JPH10260093A - Manufacture of magnetostriction membrane for magnetostriction type torque sensor - Google Patents

Manufacture of magnetostriction membrane for magnetostriction type torque sensor

Info

Publication number
JPH10260093A
JPH10260093A JP9084390A JP8439097A JPH10260093A JP H10260093 A JPH10260093 A JP H10260093A JP 9084390 A JP9084390 A JP 9084390A JP 8439097 A JP8439097 A JP 8439097A JP H10260093 A JPH10260093 A JP H10260093A
Authority
JP
Japan
Prior art keywords
film
magnetostrictive
torque sensor
magnetostriction
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9084390A
Other languages
Japanese (ja)
Inventor
Wataru Yagi
渉 八木
Kota Maruyama
宏太 丸山
Toshikuni Kusano
敏邦 草野
Atsunao Itou
厚直 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP9084390A priority Critical patent/JPH10260093A/en
Publication of JPH10260093A publication Critical patent/JPH10260093A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a magnetostriction membrane for a magnetostriction type torque sensor, which can enhance the characteristic of the magnetostriction membrane and can reduce unevenness. SOLUTION: In a method of manufacturing a magnetostriction membrane 7 or 8 which made of Ni-Fe alloy containing a 30 to 90wt.% of Ni and with which a metal shaft 1 is coated over its outer peripheral surface by flame- coating, after the flame-coating of the membrane 7 or 8, it is heat-treated for reduction at a temperature of 800 to 1,300 deg.C in a reduction atmosphere. Accordingly, the characteristic of the thermal spraying magnetostriction membrane (Ni-Fe membrane) using a Ni-Fi group alloy can be enhanced, thereby it is possible to reduce uneveness of the characteristic. Further, by adding 0.1 to 15wt.% of Al to the metal to be thermal sprayed, it is possible to further improve the characteristic.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シャフト表面に被
着された磁気異方性の磁歪膜により、シャフトの捻れに
応じた磁歪膜の磁気特性(透磁率)の変化を磁気的に非
接触検出する磁歪式トルクセンサの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetically anisotropic magnetostrictive film adhered to a shaft surface, the magnetic characteristic of which is changed according to the twist of the shaft (permeability). The present invention relates to a method for manufacturing a magnetostrictive torque sensor for detecting.

【0002】[0002]

【従来の技術】従来の磁歪膜の製法としては、スパッタ
リングやイオンプレーティングなどのPVD法(例えば
特開昭60ー42628号公報や特開平6ー13798
1号公報)、めっき法(例えば特開昭62ー20642
1号公報)、プラズマ溶射法などの溶射法(例えば特開
平5ー52678号公報、特開平6ー160209号公
報)が提案されている。
2. Description of the Related Art Conventional methods for producing a magnetostrictive film include PVD methods such as sputtering and ion plating (for example, JP-A-60-42628 and JP-A-6-13798).
No. 1), a plating method (for example, Japanese Unexamined Patent Publication No.
No. 1) and a thermal spraying method such as a plasma spraying method (for example, Japanese Patent Application Laid-Open Nos. 5-52678 and 6-160209) have been proposed.

【0003】PVD法による磁歪膜は、成膜速度が遅い
ので生産性の点で問題を有している。 めっき法、特
に無電解めっき法による磁歪膜では形成された磁歪膜の
組成に制限があるために感度向上の点で問題を有してい
る。更に、これらスパッタリング法による磁歪膜やめっ
き法による磁歪膜は比較的膜厚が薄いので、感度の点で
シャフトの磁気的影響を排除する必要があり、このた
め、非磁性シャフトを用いる必要があるという問題を有
している。これに対して、溶射法による磁歪膜は、組成
の再現性、膜厚制御性、密着強度、感度、生産性におい
て良好であり、高膜圧化も容易であるので、シャフトの
材質も限定されないという利点を有している。
[0003] The magnetostrictive film formed by the PVD method has a problem in productivity because the film forming rate is low. A plating method, particularly a magnetostrictive film formed by an electroless plating method, has a problem in terms of improvement in sensitivity because the composition of the formed magnetostrictive film is limited. Furthermore, since the magnetostrictive film formed by the sputtering method or the magnetostrictive film formed by the plating method has a relatively small thickness, it is necessary to eliminate the magnetic influence of the shaft in terms of sensitivity, and therefore, it is necessary to use a non-magnetic shaft. There is a problem that. On the other hand, the magnetostrictive film formed by the thermal spraying method has good composition reproducibility, film thickness controllability, adhesion strength, sensitivity, and productivity, and is easy to increase in film thickness. Therefore, the material of the shaft is not limited. It has the advantage that.

【0004】特開平6ー160209号公報は、Niが
40〜80wt%のNi―Fe膜、このNi―Fe膜に
Alなどを7wt%以下含有させた膜、Alが8〜15
wt%のFe―Al膜、このFe―Al膜にNiなどを
5wt%以下含有させた膜を提案している。また、特開
平6ー137981号公報は、90%Ni―Fe膜を上
記磁歪膜として用いることを開示している。
JP-A-6-160209 discloses a Ni—Fe film containing 40 to 80 wt% of Ni, a film containing 7 wt% or less of Al or the like in the Ni—Fe film, and a film containing 8 to 15 wt% of Al.
A wt.% Fe—Al film, and a film in which the Fe—Al film contains 5 wt% or less of Ni or the like are proposed. Also, Japanese Patent Application Laid-Open No. Hei 6-137981 discloses that a 90% Ni—Fe film is used as the magnetostrictive film.

