JPH10265216A - Purification of boron trichloride - Google Patents

Purification of boron trichloride

Info

Publication number
JPH10265216A
JPH10265216A JP7184597A JP7184597A JPH10265216A JP H10265216 A JPH10265216 A JP H10265216A JP 7184597 A JP7184597 A JP 7184597A JP 7184597 A JP7184597 A JP 7184597A JP H10265216 A JPH10265216 A JP H10265216A
Authority
JP
Japan
Prior art keywords
boron trichloride
activated carbon
phosgene
silicon
liquefied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7184597A
Other languages
Japanese (ja)
Inventor
Fumihiro Morikawa
文博 森川
Eiichi Hirai
栄一 平井
Akihisa Yoshikawa
晶久 吉川
Akihiro Nakagawa
明浩 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP7184597A priority Critical patent/JPH10265216A/en
Publication of JPH10265216A publication Critical patent/JPH10265216A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a purifying method of boron trichloride capable of obtaining a high purity boron trichloride used for electronic industry. SOLUTION: In a purifying method of boron trichloride for removing a silicon compound, phosgene, halogenated hydrocarbon and metal, which are contained by bringing the crude boron trichloride in a vapor state to contact with activated carbon, the vapor of the crude boron trichloride is brought into contact with an activated carbon with <=0.2% silicon content heated to 100-400 deg.C to decompose, adsorb and remove impurities. Furthermore the vapor of the boron trichloride obtained by decomposing and removing the impurities is cooled to <=-10 deg.C to be liquefied and the liquefied boron trichloride is distilled or a gaseous inert gas is blown to the liquefied boron trichloride at the liquefied temp. to remove carbon monoxide generated by the decomposition treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電子工業用に使用さ
れる三塩化硼素の精製法に関する。電子工業において三
塩化硼素は、シリコン半導体デバイスのドライエッチン
グ(アルミ、シリコン)・不純物熱拡散・イオン注入、
光ファイバ−用ド−ピング材料等に利用されている。こ
れらの用途分野において、三塩化硼素に含有されるホス
ゲン、有機物、珪素化合物、金属等は半導体デバイスに
悪い影響を及ぼすことが知られている。例えば、ホスゲ
ンはシリコンと反応してデバイスを害する炭素と酸素不
純物を生成する。このようなことから、電子工業用に使
われる三塩化硼素は高純度な品質が要求され、半導体製
造の歩留まり向上のためにも三塩化硼素に含有している
不純物の除去は重要である。本発明はこれら不純物除去
に関するものである。
The present invention relates to a method for purifying boron trichloride for use in the electronics industry. In the electronics industry, boron trichloride is used for dry etching of silicon semiconductor devices (aluminum and silicon), thermal diffusion of impurities, ion implantation,
It is used as a doping material for optical fibers. In these fields of application, it is known that phosgene, organic substances, silicon compounds, metals and the like contained in boron trichloride have a bad influence on semiconductor devices. For example, phosgene reacts with silicon to produce carbon and oxygen impurities that harm the device. For this reason, boron trichloride used for the electronic industry is required to have high purity quality, and it is important to remove impurities contained in boron trichloride in order to improve the yield of semiconductor production. The present invention relates to the removal of these impurities.

【0002】[0002]

