processing. .

【0043】比較例10においては、焼鈍の温度が本発
明範囲の下限未満であるので、再結晶が十分には進行せ
ず、圧延集合組織が残り、冷間圧延後の耳率が高くな
り、フランジ幅のバラツキが大きくなり、巻締め時に不
具合が生じた。一方、比較例11では、焼鈍の温度が本
発明の上限を超えているので、焼鈍時に再結晶が粗大化
し、冷間圧延後にマイナス耳が発生してDI加工時に胴
切れが生じた。
In Comparative Example 10, since the annealing temperature was lower than the lower limit of the range of the present invention, recrystallization did not sufficiently proceed, the rolled texture remained, and the ear ratio after cold rolling was increased. The variation in the flange width became large, and a problem occurred during tightening. On the other hand, in Comparative Example 11, since the annealing temperature exceeded the upper limit of the present invention, recrystallization was coarsened during annealing, a minus edge was generated after cold rolling, and the body was cut during DI processing.

【0044】比較例12においては、冷間圧延の圧延率
が本発明範囲の下限未満であるので、耳率が低くなり0
及び180°の方向に耳が発生し、DI加工時に耳切れ
による胴切れが発生した。一方、比較例13では、冷間
圧延の圧延率が本発明範囲の上限を超えているので、耳
率が高くなり、フランジ幅のバラツキも大きくなり、巻
締め時に巻締め量が少ない部分が発生した。
In Comparative Example 12, since the rolling reduction of the cold rolling was less than the lower limit of the range of the present invention, the ear ratio was low and 0
Ears were generated in the directions of 180 ° and 180 °, and the body was cut due to the cut of the ear during DI processing. On the other hand, in Comparative Example 13, since the rolling ratio of the cold rolling exceeds the upper limit of the range of the present invention, the ear ratio is increased, the variation in the flange width is increased, and a portion where the amount of tightening is small at the time of tightening occurs. did.

【0045】[0045]

【発明の効果】以上詳述したように、本発明によれば、
アルミニウム合金板の化学組成を適切なものに規定する
と共に、均質化処理、熱間圧延、焼鈍及び冷間圧延の条
件を規定しているので、素材板の耳率を適正な範囲にコ
ントロールすることができ、DI缶の総絞り比が高く、
ネック絞りの比が大きい場合にもフランジ幅のバラツキ
が小さいアルミニウム合金板を得ることができる。
As described in detail above, according to the present invention,
Since the chemical composition of the aluminum alloy plate is specified as appropriate and the conditions for homogenization, hot rolling, annealing and cold rolling are specified, the ear ratio of the material plate must be controlled within an appropriate range. , The total drawing ratio of DI can is high,
Even when the ratio of the neck drawing is large, it is possible to obtain an aluminum alloy plate having a small variation in the flange width.

【図面の簡単な説明】[Brief description of the drawings]

【図1】素材板の耳率と、フランジ幅のバラツキとの関
係を示すグラフ図である。
FIG. 1 is a graph showing the relationship between the ear ratio of a material plate and the variation in flange width.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // C22F 1/00 682 C22F 1/00 682 683 683 685 685Z 691 691B 694 694B 694A ──────────────────────────────────────────────────の Continuation of the front page (51) Int.Cl. 6 Identification symbol FI // C22F 1/00 682 C22F 1/00 682 683 683 685 685Z 691 691B 694 694B 694A