【0005】更に、特開平5ー52678号公報は、F
eーCo(Co、30〜60wt%)合金を用い、添加
元素としてMn、V、Nbの少なくとも一種以上を5w
t%以下とし、含有酸素量が0.2wt以下としたプラ
ズマ溶射法による磁歪膜を採用すること、更に、この磁
歪膜をプラズマ溶射後、無酸化雰囲気で800〜850
℃加熱する熱処理を行うこと、この無酸化雰囲気とし
て、水素中すなわち還元雰囲気で行い、これにより上記
レベルまで含有酸素の還元を行うことを提案している。
Further, Japanese Patent Application Laid-Open No. 5-52678 discloses a F
An e-Co (Co, 30 to 60 wt%) alloy is used, and at least one of Mn, V, and Nb is added as an additive element in 5w.
t% or less, and a magnetostrictive film formed by a plasma spraying method with an oxygen content of 0.2 wt or less is employed.
It has been proposed that a heat treatment of heating at a temperature of ° C. be carried out, and this non-oxidizing atmosphere be carried out in hydrogen, that is, in a reducing atmosphere, thereby reducing the contained oxygen to the above level.

【0006】[0006]

【発明が解決しようとする課題】上記したNi―Fe系
合金を用いた磁歪膜は、高価なCoを用いないために、
経済性に優れ、プラズマ溶射などの溶射法による作製方
法は、膜厚が大きく、感度に優れる磁歪膜を比較的容易
かつ経済的に作製できるという利点を有している。
The magnetostrictive film using the above-mentioned Ni—Fe alloy does not use expensive Co.
The manufacturing method using a thermal spraying method such as plasma spraying, which is economical, has the advantage that a magnetostrictive film having a large film thickness and excellent sensitivity can be manufactured relatively easily and economically.

【0007】しかしながら、従来のNi―Fe系合金を
用いた溶射磁歪膜では、その実用化のために、感度、リ
ニアリティ、ヒステリシス特性、シャフトとの密着性、
出力の温度安定性などの主要な特性の一層の向上及びば
らつきの低減が望まれていた。本発明は上記問題に鑑み
なされたものであり、磁歪式トルクセンサの磁歪膜の特
性向上とばらつき低減が可能な製造方法を提供すること
をその解決すべき課題としている。
However, in the case of a conventional sprayed magnetostrictive film using a Ni—Fe-based alloy, sensitivity, linearity, hysteresis characteristics, adhesion to a shaft,
It has been desired to further improve key characteristics such as temperature stability of output and reduce variations. The present invention has been made in view of the above problems, and has as its object to provide a manufacturing method capable of improving the characteristics of a magnetostrictive film of a magnetostrictive torque sensor and reducing the variation.

【0008】[0008]

【課題を解決するための手段】本発明者らは、請求項1
記載の製造方法に関して、金属からなるシャフトの外周
面に、Niを30〜90wt%含むNi―Fe系合金か
らなる磁歪膜を溶射により被着する磁歪式トルクセンサ
の磁歪膜の製造方法において、磁歪膜を溶射後、還元雰
囲気において800〜1300℃で還元熱処理してみ
た。
Means for Solving the Problems The present inventors have claimed in claim 1
The method according to the above-described manufacturing method, wherein a magnetostrictive film made of a Ni—Fe-based alloy containing 30 to 90 wt% of Ni is applied by thermal spraying to an outer peripheral surface of a metal shaft. After spraying the film, reduction heat treatment was performed at 800 to 1300 ° C. in a reducing atmosphere.

【0009】その結果、Ni―Fe系合金を用いた溶射
磁歪膜(Ni―Fe膜)の特性を向上でき、特性のばら
つきも低減できることを見出した。これは、おそらく粒
子積層状態となっている溶射直後のNi―Fe膜の組織
構造が還元熱処理により改質されると同時に、Ni―F
e膜中のNiまたはFeと結合する酸素が還元により低
減されて、Ni―Fe膜の磁歪特性が改善されたためと
想像される。
As a result, it has been found that the characteristics of a sprayed magnetostrictive film (Ni—Fe film) using a Ni—Fe-based alloy can be improved, and variations in the characteristics can be reduced. This is probably because the structure of the Ni—Fe film immediately after thermal spraying, which is in the state of particle lamination, is modified by reduction heat treatment, and at the same time, Ni—F
It is supposed that the oxygen bonded to Ni or Fe in the e film was reduced by reduction, and the magnetostriction characteristics of the Ni—Fe film were improved.

【0010】更に、この還元熱処理により、Ni―Fe
膜とシャフトの金属組織との密着性も向上することもわ
かった。還元熱処理温度は、800〜1300℃とされ
る。還元熱処理温度が800℃未満の場合には、上記し
た溶射磁歪膜の組織改善と脱酸とによると思われる特性
改善が不十分となり、還元熱処理温度が1300℃より
高いと素材の歪み、膜部の膨れ、Al含有量の低下及び
変動などが顕著となった。
Further, by this reduction heat treatment, Ni—Fe
It was also found that the adhesion between the film and the metal structure of the shaft was also improved. The reduction heat treatment temperature is set to 800 to 1300 ° C. When the reduction heat treatment temperature is lower than 800 ° C., the above-described improvement in the structure of the sprayed magnetostrictive film and the improvement in properties considered to be due to deoxidation become insufficient. Swelling, reduction and fluctuation of the Al content, etc. became remarkable.

【0011】還元熱処理の時間は、1〜5時間が好適で
ある。還元熱処理の時間が 上記範囲未満の場合に
は上記した溶射磁歪膜の組織改善と脱酸とが不十分とな
って特性の低下が生じ、上記範囲をを超えると溶射磁歪
膜中の結晶粒の大型化により特性のばらつきやヒステリ
シスの増大が生じる。Ni―Fe膜の厚さとしては、
0.1〜1mmとするのが好ましい。膜厚が上記範囲未
満であれば感度の低下が顕著となり、上記範囲を超える
場合においては偏析、処理コストの増加という不具合が
生じる。
The time for the reduction heat treatment is preferably 1 to 5 hours. When the time of the reduction heat treatment is less than the above range, the structure improvement and deoxidation of the above-described sprayed magnetostrictive film become insufficient and the properties are deteriorated, and when the time exceeds the above range, the crystal grains in the sprayed magnetostrictive film are reduced. The increase in size causes variations in characteristics and an increase in hysteresis. As the thickness of the Ni—Fe film,
It is preferably 0.1 to 1 mm. If the film thickness is less than the above range, the sensitivity is remarkably reduced, and if it exceeds the above range, problems such as segregation and an increase in processing cost occur.