【従来の技術】三塩化硼素中のホスゲン等の不純物を除
去する公知の技術として、高温(1000℃程度)によ
る熱分解、活性炭等の担体による接触分解や吸着、蒸留
分離する方法等が知られている。このうち、高温による
熱分解は、経済的に不利であり、材質の劣化や分解生成
物の処理に問題がある。また、蒸留分離する方法は、ホ
スゲンと三塩化硼素の沸点が近いために三塩化硼素から
ホスゲンを完全に除去するためには精密蒸留が必要で、
操作や経済性の面で不利である。現在、工業的に使用さ
れている方法は、活性炭等を担体とした接触分解や吸着
による精製である。米国特許(3,126,256号)
においてホスゲンを含んだ三塩化硼素気流を300〜7
00℃の活性炭に流通させホスゲン等の不純物を除去す
る方法が記載されている。この方法は活性炭を触媒とし
てホスゲンを一酸化炭素(CO)と塩素(Cl2)に分
解し、生成したCOとCl2は蒸留や活性炭による吸着
(100℃以下、好ましくは50〜100℃)で除去す
るものである。
2. Description of the Related Art Known techniques for removing impurities such as phosgene in boron trichloride include thermal decomposition at a high temperature (about 1000 ° C.), catalytic decomposition and adsorption by a carrier such as activated carbon, and methods of distillation and separation. ing. Of these, thermal decomposition due to high temperature is economically disadvantageous, and has problems in deterioration of materials and treatment of decomposition products. In addition, since the boiling point of phosgene and boron trichloride are close to each other, precise distillation is necessary to completely remove phosgene from boron trichloride,
It is disadvantageous in terms of operation and economy. Currently, industrially used methods are purification by catalytic decomposition or adsorption using activated carbon or the like as a carrier. US Patent (3,126,256)
The phosgene-containing boron trichloride gas stream at 300 to 7
A method of removing impurities such as phosgene by flowing through activated carbon at 00 ° C. is described. In this method, phosgene is decomposed into carbon monoxide (CO) and chlorine (Cl 2 ) using activated carbon as a catalyst, and the produced CO and Cl 2 are distilled or adsorbed by activated carbon (100 ° C. or less, preferably 50 to 100 ° C.). It is to be removed.

【0003】また、特公平2−54283号公報、特公
平3−53017号公報において、ホスゲン等を含んだ
三塩化硼素気流を常温で活性炭に流通吸着させ、ホスゲ
ン、珪素化合物、ハロゲン化炭化水素を同時に吸着除去
する方法が記載されている。この方法は不純物を活性炭
に(物理)吸着させて除去するものである。活性炭が低
温の場合は、三塩化硼素も吸着するので、活性炭を段階
的に加熱処理することで三塩化硼素を回収し、活性炭を
再生している。
In Japanese Patent Publication No. 2-54283 and Japanese Patent Publication No. 3-53017, a stream of boron trichloride containing phosgene and the like is adsorbed on activated carbon at room temperature to remove phosgene, silicon compounds and halogenated hydrocarbons. A method for simultaneously removing by adsorption is described. This method removes impurities by (physical) adsorption on activated carbon. When the activated carbon is at a low temperature, boron trichloride is also adsorbed. Therefore, the activated carbon is heated in stages to recover the boron trichloride and regenerate the activated carbon.

【0004】[0004]

【発明が解決しようとする課題】現在、一般産業向けに
生産される三塩化硼素は、酸化硼素を塩素、アルカリ金
属の塩化物または四塩化珪素などによって塩素化する方
法などによって作られているが、その純度は、三塩化硼
素含量99〜99.9%、ホスゲン50〜900pp
m、珪素3ppm、塩素2ppm、金属(Cu、Fe、
Ni等)1〜20ppm程度の品質である。この粗三塩
化硼素を出発原料として電子工業用の三塩化硼素を得る
ために、従来の公知技術(米国特許3,126,256
号;高温活性炭による接触分解)により精製を実施し
た。この方法で精製して得られた三塩化硼素には、ホス
ゲンや塩素は検出されず、金属も0.1ppm程度に減
少した。
At present, boron trichloride produced for general industry is produced by a method of chlorinating boron oxide with chlorine, an alkali metal chloride or silicon tetrachloride. , Its purity is 99-99.9% boron trichloride, 50-900 pp phosgene.
m, silicon 3 ppm, chlorine 2 ppm, metal (Cu, Fe,
Ni etc.) The quality is about 1 to 20 ppm. In order to obtain boron trichloride for the electronics industry using this crude boron trichloride as a starting material, a conventional known technique (US Pat. No. 3,126,256)
No .: catalytic cracking with high-temperature activated carbon). No phosgene or chlorine was detected in the boron trichloride obtained by purification by this method, and the amount of metals was reduced to about 0.1 ppm.

【0005】文献(化学防災指針4、1979年 日本
化学会編、丸善)によれば、ホスゲンは加熱すると一酸
化炭素と塩素に可逆的に分解(COCl2⇔CO+C
2)し、熱分解率は高温になるほど高くなり、800
℃では100%分解するとされている。各温度での分解
率を表1に示す。
According to the literature (Chemical Disaster Prevention Guideline 4, 1979, edited by The Chemical Society of Japan, Maruzen), phosgene is reversibly decomposed into carbon monoxide and chlorine when heated (COCl 2 ⇔CO + C).
l 2 ), and the thermal decomposition rate increases with increasing temperature,
It is supposed to decompose 100% at ℃. Table 1 shows the decomposition rate at each temperature.