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Mn:0.85乃至1.5重量%、M
g:0.5乃至1.5重量%、Fe:0.3乃至0.7
重量%、Si:0.1乃至0.5重量%及びCu:0.
15乃至0.50重量%を含有し、残部がAl及び不可
避的不純物からなる組成を有し、一次絞りカップの絞り
比1.67にて測定した45°方向の耳率が0.5乃至
1.5%であることを特徴とするフランジ幅のバラツキ
が小さいアルミニウム合金板。
1. Mn: 0.85 to 1.5% by weight, M
g: 0.5 to 1.5% by weight, Fe: 0.3 to 0.7
% By weight, Si: 0.1 to 0.5% by weight, and Cu: 0.
15 to 0.50% by weight, the balance being composed of Al and unavoidable impurities. The ear ratio in the 45 ° direction measured at a drawing ratio of 1.67 of the primary drawing cup is 0.5 to 1 An aluminum alloy plate having a small variation in flange width, characterized in that it is 0.5%.
【請求項2】 Mn:0.85乃至1.5重量%、M
g:0.5乃至1.5重量%、Fe:0.3乃至0.7
重量%、Si:0.1乃至0.5重量%及びCu:0.
15乃至0.50重量%を含有し、残部がAl及び不可
避的不純物からなるアルミニウム合金鋳塊を590乃至
630℃の温度で均質化処理し冷却を行う熱処理工程
と、前記熱処理工程後の鋳塊を、450乃至550℃の
開始温度及び300乃至350℃の終了温度で熱間圧延
する熱間圧延工程と、前記熱間圧延工程後の圧延板を、
83乃至84.5%の圧延率で冷間圧延する冷間圧延工
程とを有することを特徴とするフランジ幅のバラツキが
小さいアルミニウム合金板の製造方法。
2. Mn: 0.85 to 1.5% by weight, M
g: 0.5 to 1.5% by weight, Fe: 0.3 to 0.7
% By weight, Si: 0.1 to 0.5% by weight, and Cu: 0.
A heat treatment step of homogenizing and cooling an aluminum alloy ingot containing 15 to 0.50% by weight and the balance consisting of Al and inevitable impurities at a temperature of 590 to 630 ° C., and an ingot after the heat treatment step A hot rolling step of hot rolling at a start temperature of 450 to 550 ° C. and an end temperature of 300 to 350 ° C., and a rolled plate after the hot rolling step,
A cold rolling step of cold rolling at a rolling rate of 83 to 84.5%. A method for manufacturing an aluminum alloy sheet having a small variation in flange width.
【請求項3】 前記熱間圧延工程後の圧延板を、400
乃至600℃の温度に加熱し、この温度を10分間以下
保持した後、冷却する連続焼鈍工程を有することを特徴
とする請求項2に記載のフランジ幅のバラツキが小さい
アルミニウム合金板の製造方法。
3. The rolled plate after the hot rolling step is
The method for producing an aluminum alloy sheet having a small flange width variation according to claim 2, further comprising a continuous annealing step of heating to a temperature of from about 600 ° C to about 600 ° C, maintaining the temperature for 10 minutes or less, and then cooling.
【請求項4】 1次絞りカップの絞り比1.67にて測
定した45°方向の耳率が0.5乃至1.5%であるこ
とを特徴とする請求項2又は3に記載のフランジ幅のバ
ラツキが小さいアルミニウム合金板の製造方法。
4. The flange according to claim 2, wherein the ear ratio in the 45 ° direction measured at a drawing ratio of 1.67 of the primary drawing cup is 0.5 to 1.5%. A method of manufacturing an aluminum alloy plate having a small width variation.
JP7677097A 1997-03-28 1997-03-28 Aluminum alloy sheet minimal in dispersion of flange width, and its production Pending JPH10265885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7677097A JPH10265885A (en) 1997-03-28 1997-03-28 Aluminum alloy sheet minimal in dispersion of flange width, and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7677097A JPH10265885A (en) 1997-03-28 1997-03-28 Aluminum alloy sheet minimal in dispersion of flange width, and its production

Publications (1)

Publication Number Publication Date
JPH10265885A true JPH10265885A (en) 1998-10-06

Family

ID=13614835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7677097A Pending JPH10265885A (en) 1997-03-28 1997-03-28 Aluminum alloy sheet minimal in dispersion of flange width, and its production

Country Status (1)

Country Link
JP (1) JPH10265885A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001858A (en) * 2007-06-21 2009-01-08 Mitsubishi Alum Co Ltd Aluminum alloy sheet for can body having excellent circulation pinhole resistance
JP2013522069A (en) * 2010-03-12 2013-06-13 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク Method for producing metal assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001858A (en) * 2007-06-21 2009-01-08 Mitsubishi Alum Co Ltd Aluminum alloy sheet for can body having excellent circulation pinhole resistance
JP2013522069A (en) * 2010-03-12 2013-06-13 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク Method for producing metal assembly

Similar Documents

Publication Publication Date Title
JPH0617208A (en) Manufacture of aluminum alloy for forming excellent in shape freezability and coating/baking hardenability
US20210292878A1 (en) Aluminum alloy sheet for can body, and process for producing the same
JP3600022B2 (en) Manufacturing method of aluminum base alloy sheet for deep drawing
JP2006283113A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JPH0874014A (en) Production of aluminum alloy sheet having high formability and good baking hardenability
JP2933501B2 (en) Method for producing aluminum alloy sheet excellent in formability of DI can bottom
JP3871462B2 (en) Method for producing aluminum alloy plate for can body
JP3897926B2 (en) Method for producing aluminum alloy sheet with excellent formability
JPH0543974A (en) Aluminum alloy sheet excellent in baking hardenability of coating material and press formability and its production
JP2005076041A (en) Method for manufacturing hard aluminum alloy sheet for can body
JPH10330897A (en) Production of aluminum base alloy sheet for deep drawing
JPH10265885A (en) Aluminum alloy sheet minimal in dispersion of flange width, and its production
JPH06256916A (en) Production of aluminum alloy sheet
JP2001262261A (en) Aluminum alloy sheet for can barrel excellent in can bottom formability and its producing method
JPH04365834A (en) Aluminum alloy sheet for press forming excellent in hardenability by low temperature baking and its production
JPH1161365A (en) Production of aluminum alloy sheet for deep drawing
JP3587993B2 (en) Manufacturing method of aluminum alloy sheet for deep drawing
JPH04263034A (en) Aluminum alloy sheet for press forming excellent in baking hardenability and its production
JP2956038B2 (en) Al alloy plate for drawing cups excellent in suppressing distortion pattern and method for producing the same
JPS63125645A (en) Production of aluminum alloy material having fine crystal grain
JPH07197173A (en) Aluminum alloy hardened sheet for forming work and its production
JPH09256129A (en) Production of high strength heat treated type aluminum alloy sheet for drawing
JPH11279724A (en) Production of aluminum alloy sheet for deep drawing
JP3600021B2 (en) Manufacturing method of aluminum base alloy sheet for deep drawing
JPH08134610A (en) Production of aluminum alloy sheet for forming