【0012】本発明者らは、請求項2記載の製造方法に
関して、請求項1記載の製造方法において更に、溶射さ
れる金属にAlを0.1〜15wt%添加させてみた。
その結果、一層の特性改善を実現することができること
がわかった。これは、還元熱処理中の高温により活性化
されたAlが膜中や粒界中の酸素と結合し、これにより
Ni―Fe溶射膜中のNiやFeと酸素との結合が除去
されて磁歪膜としての特性が向上するためと想像され
る。すなわち、溶射膜は酸素を多く含み、この酸素がN
i―Fe溶射膜の磁歪特性を低下させていたことがわか
った。Ni―Fe溶射膜を還元熱処理する際において、
Ni―Fe溶射膜中にAlが存在すると、おそらくAl
が膜中の酸素と結合するためか、Ni―Fe溶射膜の特
性が一層改善された。酸素と結合したAlは、アルミナ
となって安定化し、膜中に分散するので、膜の強度が向
上し、更に膜の抵抗率の増大による渦電流損失の低減に
効果がある。
Regarding the manufacturing method according to the second aspect, the present inventors further tried to add 0.1 to 15 wt% of Al to the metal to be sprayed in the manufacturing method according to the first aspect.
As a result, it was found that the characteristics could be further improved. This is because the Al activated by the high temperature during the reduction heat treatment is combined with oxygen in the film and the grain boundaries, thereby removing the bond between Ni and Fe and oxygen in the Ni—Fe sprayed film and removing the magnetostrictive film. It is supposed to improve the characteristics as. That is, the sprayed film contains a large amount of oxygen, and this oxygen is N
It was found that the magnetostriction characteristics of the i-Fe sprayed film were reduced. When performing a reduction heat treatment on the Ni—Fe sprayed film,
If Al is present in the Ni—Fe sprayed film, it is likely that Al
The characteristics of the Ni—Fe sprayed film were further improved, probably due to bonding with oxygen in the film. The Al bonded with oxygen is stabilized as alumina and dispersed in the film, so that the strength of the film is improved and the effect of reducing the eddy current loss due to an increase in the resistivity of the film is obtained.

【0013】なお、熱処理雰囲気が還元性であるので、
磁歪膜の表面付近のAlは多少放散されるものの、雰囲
気ガス中の酸素とAlとが結合して磁歪膜の表面付近の
Alが大きく減耗する事がなく、膜中各部の成分ばらつ
きによる特性ばらつきを低減することができる。本発明
者らは、請求項3記載の製造方法に関して請求項1又は
2記載の製造方法において更に、還元熱処理をCOガス
を用いて行ってみた。このようにすれば、更に以下の効
果を奏することがわかった。
Since the heat treatment atmosphere is reducing,
Although Al near the surface of the magnetostrictive film is slightly diffused, the oxygen and Al in the atmosphere gas are not combined and Al near the surface of the magnetostrictive film is not significantly depleted. Can be reduced. The present inventors have further conducted a reduction heat treatment using a CO gas in the production method according to claim 1 or 2 with respect to the production method according to claim 3. By doing so, it was found that the following effects were further obtained.

【0014】すなわち、上記したような高温で還元熱処
理を行うに際して上記従来技術に記載されている水素ガ
スによる還元を採用すると、高強度を要求されるシャフ
トに水素脆化が生じてその強度が低下する(もろくな
る)という不具合が生じるが、この製造方法によれば、
このような水素脆化を防止するとともに、Coによる高
温での還元熱処理により浸炭によるシャフトの表面強化
を図ることができるので、Ni―Fe膜の特性向上とシ
ャフトの強化とを一挙に実施することができ、実用上、
きわめて有効であることがわかった。COガスの採用
は、Ni―Fe溶射膜中へのCの混入と、それによるN
i―Fe溶射膜の磁歪特性の低下を懸念させるが、実験
によれば、COガスに使用によるNi―Fe溶射膜の特
性低下は生じなかった。
That is, when the reduction treatment with hydrogen gas described in the above-mentioned prior art is employed in performing the reduction heat treatment at the high temperature as described above, hydrogen embrittlement occurs in a shaft requiring high strength, and the strength decreases. However, according to this manufacturing method,
Such hydrogen embrittlement can be prevented, and the surface of the shaft can be strengthened by carburization through reduction heat treatment at a high temperature with Co. And practically,
It turned out to be very effective. The use of CO gas involves the incorporation of C into the Ni—Fe sprayed film and the resulting
Although there is a concern that the magnetostriction characteristics of the i-Fe sprayed film are reduced, according to the experiment, the characteristics of the Ni-Fe sprayed film are not deteriorated by using the CO gas.