【0006】[0006]

【表1】 [Table 1]

【0007】また、米国特許3,126,256号の記
載によれば、熱分解で発生した塩素は活性炭に吸着され
るとしている。さらに、精製前後の含有金属量について
は、表2に示すように大きな差があるので、金属は粗三
塩化硼素が液体から気体状態になる時に液体側に残留し
たり、ホスゲンの熱分解時に活性炭に吸着されたものと
考えられる。しかしながら、この米国特許方法で得られ
た三塩化硼素には、多量の珪素化合物が含有されてお
り、この精製方法では使用する活性炭の種類や反応温度
によっては珪素化合物の汚染を増大させる可能性がある
ことがわかった。
According to US Pat. No. 3,126,256, chlorine generated by thermal decomposition is adsorbed on activated carbon. Further, as shown in Table 2, there is a large difference in the content of metal before and after purification, so that the metal remains on the liquid side when the crude boron trichloride changes from the liquid to the gas state, or the activated carbon during the thermal decomposition of phosgene. It is considered that the substance was adsorbed on the surface. However, the boron trichloride obtained by this U.S. patent method contains a large amount of a silicon compound, and this purification method may increase the contamination of the silicon compound depending on the type of activated carbon used and the reaction temperature. I found it.

【0008】この精製法で生じる珪素汚染の原因を詳し
く調べるために、粗三塩化硼素(珪素3ppm)と珪素
含有量の一番少ない椰子系活性炭(珪素0.12%)及
びSUS304製の反応管や容器装置等を使い、100
〜550℃の各温度で粗三塩化硼素の精製を実施した。
得られた三塩化硼素中の珪素を分析したところ、400
℃付近から徐々に珪素の流出が始まり、550℃では約
50ppmの珪素が確認された。その結果を表2に示
す。
In order to investigate in detail the cause of silicon contamination caused by this purification method, crude boron trichloride (silicon 3 ppm), coconut-based activated carbon with the lowest silicon content (silicon 0.12%), and a reaction tube made of SUS304 100 containers or
Purification of crude boron trichloride was performed at each temperature of 550 ° C.
When silicon in the obtained boron trichloride was analyzed, 400
The outflow of silicon gradually started around ℃, and at 550 ℃, about 50 ppm of silicon was confirmed. Table 2 shows the results.

【0009】[0009]

【表2】 [Table 2]

【0010】また、同じ反応条件下で、活性炭を抜いて
三塩化硼素を流通させた場合や高純度な不活性ガスを流
した場合の珪素流出は微量(0.3ppm)であった。
これらのことから、本発明者等は、三塩化硼素の珪素汚
染の原因は、高温下において、三塩化硼素が活性炭中に
含有される珪素と反応し揮発性の珪素化合物を生成する
ことによるものと考え、本発明方法を見いだした。
Under the same reaction conditions, when the activated carbon was removed and boron trichloride was allowed to flow, or when a high-purity inert gas was allowed to flow, the outflow of silicon was very small (0.3 ppm).
From these facts, the present inventors have found that the cause of silicon contamination of boron trichloride is that boron trichloride reacts with silicon contained in activated carbon to form volatile silicon compounds at high temperatures. And found the method of the present invention.

【0011】本発明は、高温活性炭による精製法をさら
に進歩させ、珪素化合物の汚染を抑制しながら、ホスゲ
ン、塩素、ハロゲン炭化水素および金属を効率よく除去
するものである。本発明の目的は、高純度な三塩化硼素
を得ることが出来る三塩化硼素の精製法の提供にある。
The present invention further improves the purification method using high-temperature activated carbon to efficiently remove phosgene, chlorine, halogenated hydrocarbons and metals while suppressing contamination of silicon compounds. An object of the present invention is to provide a method for purifying boron trichloride from which high-purity boron trichloride can be obtained.