【0015】本発明者らは、請求項4記載の製造方法に
関して請求項1ないし3のいずれか記載の磁歪式トルク
センサの磁歪膜の製造方法において更に、還元熱処理
中、またはその後、800〜1300℃で浸炭処理を行
ってみた。その結果、シャフトの機械的強度を向上する
ことができる。なお、このようなNi―Fe系合金から
なる磁歪膜(Ni―Fe溶射膜)が被着されたシャフト
を浸炭処理する場合、Ni―Fe溶射膜も浸炭処理され
る訳であるから、それによる特性低下が強く懸念され
る。しかし、実験によれば、Ni―Fe系合金からなる
磁歪膜は、浸炭処理により特性低下を生じることなく、
かえってこの浸炭処理時においてNi―Fe系合金中で
NiやFeと結合する酸素を除去し、更に浸炭処理時に
NiとFeとの合金化が進むので、溶射後にはまだ不十
分である溶射膜の合金が促進され、これらの結果とし
て、Ni―Fe溶射膜の特性が改善されることが分かっ
た。
The present inventors further provide a method for manufacturing a magnetostrictive film of a magnetostrictive torque sensor according to any one of claims 1 to 3, further comprising: Carburizing at ℃. As a result, the mechanical strength of the shaft can be improved. When the shaft on which the magnetostrictive film (Ni-Fe sprayed film) made of such a Ni-Fe alloy is carburized, the Ni-Fe sprayed film is also carburized. There is a strong concern that the characteristics will deteriorate. However, according to the experiment, the magnetostrictive film made of the Ni—Fe-based alloy does not deteriorate in characteristics due to the carburizing treatment,
On the contrary, at the time of this carburizing treatment, oxygen bonded to Ni and Fe in the Ni-Fe alloy is removed, and further at the time of carburizing treatment, the alloying of Ni and Fe proceeds. It has been found that the alloy is promoted and, as a result, the properties of the Ni—Fe sprayed film are improved.

【0016】すなわち、Ni―Fe溶射膜を還元雰囲気
で熱処理すると特性が向上する。しかし、この高温処理
によりシャフトの機械的特性が低下する。そこで、この
還元熱処理中またはその後で、浸炭処理を行うと、シャ
フトの機械的特性を向上させるとともに、Ni―Fe溶
射膜中の酸素の低減を行うので、磁歪膜の特性も向上す
るという一挙両得の結果が得られた。
That is, when the Ni—Fe sprayed film is heat-treated in a reducing atmosphere, the characteristics are improved. However, this high temperature treatment lowers the mechanical properties of the shaft. Therefore, if the carburizing treatment is performed during or after the reduction heat treatment, the mechanical characteristics of the shaft are improved, and the oxygen in the Ni—Fe sprayed film is reduced, so that the characteristics of the magnetostrictive film are also improved. The result was obtained.

【0017】浸炭処理としては、上記説明した還元熱処
理をCOガスを用いて行う他、Ni―Fe溶射膜及びシ
ャフトにCを塗布したりして行うことができる。本発明
者らは、請求項5記載の製造方法に関して請求項1ない
し4のいずれか記載の製造方法において更に、還元熱処
理後、800〜1000℃で焼き入れ処理を行ってみ
た。
The carburizing treatment can be carried out by applying the above-described reduction heat treatment using CO gas, or by applying C to the Ni—Fe sprayed film and the shaft. The present inventors further carried out a quenching treatment at 800 to 1000 ° C. after the reduction heat treatment in the production method according to any one of claims 1 to 4 with respect to the production method according to claim 5.

【0018】このようにすれば、磁歪膜の特性向上と同
時にシャフトの強化を図ることができることがわかっ
た。詳しく説明すれば、上記した還元熱処理または浸炭
処理を高温で行うと、どうしてもシャフトを構成する金
属の結晶構造の肥大化を招く。特に、上記した従来技術
のように、この高温熱処理段階から徐冷を行う場合にお
いてそれが顕著であり、その他、このような熱処理やそ
の後の徐冷によりシャフトの結晶層が望ましくない結晶
構造となる場合もある。
It has been found that the shaft can be strengthened at the same time as the characteristics of the magnetostrictive film can be improved. More specifically, if the above-described reduction heat treatment or carburizing treatment is performed at a high temperature, the crystal structure of the metal constituting the shaft will necessarily be enlarged. In particular, as in the prior art described above, this is remarkable when performing slow cooling from this high-temperature heat treatment step, and in addition, such a heat treatment or subsequent slow cooling results in an undesired crystal structure of the shaft crystal layer. In some cases.

【0019】そこで、還元熱処理後に、焼き入れ処理を
行ってみると、Ni―Fe溶射膜の特性を低下させるこ
となく、シャフトの機械的強度の向上が行えることがわ
かった。一例において、この焼き入れ処理は、還元熱処
理後の冷却を終了した後の再加熱とその後の急冷により
実施されるが、他例においては還元熱処理を行う高温の
冷却過程において、急冷工程が挿入される。すなわち、
後者の方法では、還元熱処理が焼き入れにおける前工程
を兼ねるので、行程が簡素となる。
Then, when a quenching treatment was performed after the reduction heat treatment, it was found that the mechanical strength of the shaft could be improved without lowering the characteristics of the Ni—Fe sprayed film. In one example, the quenching process is performed by reheating after the completion of the cooling after the reduction heat treatment and subsequent quenching.In another example, a quenching process is inserted in a high-temperature cooling process of performing the reduction heat treatment. You. That is,
In the latter method, the process is simplified because the reduction heat treatment also serves as a pre-process in quenching.

【0020】重要なことは、この焼き入れ処理すなわち
急冷を実施することにより高温の還元熱処理で低下した
シャフトの機械的特性が向上するが、それと同時に磁歪
膜の結晶構造が変成し、磁歪膜の特性すなわち感度、リ
ニアリティ、ヒステリシス特性などの特性が悪化せず、
むしろ改善されるとも言えるということが判明した点で
ある。
It is important that the quenching process, ie, the quenching, improves the mechanical properties of the shaft, which have been reduced by the high-temperature reduction heat treatment, but at the same time, the crystal structure of the magnetostrictive film is altered, Characteristics such as sensitivity, linearity, hysteresis characteristics do not deteriorate,
It has turned out that it can be said that it can be improved.