【0012】[0012]

【課題を解決するための手段】即ち、本発明は、粗三塩
化硼素を気体の状態で活性炭と接触させて、含有する珪
素化合物、ホスゲン、ハロゲン化炭化水素及び金属を同
時に除去する三塩化硼素の精製法において、100〜4
00℃に加熱した珪素含有量が0.2%以下の活性炭に
粗三塩化硼素の気体を接触させ、前記不純物を分解・吸
着除去することを特徴とする三塩化硼素の精製法に関
し、更にまた、前記不純物を分解除去して得られた三塩
化硼素の気体を−10℃以下に冷却して、液化せしめ、
該液化した三塩化硼素を蒸留あるいは、液化した三塩化
硼素に該温度で気体の不活性ガスを吹き込み、前記の分
解処理で生成した一酸化炭素を除去することを特徴とす
る三塩化硼素の精製法に関する。
That is, the present invention relates to boron trichloride which comprises contacting crude boron trichloride in a gaseous state with activated carbon to simultaneously remove silicon compounds, phosgene, halogenated hydrocarbons and metals contained therein. In the purification method of
A method for purifying boron trichloride, comprising contacting activated carbon having a silicon content of 0.2% or less heated to 00 ° C. with a gas of crude boron trichloride to decompose and adsorb and remove the impurities. Cooling the boron trichloride gas obtained by decomposing and removing the impurities to -10 ° C or lower to liquefy,
Distillation of the liquefied boron trichloride or blowing of a gaseous inert gas into the liquefied boron trichloride at the same temperature to remove carbon monoxide produced by the decomposition treatment, thereby purifying boron trichloride. About the law.

【0013】[0013]

【発明の実施の形態】以下本発明方法を更に詳細に説明
する。本発明の精製法において、活性炭を高温にする理
由は、ホスゲンおよびハロゲン化炭化水素の分解率を高
くするためである。しかし、今回100〜200℃の比
較的低温でもホスゲンのほとんどは除去された。また、
ホスゲンの分解により生じる一酸化炭素(CO)に着目
し、低温の活性炭から流出する三塩化硼素をガスクロマ
トグラフ分析したところ、ホスゲンの化学量に相応する
COが確認された。ハロゲン化炭化水素が粗ガス中にあ
る場合、ハロゲン化炭化水素を分解する温度は、250
℃以上の温度が好ましいが400℃を越えて高くすると
珪素含量が増加するので好ましくない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The method of the present invention will be described below in more detail. In the purification method of the present invention, the reason for raising the temperature of the activated carbon is to increase the decomposition rate of phosgene and halogenated hydrocarbons. However, most of the phosgene was removed at a relatively low temperature of 100 to 200 ° C. Also,
Focusing on carbon monoxide (CO) generated by the decomposition of phosgene, the gas chromatographic analysis of boron trichloride flowing out of the low-temperature activated carbon confirmed CO corresponding to the stoichiometric amount of phosgene. When halogenated hydrocarbons are in the crude gas, the temperature at which the halogenated hydrocarbons decompose is 250
A temperature higher than 400 ° C. is preferable, but a temperature higher than 400 ° C. is not preferable because the silicon content increases.

【0014】必要により、ホスゲンの分解により生成す
るCOについては、三塩化硼素の気体を−10℃以下、
好ましくは−10℃以下−85℃以上の範囲で冷却し
て、液化し、蒸留または、三塩化硼素の液化温度で液化
しない不活性ガスを、液化した三塩化硼素に吹き込みに
よる置換により簡単に除去が可能である。不活性ガスと
しては、窒素やヘリウム等の希ガスが挙げられる。この
不活性ガスの吹き込みは、三塩化硼素中に残留している
CO等の低沸点成分をバブリングにより、不活性ガスと
一緒に追い出すものである。
If necessary, as for CO generated by the decomposition of phosgene, the gas of boron trichloride is brought to -10 ° C. or less,
Preferably, it is cooled to a temperature in the range of −10 ° C. or less to −85 ° C. or more, liquefied, and easily removed by distillation or distillation, or inert gas which is not liquefied at the liquefaction temperature of boron trichloride is blown into the liquefied boron trichloride. Is possible. Examples of the inert gas include rare gases such as nitrogen and helium. The blowing of the inert gas is to purge low boiling components such as CO remaining in the boron trichloride together with the inert gas by bubbling.