【0021】本発明者らは、請求項6記載の製造方法に
関して請求項5記載の製造方法において更に、焼き入れ
処理後、焼き戻し処理を行ったみた。このようにすれ
ば、シャフトの残留応力を低減できると同時に、Ni―
Fe溶射膜の特性ばらつきも低減できることがわかっ
た。
The present inventors have further conducted a tempering treatment after the quenching treatment in the production method described in claim 5 with respect to the production method described in claim 6. In this way, the residual stress of the shaft can be reduced, and at the same time, the Ni—
It has been found that variations in the characteristics of the Fe sprayed film can also be reduced.

【0022】[0022]

【発明の実施の形態】以下、本発明の好適な態様を以下
の実施例により詳細に説明する。磁歪膜として用いるN
i―Fe系合金としては、上述したようにNiを30〜
90wt%、更に好ましくは35〜80wt%含むこと
が好ましい。Alは0.1〜15wt%、更に好ましく
は5〜10wt%添加されることが好ましい。その他、
含まれることができる補助添加元素については、Mg、
Ca、Ti、Si、B、Mnなどを0.01〜10wt
%程度添加することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the following examples. N used as a magnetostrictive film
As described above, as an i-Fe alloy, Ni is 30 to
It is preferable to contain 90 wt%, more preferably 35 to 80 wt%. Al is preferably added in an amount of 0.1 to 15 wt%, more preferably 5 to 10 wt%. Others
For auxiliary additive elements that can be included, Mg,
0.01 to 10 wt% of Ca, Ti, Si, B, Mn, etc.
% Can be added.

【0023】シャフトとしては、SCr、SNCM、S
CMなどの合金鋼や炭素鋼更には非磁性のステンレスな
どが採用されることができる。
As the shaft, SCr, SNCM, S
Alloy steel such as CM, carbon steel, and non-magnetic stainless steel can be used.

【0024】[0024]

【実施例】【Example】

(実施例1)実験に用いた磁歪式トルクセンサの磁歪膜
の形状を図1に示す。1はシャフト、2はシャフト1に
微少な隙間を介して嵌着されたボビンである。
Embodiment 1 FIG. 1 shows the shape of a magnetostrictive film of a magnetostrictive torque sensor used in an experiment. Reference numeral 1 denotes a shaft, and 2 denotes a bobbin fitted to the shaft 1 with a small gap.

【0025】ボビン2は軸方向前後に一対のコイル溝を
有しており、両コイル溝の上部には励磁コイル3、4が
個別に巻装され、両コイル溝の下部には検出コイル5、
6が個別に巻装されている。一方のコイル溝にボビン2
を挟んで対面するシャフト1の外周面には第一の磁歪膜
7が被着され、他方のコイル溝にボビン2を挟んで対面
するシャフト1の外周面には第二の磁歪膜8が被着され
ている。両励磁コイル3、4のターン数は等しく、両検
出コイル5、6のターン数は等しく設定されている。
The bobbin 2 has a pair of coil grooves before and after in the axial direction. Excitation coils 3 and 4 are individually wound above the two coil grooves, and a detection coil 5 and
6 are individually wound. Bobbin 2 in one coil groove
A first magnetostrictive film 7 is attached to the outer peripheral surface of the shaft 1 facing the other, and a second magnetostrictive film 8 is applied to the outer peripheral surface of the shaft 1 facing the bobbin 2 to the other coil groove. Is being worn. The number of turns of both excitation coils 3 and 4 is equal, and the number of turns of both detection coils 5 and 6 is set equal.

【0026】図2に検出回路の構成を示す。所定周波数
の正弦波交流電圧(ここでは50kHz)が直列に接続
された励磁コイル3、4に印加されると、シャフト1に
かかる捻り応力に応じて磁歪膜7、8が交流磁界を変調
する。すると、両検出コイル5、6に誘導される信号電
圧が逆方向に変化するので、両検出コイル5、6の信号
電圧をそれぞれ検波器9、10で検波し、電圧増幅器1
1、12で増幅し、両信号電圧の差を差動増幅器13で
求めれば、ほぼシャフト1の応力すなわちトルクに比例
する信号電圧が得られる。
FIG. 2 shows the configuration of the detection circuit. When a sine wave AC voltage of a predetermined frequency (here, 50 kHz) is applied to the exciting coils 3 and 4 connected in series, the magnetostrictive films 7 and 8 modulate the AC magnetic field according to the torsional stress applied to the shaft 1. Then, since the signal voltages induced in the two detection coils 5 and 6 change in the opposite direction, the signal voltages of the two detection coils 5 and 6 are detected by the detectors 9 and 10, respectively, and the voltage amplifier 1
If the signal is amplified by 1 and 12, and the difference between the two signal voltages is obtained by the differential amplifier 13, a signal voltage substantially proportional to the stress of the shaft 1, that is, the torque, can be obtained.

【0027】磁歪膜7、8は、プラズマ溶射により形成
され、その後、切削加工により、図1に示すように互い
に反対に向きかつ軸方向に対して45度の方向に平行に
伸びる多数の短い帯により構成される。上記説明したこ
れらの構成は、磁歪式トルクセンサ構造として一般的で
あり、よく知られているので、詳細な説明は省略する。
The magnetostrictive films 7 and 8 are formed by plasma spraying, and thereafter, by cutting, a number of short strips extending in directions opposite to each other and parallel at 45 degrees to the axial direction as shown in FIG. It consists of. These configurations described above are general as a magnetostrictive torque sensor structure, and are well known, so detailed description will be omitted.