【0015】前記の表2に示すように、高温下における
活性炭での分解処理おいては、三塩化硼素が活性炭中に
含有される珪素と反応し揮発性の珪素化合物を生成する
ことから、分解反応は、珪素含有量の少ない椰子系の活
性炭を用い、珪素化合物の汚染を抑制するために100
〜400℃、好ましくは150〜400℃、より好まし
くは200〜400℃の温度条件で行う。
As shown in Table 2 above, in the decomposition treatment with activated carbon at a high temperature, boron trichloride reacts with silicon contained in the activated carbon to form a volatile silicon compound. The reaction was performed using coconut-based activated carbon with a low silicon content, and 100% to suppress contamination of silicon compounds.
To 400 ° C., preferably 150 to 400 ° C., more preferably 200 to 400 ° C.

【0016】活性炭の充填された分解管を通す三塩化硼
素の空間速度(SV:hr-1)は、30〜100、好ま
しくは40〜70である。また、この分解処理に使う活
性炭は、事前に、水分のない窒素等の不活性ガスを流し
ながら、500℃以上に加熱して活性炭中の水分を除去
する必要がある。活性炭中に水分が存在すると三塩化硼
素と反応して粉状の硼酸が生成して分解管等の閉塞の原
因になる。
The space velocity (SV: hr -1 ) of boron trichloride through the decomposition tube filled with activated carbon is 30 to 100, preferably 40 to 70. In addition, the activated carbon used in this decomposition treatment needs to be heated to 500 ° C. or more beforehand to remove moisture in the activated carbon while flowing an inert gas such as nitrogen having no moisture. If water is present in the activated carbon, it reacts with boron trichloride to produce powdery boric acid, which causes blockage of a decomposition tube or the like.

【0017】活性炭を充填する分解管の材質は、珪素含
有量が少ないステンレス製のものがが好ましい。用いる
活性炭は、珪素含有量が0.2%以下とできるだけ少な
いものを用いる必要がある、通常入手できる椰子殻系活
性炭(珪素含有量0.12%)が好ましい。
The material of the decomposition tube filled with activated carbon is preferably made of stainless steel having a low silicon content. As the activated carbon to be used, it is necessary to use one having a silicon content of 0.2% or less as small as possible. Normally available coconut shell activated carbon (silicon content 0.12%) is preferable.

【0018】以下、実施例を用いて本発明を更に詳しく
説明する。
Hereinafter, the present invention will be described in more detail with reference to Examples.

【0019】[0019]

【実施例】【Example】

実施例1 粒状の椰子系活性炭(珪素含有量0.12%)60gを
内径23.4mmのSUS304製の円筒カラムに充填
し窒素を流しながら500℃で10時間加熱して活性炭
中の水分を除去する。次に水分除去した活性炭を200
℃に保ち、ホスゲン50ppm、珪素3ppm、塩素2
ppm、金属20ppmを含有する粗三塩化硼素を気体
状態にして窒素を混合し空間速度(SV)74hr-1
カラムに流通させ、200gの三塩化硼素を供給した。
カラムから流出する三塩化硼素を650mlのSUS3
04製耐圧容器に誘導し−70℃で冷却して158gの
三塩化硼素を捕捉した(三塩化硼素の一部は、捕捉容器
外にパ−ジしたり、ガスクロマトグラフ分析に使用した
ために捕捉量が減少)。得られた三塩化硼素の液を分析
したところホスゲン0.1ppm以下、珪素0.3pp
m以下、塩素2ppm以下、金属0.1ppmとなっ
た。ホスゲン、珪素、塩素の分析は比色法、金属の分析
は誘導結合プラズマ発光分光法により実施した。
Example 1 A granular coconut activated carbon (silicon content: 0.12%) (60 g) was filled in a SUS304 cylindrical column having an inner diameter of 23.4 mm, and heated at 500 ° C. for 10 hours while flowing nitrogen to remove water in the activated carbon. I do. Next, 200 g of activated carbon from which water has been removed
° C, phosgene 50ppm, silicon 3ppm, chlorine 2
Crude boron trichloride containing 20 ppm of metal and 20 ppm of metal was made into a gaseous state, mixed with nitrogen, and passed through a column at a space velocity (SV) of 74 hr -1 to supply 200 g of boron trichloride.
650 ml of SUS3
158 g of boron trichloride was captured by cooling to −70 ° C. and trapped in a pressure vessel made of 04 (a part of the boron trichloride was purged out of the capture vessel or used for gas chromatographic analysis. Decreases). Analysis of the resulting boron trichloride liquid revealed that phosgene was 0.1 ppm or less and silicon was 0.3 pp.
m or less, chlorine 2 ppm or less, and metal 0.1 ppm. Analysis of phosgene, silicon and chlorine was carried out by colorimetry, and analysis of metals was carried out by inductively coupled plasma emission spectroscopy.

【0020】次に得られた三塩化硼素(650mlSU
S304製耐圧容器)を−20℃に冷却し、容器内の三
塩化硼素液中にヘリウムをバブリングしながら吹き込
み、内圧を0.98MPaまで加圧した。その後、ガス
クロマトグラフ分析し、そのままパ−ジ脱圧した。この
操作を3回繰り返したところ、三塩化硼素液中の酸素
0.8ppm、窒素86.9ppm、一酸化炭素5.2
ppmは全て0.1ppm以下となった。
Next, the obtained boron trichloride (650 ml SU
The S304 pressure vessel was cooled to −20 ° C., and helium was blown into the boron trichloride solution in the vessel while bubbling, and the internal pressure was increased to 0.98 MPa. Thereafter, gas chromatographic analysis was performed, and the pressure of the page was reduced as it was. When this operation was repeated three times, 0.8 ppm of oxygen, 86.9 ppm of nitrogen, and 5.2 parts of carbon monoxide in the boron trichloride solution were obtained.
All ppm were 0.1 ppm or less.

【0021】実施例2 原料の粗三塩化硼素1336gにハロゲン化炭化水素を
添加し、ジクロロメタン(CH2Cl2)100ppm、
トリクロロメタン(CHCl3)141ppm、テトラ
クロロメタン(CCl4)181ppmの粗三塩化硼素
を調製した。これを原料として、実施例1の円筒カラム
の活性炭を300℃に保ち、ハロゲン化炭化水素を含有
する粗三塩化硼素気流と窒素を混合し空間速度(SV)
47でカラムに流通させ、64gを供給した。カラムか
ら流出する三塩化硼素を650mlのSUS304製耐
圧容器に誘導し−70℃で冷却して58gの三塩化硼素
を捕捉した。得られた三塩化硼素の液を分析したとこ
ろ、ジクロロメタン(CH2Cl2)10ppm以下、
トリクロロメタン(CHCl3)10ppm以下、テト
ラクロロメタン(CCl4)10ppm以下、ホスゲン
0.1ppm以下、珪素0.3ppm以下、塩素2pp
m以下となった。有機塩素化合物の分析はガスクロマト
グラフ法、ホスゲン、珪素、塩素の分析は比色法により
実施した。
Example 2 A halogenated hydrocarbon was added to 1336 g of crude boron trichloride as a raw material, and 100 ppm of dichloromethane (CH 2 Cl 2 ) was added.
Crude boron trichloride of 141 ppm of trichloromethane (CHCl 3 ) and 181 ppm of tetrachloromethane (CCl 4 ) was prepared. Using this as a raw material, the activated carbon of the cylindrical column of Example 1 was maintained at 300 ° C., and a stream of crude boron trichloride containing halogenated hydrocarbons was mixed with nitrogen to produce a space velocity (SV)
It was passed through the column at 47 and 64 g were supplied. The boron trichloride flowing out of the column was introduced into a 650 ml pressure vessel made of SUS304 and cooled at -70 ° C to capture 58 g of boron trichloride. Analysis of the obtained boron trichloride liquid showed that dichloromethane (CH 2 Cl 2) 10 ppm or less,
Trichloromethane (CHCl 3 ) 10 ppm or less, tetrachloromethane (CCl 4 ) 10 ppm or less, phosgene 0.1 ppm or less, silicon 0.3 ppm or less, chlorine 2 pp
m or less. The analysis of organic chlorine compounds was carried out by gas chromatography, and the analysis of phosgene, silicon and chlorine was carried out by colorimetry.