【0028】シャフト1の直径は17mm、長さは12
0mmであり、SCr420を素材として加工形成され
たものを準備し、その外周面をブラスト処理した後、プ
ラズマ溶射を行った。プラズマ溶射は、Fe52wt
%、Ni38wt%、Al10wt%のブレンド粉末を
用いて大気中で実施し、シャフト1の外周面に厚さ0.
3mmのFe−Ni−Al合金層を形成した。次に、シ
ャフト1をCO(一酸化炭素)雰囲気で950℃で3h
保持し、その後、850℃で1.5hr保持した後、1
30℃まで油焼入れし、その後、180℃で2h保持し
た後、空冷して焼戻しを行なう浸炭熱処理を行った。
The diameter of the shaft 1 is 17 mm and the length is 12
A sample having a thickness of 0 mm and processed using SCr420 as a raw material was prepared, the outer peripheral surface thereof was blasted, and plasma spraying was performed. Plasma spraying is Fe52wt
%, Ni 38 wt%, and Al 10 wt% in the atmosphere using a blended powder having a thickness of 0.1 mm on the outer peripheral surface of the shaft 1.
A 3 mm Fe-Ni-Al alloy layer was formed. Next, the shaft 1 was placed in a CO (carbon monoxide) atmosphere at 950 ° C. for 3 hours.
After holding at 850 ° C. for 1.5 hours,
After oil quenching to 30 ° C., and then holding at 180 ° C. for 2 hours, a carburizing heat treatment of air cooling and tempering was performed.

【0029】次に、この合金膜に図1のようにシエブロ
ンパターン形状膜すなわち上記し多数の帯を形成すべ
く、加工処理を実施した。各帯の横幅は約2.2mm、
長さ10mm、膜厚0.2mmで軸の右半分は長手方向
に対して+45°、左半分は−45℃に傾き、各12本
づつ形成した。各帯間の間隔は約2.2mmとした。こ
のように作成したシャフト1の一端にねじりトルクを加
えてトルクと出力電圧の関係を測定した。その結果を図
3に示す。測定周波数は50KHz、励磁電圧は2Vで
ある。センサー出力は、2mV/Nmであり、その直線
性は0.6%FSを示した。なお、図3において、差動
増幅器13は約DC5Vのバイアス電圧を出力してい
る。
Next, as shown in FIG. 1, a processing process was performed on the alloy film so as to form a Sieblon pattern-shaped film, that is, a large number of bands as described above. The width of each band is about 2.2mm,
The length was 10 mm, the film thickness was 0.2 mm, the right half of the axis was inclined at + 45 ° with respect to the longitudinal direction, and the left half was inclined at −45 ° with respect to the longitudinal direction. The interval between the bands was about 2.2 mm. The relationship between the torque and the output voltage was measured by applying a torsional torque to one end of the shaft 1 prepared as described above. The result is shown in FIG. The measurement frequency is 50 KHz, and the excitation voltage is 2 V. The sensor output was 2 mV / Nm and its linearity was 0.6% FS. In FIG. 3, the differential amplifier 13 outputs a bias voltage of about DC5V.

【0030】次に、上記実施例膜としたNi―Fe溶射
膜(正確にはNi―Fe−AL溶射膜)のせん断試験を
実施し、密着せん断強度を測定した。その結果を図4に
示す。これにより浸炭処理により、シャフト1の強度が
向上したことがわかった。なお、図4における破線は、
普通車の運転時とロック時のトルクをせん断応力に換算
した値を示す。
Next, a shear test was performed on the Ni—Fe sprayed film (more precisely, the Ni—Fe—AL sprayed film) used as the above-described example film, and the adhesion shear strength was measured. FIG. 4 shows the results. Thus, it was found that the strength of the shaft 1 was improved by the carburizing treatment. The broken line in FIG.
This shows the value obtained by converting the torque during driving and locking of an ordinary car into shear stress.

【0031】次に、上記実施例膜のX線回折結果を表3
に示し、比較例膜として、溶射に用いた合金粉末のX線
回折結果を表1に示し、溶射したのみのNi―Fe溶射
膜のX線回折結果を表2に示す。表3から、実施例膜
は、FeーNiパーマロイ粒子とアルミナ粒子と粒界の
炭化物とからなる複合体と考えられ、これに若干のAl
分が含有されていると思われる。また、浸炭時の熱処理
により合金化が進んだと考えられ、Niのピークがわず
かになっている。
Next, the results of X-ray diffraction of the film of the above example are shown in Table 3.
Table 1 shows the X-ray diffraction results of the alloy powder used for thermal spraying as a comparative example film, and Table 2 shows the X-ray diffraction results of the Ni—Fe sprayed film that was only sprayed. From Table 3, it can be considered that the example film is a composite composed of Fe—Ni permalloy particles, alumina particles, and carbides at the grain boundaries.
It seems to contain a minute. Further, it is considered that the alloying was promoted by the heat treatment during carburization, and the peak of Ni was slight.

【0032】次に、実施例膜の断面拡大写真を図5〜図
7に示し、比較例膜として、溶射に用いた原料合金粉末
の断面拡大写真を図9、図10に示し、溶射したのみの
Ni―Fe溶射膜の断面拡大写真を図11〜図14に示
す。図12〜図14から、溶射したのみのNi―Fe溶
射膜には溶け残り粒子が残存すること及び孔が残ってい
ることがわかる。これに対して、図6、図7に示す試料
膜では、溶け残り粒子や孔の残存はなく、組織の均一性
が改善されたことがわかる。
Next, FIG. 5 to FIG. 7 show enlarged cross-sectional photographs of the example film, and FIG. 9 and FIG. 10 show enlarged cross-sectional photographs of the raw material alloy powder used for thermal spraying as a comparative example film. 11 to 14 show enlarged cross-sectional photographs of the Ni—Fe sprayed film of FIG. From FIG. 12 to FIG. 14, it can be seen that the unsprayed particles and the pores remain in the sprayed Ni—Fe sprayed film. On the other hand, in the sample films shown in FIGS. 6 and 7, no undissolved particles or pores remain, and it can be seen that the uniformity of the tissue is improved.