【0022】[0022]

【発明の効果】珪素含量が少ない椰子殻系活性炭を用い
た本発明方法は、珪素化合物の汚染を抑制しながら、ホ
スゲン、塩素、ハロゲン化炭化水素および金属を効率よ
く除去するものである。さらに本発明方法は活性炭が1
00℃以上であるため、活性炭に三塩化硼素が吸着され
ず、このため、精製される三塩化硼素の歩留まりが向上
する。
The method of the present invention using coconut shell activated carbon having a low silicon content is intended to efficiently remove phosgene, chlorine, halogenated hydrocarbons and metals while suppressing contamination of silicon compounds. Further, the method of the present invention comprises one activated carbon.
Since the temperature is not lower than 00 ° C., boron trichloride is not adsorbed on the activated carbon, and the yield of boron trichloride to be purified is improved.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中川 明浩 富山県婦負郡婦中町笹倉635 日産化学工 業株式会社富山工場内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Akihiro Nakagawa 635 Sasakura, Funaka-cho, Fugaku-gun, Toyama Nissan Chemical Industry Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 粗三塩化硼素を気体の状態で活性炭と接
触させて、含有する珪素化合物、ホスゲン、ハロゲン化
炭化水素及び金属を同時に除去する三塩化硼素の精製法
において、100〜400℃に加熱した珪素含有量が
0.2%以下の活性炭に粗三塩化硼素の気体を接触さ
せ、前記不純物を分解・吸着除去することを特徴とする
三塩化硼素の精製法。
1. A method for purifying boron trichloride in which crude boron trichloride is brought into contact with activated carbon in a gaseous state to simultaneously remove silicon compounds, phosgene, halogenated hydrocarbons and metals contained therein, wherein the purification is carried out at 100 to 400 ° C. A method for purifying boron trichloride, comprising contacting a gas of crude boron trichloride with a heated activated carbon having a silicon content of 0.2% or less to decompose and adsorb the impurities.
【請求項2】 活性炭が椰子殻活性炭である請求項1記
載の三塩化硼素の精製法。
2. The method for purifying boron trichloride according to claim 1, wherein the activated carbon is coconut shell activated carbon.
【請求項3】 粗三塩化硼素を気体の状態で活性炭と接
触させて、含有する珪素化合物、ホスゲン、ハロゲン化
炭化水素及び金属を同時に除去する三塩化硼素の精製法
において、粗三塩化硼素を100〜400℃に加熱した
珪素含有量が0.2%以下の活性炭に接触させ、前記不
純物を分解・吸着除去し、次いで該精製した三塩化硼素
の気体を−10℃以下に冷却して、液化せしめ、該液化
した三塩化硼素を蒸留あるいは、液化した三塩化硼素に
該温度で気体の不活性ガスを吹き込み、前記の分解処理
で生成した一酸化炭素を除去することを特徴とする三塩
化硼素の精製法。
3. A method for purifying boron trichloride in which crude boron trichloride is brought into contact with activated carbon in a gaseous state to simultaneously remove silicon compounds, phosgene, halogenated hydrocarbons and metals contained therein. Contacting activated carbon heated to 100 to 400 ° C. with a silicon content of 0.2% or less to decompose and remove the impurities, and then cooling the purified boron trichloride gas to −10 ° C. or less, Liquefying, distilling the liquefied boron trichloride, or blowing a gaseous inert gas at the temperature into the liquefied boron trichloride to remove carbon monoxide generated by the decomposition treatment. A method for purifying boron.
【請求項4】 活性炭が椰子殻活性炭である請求項3記
載の三塩化硼素の精製法。
4. The method for purifying boron trichloride according to claim 3, wherein the activated carbon is coconut shell activated carbon.
【請求項5】 不活性ガスが窒素ガス及び/又は希ガス
である請求項3または4に記載の三塩化硼素の精製法。
5. The method for purifying boron trichloride according to claim 3, wherein the inert gas is a nitrogen gas and / or a rare gas.
JP7184597A 1997-03-25 1997-03-25 Purification of boron trichloride Pending JPH10265216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7184597A JPH10265216A (en) 1997-03-25 1997-03-25 Purification of boron trichloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7184597A JPH10265216A (en) 1997-03-25 1997-03-25 Purification of boron trichloride

Publications (1)

Publication Number Publication Date
JPH10265216A true JPH10265216A (en) 1998-10-06

Family

ID=13472295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7184597A Pending JPH10265216A (en) 1997-03-25 1997-03-25 Purification of boron trichloride

Country Status (1)