【0033】次に、実施例膜(溶射、還元熱処理として
浸炭処理をおこなったもの)の組成と、比較例膜として
溶射に用いた原料合金粉末の組成を表4に示す。
Next, Table 4 shows the composition of the example film (which was subjected to carburizing treatment as thermal spraying and reduction heat treatment) and the composition of the raw material alloy powder used for thermal spraying as the comparative example film.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【表4】 次に、上記した実施例の製造工程で作製したNi―Fe
系溶射磁歪膜a(Niが43wt%、Alが1wt%、
Cが2wt%、残部のほとんどがFe)の感度と、上記
した実施例の製造工程のうち還元熱処理以降の工程を省
略して製したNi―Fe系溶射磁歪膜b(Niが43w
t%、Alが1wt%残部のほとんどがFe)の感度
と、鋳鍛造法で作製したNi―Feバルク膜cの感度と
を以下に記載する。
[Table 4] Next, the Ni—Fe manufactured in the manufacturing process of the above-described embodiment is used.
System sprayed magnetostrictive film a (Ni is 43 wt%, Al is 1 wt%,
C is 2 wt%, and the balance is mostly Fe), and the Ni—Fe sprayed magnetostrictive film b (Ni is 43 w
The sensitivity of t% and Al of 1 wt%, most of which is Fe), and the sensitivity of the Ni—Fe bulk film c manufactured by the casting and forging method are described below.

【0038】aの感度は2.02mV/Nmであり、b
の感度は0.230mV/Nmであり、cの感度は2.
20mV/Nmであった。測定は、上記実施例と同じ方
法で行った。この感度の比較から、溶射後の還元浸炭熱
処理により溶射膜においてもバルク膜に匹敵する格段の
感度向上が実現できるようになるという優れた効果が得
られた。
The sensitivity of a is 2.02 mV / Nm, and the sensitivity of b
Is 0.230 mV / Nm, and c is 2.
It was 20 mV / Nm. The measurement was performed in the same manner as in the above example. From the comparison of the sensitivities, it was found that the reductive carburizing heat treatment after thermal spraying provided an excellent effect that even in the thermal sprayed film, a marked improvement in sensitivity comparable to that of the bulk film could be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実験に用いた磁歪式トルクセンサの磁歪膜及び
シャフトの形状を示す模式図である。
FIG. 1 is a schematic diagram showing shapes of a magnetostrictive film and a shaft of a magnetostrictive torque sensor used in an experiment.

【図2】実験に用いた磁歪式トルクセンサの検出回路の
構成を示す回路図である。
FIG. 2 is a circuit diagram showing a configuration of a detection circuit of a magnetostrictive torque sensor used in an experiment.

【図3】実施例膜(溶射後、浸炭処理を兼ねる還元熱処
理、焼き入れ、焼き戻しを行ったもの)のトルクと出力
電圧の関係を示す特性図である。
FIG. 3 is a characteristic diagram showing a relationship between torque and output voltage of an example film (which has been subjected to reduction heat treatment also serving as carburizing treatment, quenching, and tempering after thermal spraying).

【図4】実施例膜(溶射後、浸炭処理を兼ねる還元熱処
理、焼き入れ、焼き戻しを行ったもの)と、比較例膜
(溶射のみを行ったもの)との密着せん断強度を示す図
である。
FIG. 4 is a graph showing the adhesion shear strength between an example film (one that has been subjected to a reduction heat treatment also serving as a carburizing treatment, quenching, and tempering after thermal spraying) and a comparative example film (one that has performed only thermal spraying). is there.

【図5】実施例膜の金属組織の断面写真である。FIG. 5 is a cross-sectional photograph of a metal structure of an example film.

【図6】実施例膜の金属組織の断面写真である。FIG. 6 is a photograph of a cross section of a metal structure of an example film.

【図7】実施例膜の金属組織の断面写真である。FIG. 7 is a cross-sectional photograph of a metal structure of an example film.

【図8】原料合金の金属組織の断面写真である。FIG. 8 is a cross-sectional photograph of a metal structure of a raw material alloy.

【図9】原料合金の金属組織の断面写真である。FIG. 9 is a cross-sectional photograph of a metal structure of a raw material alloy.

【図10】溶射のみを行った比較例膜の金属組織の断面
写真である。
FIG. 10 is a cross-sectional photograph of a metal structure of a comparative example film subjected to only thermal spraying.

【図11】溶射のみを行った比較例膜の金属組織の断面
写真である。
FIG. 11 is a cross-sectional photograph of a metal structure of a comparative example film subjected to only thermal spraying.

【図12】溶射のみを行った比較例膜の金属組織の断面
写真である。
FIG. 12 is a cross-sectional photograph of a metal structure of a comparative example film subjected to only thermal spraying.

【図13】溶射のみを行った比較例膜の金属組織の断面
写真である。
FIG. 13 is a cross-sectional photograph of a metal structure of a comparative example film subjected to only thermal spraying.

【符号の説明】[Explanation of symbols]