Country Link
JP (1) JPH10265216A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0987163A2 (en) 1998-09-18 2000-03-22 Koyo Seiko Co., Ltd. Power steering apparatus
EP1081095A1 (en) * 1999-09-03 2001-03-07 L'air Liquide Société Anonyme pour l'étude et l'exploitation des procédés Georges Claude Processes and systems for purification of boron trichloride
JP2010111550A (en) * 2008-11-07 2010-05-20 Ube Ind Ltd High-purity boron trichloride and production method thereof
JP2013144644A (en) * 2013-04-30 2013-07-25 Ube Industries Ltd Method for producing high purity boron trichloride
CN105731481A (en) * 2014-12-12 2016-07-06 广东先导稀材股份有限公司 Method and equipment for purifying boron trichloride
JP2019119614A (en) * 2017-12-28 2019-07-22 宇部興産株式会社 Method for producing high-purity boron trichloride
JP2019131418A (en) * 2018-01-29 2019-08-08 宇部興産株式会社 Manufacturing method of high purity boron trichloride
JP2019147715A (en) * 2018-02-27 2019-09-05 宇部興産株式会社 Method for producing high purity boron trichloride
CN115724437A (en) * 2022-12-14 2023-03-03 陕西天鼎工程技术有限公司 Purification method of boron trichloride
WO2024060352A1 (en) * 2022-09-23 2024-03-28 大连科利德光电子材料有限公司 Purification method for electronic grade boron trichloride

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0987163A2 (en) 1998-09-18 2000-03-22 Koyo Seiko Co., Ltd. Power steering apparatus
EP1081095A1 (en) * 1999-09-03 2001-03-07 L'air Liquide Société Anonyme pour l'étude et l'exploitation des procédés Georges Claude Processes and systems for purification of boron trichloride
US6238636B1 (en) 1999-09-03 2001-05-29 Air Liquide America Corporation Process and systems for purification of boron trichloride
US6361750B2 (en) 1999-09-03 2002-03-26 Air Liquide America Corporation Systems for purification of boron trichloride
JP2010111550A (en) * 2008-11-07 2010-05-20 Ube Ind Ltd High-purity boron trichloride and production method thereof
JP2013144644A (en) * 2013-04-30 2013-07-25 Ube Industries Ltd Method for producing high purity boron trichloride
CN105731481A (en) * 2014-12-12 2016-07-06 广东先导稀材股份有限公司 Method and equipment for purifying boron trichloride
JP2019119614A (en) * 2017-12-28 2019-07-22 宇部興産株式会社 Method for producing high-purity boron trichloride
JP2019131418A (en) * 2018-01-29 2019-08-08 宇部興産株式会社 Manufacturing method of high purity boron trichloride
JP2019147715A (en) * 2018-02-27 2019-09-05 宇部興産株式会社 Method for producing high purity boron trichloride
WO2024060352A1 (en) * 2022-09-23 2024-03-28 大连科利德光电子材料有限公司 Purification method for electronic grade boron trichloride
CN115724437A (en) * 2022-12-14 2023-03-03 陕西天鼎工程技术有限公司 Purification method of boron trichloride

Similar Documents

Publication Publication Date Title
US6238636B1 (en) Process and systems for purification of boron trichloride
US7384618B2 (en) Purification of nitrogen trifluoride
JPH10245210A (en) Production of krypton-xenon
JPH10265216A (en) Purification of boron trichloride
JPH07138007A (en) Purification of argon gas and apparatus therefor
EP1070680A1 (en) Method for making UHP tungsten hexafluoride
US4238465A (en) Removal of phosgene from boron trichloride
JP6984446B2 (en) Method for producing high-purity boron trichloride
JPH0353017B2 (en)
JPH0379288B2 (en)
US4119413A (en) Method for recovering hydrogen bromide gas
JP7069473B2 (en) Method for producing high-purity boron trichloride
JP2531249B2 (en) Purification method of hydrogen chloride gas
US3037337A (en) Purification of boron trichloride
JP2008214187A (en) Carbonyl fluoride having reduced content of hydrogen fluoride and method for producing the same
JP4059679B2 (en) Method for purifying carbonyl difluoride
JPS61197415A (en) Purification of dichlorosilane
JPH0733417A (en) Purifying method for rare gas
JP3650588B2 (en) Perfluoro compound recycling method
US3043665A (en) Purification of boron trichloride
JP2003128412A (en) Method for purifying silicon tetrafluoride
JP4205347B2 (en) Method for purifying trifluoromethyl hypofluorite
JP2000072438A (en) Purifying method of germanium tetrafluoride
JP4173824B2 (en) Method for purifying fluorooxy compounds
JP2003112907A (en) Method for refining hydrogen chloride