1はシャフト、7、8はNi―Fe溶射膜である。 1 is a shaft, and 7 and 8 are Ni—Fe sprayed films.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊東 厚直 愛知県刈谷市朝日町2丁目1番地 アイシ ン精機株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Atsunao Ito 2-1-1 Asahi-cho, Kariya-shi, Aichi Pref. Aisin Seiki Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】金属からなるシャフトの外周面に、Niを
30〜90wt%含むNi―Fe系合金からなる磁歪膜
を溶射により被着する磁歪式トルクセンサの磁歪膜の製
造方法において、 前記磁歪膜を溶射後、還元雰囲気で800〜1300℃
で還元熱処理することを特徴とする磁歪式トルクセンサ
の磁歪膜の製造方法。
1. A method for manufacturing a magnetostrictive film for a magnetostrictive torque sensor, wherein a magnetostrictive film made of a Ni—Fe alloy containing 30 to 90 wt% of Ni is applied by thermal spraying to an outer peripheral surface of a shaft made of metal. After spraying the film, 800-1300 ° C in reducing atmosphere
A method of producing a magnetostrictive film of a magnetostrictive torque sensor, wherein the film is subjected to a reduction heat treatment.
【請求項2】請求項1記載の磁歪式トルクセンサの磁歪
膜の製造方法において、 前記溶射される金属は、Alを0.1〜15wt%含む
ことを特徴とする磁歪式トルクセンサの磁歪膜の製造方
法。
2. The magnetostrictive film for a magnetostrictive torque sensor according to claim 1, wherein the metal to be sprayed contains 0.1 to 15 wt% of Al. Manufacturing method.
【請求項3】請求項1又は2記載の磁歪式トルクセンサ
の磁歪膜の製造方法において、 前記還元熱処理は、COガスを用いて行われることを特
徴とする磁歪式トルクセンサの磁歪膜の製造方法。
3. The method for manufacturing a magnetostrictive film of a magnetostrictive torque sensor according to claim 1, wherein the reduction heat treatment is performed using a CO gas. Method.
【請求項4】請求項1ないし3のいずれか記載の磁歪式
トルクセンサの磁歪膜の製造方法において、 前記還元熱処理時またはその後、800〜1300℃で
浸炭処理を行うことを特徴とする磁歪式トルクセンサの
磁歪膜の製造方法。
4. A method for producing a magnetostrictive film of a magnetostrictive torque sensor according to claim 1, wherein a carburizing treatment is performed at 800 to 1300 ° C. during or after the reduction heat treatment. A method for manufacturing a magnetostrictive film of a torque sensor.
【請求項5】請求項1ないし4のいずれか記載の磁歪式
トルクセンサの磁歪膜の製造方法において、 前記還元熱処理後、800〜1000℃で焼き入れ処理
を行うことを特徴とする磁歪式トルクセンサの磁歪膜の
製造方法。
5. The method for manufacturing a magnetostrictive film of a magnetostrictive torque sensor according to claim 1, wherein a quenching treatment is performed at 800 to 1000 ° C. after the reduction heat treatment. A method for manufacturing a magnetostrictive film of a sensor.
【請求項6】請求項5記載の磁歪式トルクセンサの磁歪
膜の製造方法において、 前記焼き入れ処理後、焼き戻し処理を行うことを特徴と
する磁歪式トルクセンサの磁歪膜の製造方法。
6. The method for manufacturing a magnetostrictive film for a magnetostrictive torque sensor according to claim 5, wherein a tempering process is performed after the quenching process.
JP9084390A 1997-03-17 1997-03-17 Manufacture of magnetostriction membrane for magnetostriction type torque sensor Pending JPH10260093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9084390A JPH10260093A (en) 1997-03-17 1997-03-17 Manufacture of magnetostriction membrane for magnetostriction type torque sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9084390A JPH10260093A (en) 1997-03-17 1997-03-17 Manufacture of magnetostriction membrane for magnetostriction type torque sensor

Publications (1)

Publication Number Publication Date
JPH10260093A true JPH10260093A (en) 1998-09-29

Family

ID=13829245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9084390A Pending JPH10260093A (en) 1997-03-17 1997-03-17 Manufacture of magnetostriction membrane for magnetostriction type torque sensor

Country Status (1)

Country Link
JP (1) JPH10260093A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012503762A (en) * 2008-09-25 2012-02-09 アーベーベー・アーベー Sensor for measuring stress, including a layer of magnetoelastic material, and method for manufacturing the layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012503762A (en) * 2008-09-25 2012-02-09 アーベーベー・アーベー Sensor for measuring stress, including a layer of magnetoelastic material, and method for manufacturing the layer
US8272277B2 (en) 2008-09-25 2012-09-25 Abb Ab Sensor for measuring stresses including a layer of a magnetoelastic material and a method for producing the layer

Similar Documents

Publication Publication Date Title
JP3377519B2 (en) Torque sensor and method of manufacturing the same
JP2004037240A (en) Magnetostrictive torque sensor shaft and its manufacturing method
EP2018530B1 (en) A measuring device including a layer of a magnetoelastic alloy and a method for production thereof
US4840073A (en) Torque detecting device
JPH07316658A (en) Production of magnetorestrictive shaft
JP2002082000A (en) Magnetostrictive stress sensor and method for manufacturing the same
JPH1137864A (en) Manufacture of magnetostrictive film of magnetostrictive torque sensor
JPH10260093A (en) Manufacture of magnetostriction membrane for magnetostriction type torque sensor
JPH10176966A (en) Magnetostriction-detecting body for torque sensor
JPH1137863A (en) Manufacture of magnetostrictive film of magnetostrictive torque sensor
JPH0242419B2 (en)
JP2615661B2 (en) Torque sensor
JPH0610327B2 (en) Torque sensor
JP3024817B2 (en) Magnetostrictive detector for magnetostrictive torque sensor and method of manufacturing the same
JP2002180215A (en) Composite magnetic member having excellent low temperature magnetic stability and its production method
JP2592491B2 (en) Heat treatment method for shaft to be measured for torque sensor
JPH0552678A (en) Magnetostriction detector for magnetostriction torque sensor and manufacture thereof
JP2697846B2 (en) Torque sensor
JP2004053434A (en) Method for manufacturing magnetostrictive torque sensor shaft
JPS60123078A (en) Torque sensor
JPH10260092A (en) Magnetostriction memberane for magentosriction type trque sensor
JP2001041833A (en) Torque sensor element and its manufacture
JPH0242418B2 (en)
JP2003344186A (en) Method for manufacturing magnetostrictive torque sensor
JPS6381993A (en) Torque sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees