JPH10252608A - Compression ignition type internal combustion engine - Google Patents

Compression ignition type internal combustion engine

Info

Publication number
JPH10252608A
JPH10252608A JP9056504A JP5650497A JPH10252608A JP H10252608 A JPH10252608 A JP H10252608A JP 9056504 A JP9056504 A JP 9056504A JP 5650497 A JP5650497 A JP 5650497A JP H10252608 A JPH10252608 A JP H10252608A
Authority
JP
Japan
Prior art keywords
fuel
fuel injection
injection valve
injected
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9056504A
Other languages
Japanese (ja)
Inventor
Yasuo Sato
康夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP9056504A priority Critical patent/JPH10252608A/en
Publication of JPH10252608A publication Critical patent/JPH10252608A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To generate an engine high output by improving an air utilization factor. SOLUTION: A plurality of fuel injection valves 10, 11, and 12 are arranged in a combustion chamber 5 and fuels F1 , F2 , and F3 are injected in a thin film- form state through the fuel injection valve 10, 11, and 12, respectively. An injection timing from the fuel injection valves 10, 11, and 12 is set in a range of a compression top dead center to 60 deg.. Injection directions from the fuel injection valves 10, 11, and 12 are determined in a manner to prevent crossing of thin- filmy sprays F1 , F2 , and F3 , injected from the fuel injection valves 10, 11, and 12, with each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は圧縮着火式内燃機関
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compression ignition type internal combustion engine.

【0002】[0002]

【従来の技術】燃焼室の頂部に一個の燃料噴射弁を配置
し、この燃料噴射弁から燃料を圧縮上死点前60度以前
に薄膜状に噴射するようにした圧縮着火式内燃機関が公
知である(特開平7−317588号公報参照)。この
圧縮着火式内燃機関では噴射燃料の粒子を燃焼室内に均
一に分散させ、それによってすすおよびNOX の発生が
ほぼ零にすることを意図している。即ち、燃焼室内の圧
力が高くなると空気抵抗が大きくなるためにたとえ燃料
を薄膜状に噴射しても噴射燃料粒子を広範囲に分散させ
ることができず、従って噴射燃料粒子が広範囲に分散し
うるように燃焼室内の圧力が低い圧縮上死点前60度よ
りも前に薄膜状に燃料を噴射するようにしている。
2. Description of the Related Art There is known a compression ignition type internal combustion engine in which a single fuel injection valve is disposed at the top of a combustion chamber, and fuel is injected from the fuel injection valve in a thin film before 60 degrees before a compression top dead center. (See JP-A-7-317588). In the compression ignition type internal combustion engine uniformly dispersing particles of the injected fuel into the combustion chamber, and thereby intended to generation of soot and NO X is approximately zero. That is, when the pressure in the combustion chamber increases, the air resistance increases, so that even if the fuel is injected in a thin film shape, the injected fuel particles cannot be dispersed over a wide range, and therefore the injected fuel particles can be dispersed over a wide range. The fuel is injected in a thin film before the compression top dead center of 60 ° where the pressure in the combustion chamber is low.

【0003】[0003]

【発明が解決しようとする課題】しかしながらこのよう
に燃料を薄膜状に噴射させても薄膜状燃料噴霧から離れ
た燃焼室領域にはほとんど燃料が存在せず、斯くして燃
焼室内の空気を十分に利用することができないために機
関高出力が得られないという問題がある。
However, even if the fuel is injected in a thin film state, almost no fuel is present in the combustion chamber region away from the thin film fuel spray. There is a problem that high output of the engine cannot be obtained due to the inability to use the engine.

【0004】[0004]

【課題を解決するための手段】上記問題点を解決するた
めに本発明によれば、燃焼室内に複数個の燃料噴射弁を
配置すると共に各燃料噴射弁から燃料を薄膜状に噴射
し、各燃料噴射弁からの噴射時期を圧縮上死点前60°
以前に設定すると共に各燃料噴射弁からの噴射方向を各
燃料噴射弁から噴射された薄膜状噴霧が互いに交錯しな
いように定めている。即ち、一つの薄膜状噴霧では燃料
がゆきわたらない燃焼室内の領域に他の薄膜状噴霧によ
って燃料が送り込まれる。
According to the present invention, in order to solve the above-mentioned problems, a plurality of fuel injection valves are arranged in a combustion chamber, and fuel is injected from each fuel injection valve in a thin film form. Injection timing from fuel injection valve is 60 ° before top dead center
The direction of injection from each fuel injection valve is set so as to prevent the thin film sprays injected from each fuel injection valve from intersecting with each other. That is, the fuel is fed by another thin film spray into a region in the combustion chamber where the fuel does not spread in one thin film spray.

【0005】[0005]

【発明の実施の形態】図1を参照すると、1は機関本
体、2はシリンダブロック、3はシリンダヘッド、4は
ピストン、5は燃焼室、6は吸気弁、7は吸気ポート、
8は排気弁、9は排気ポートを夫々示す。図1に示され
るようにシリンダヘッド3の内壁面中央部には第1燃料
噴射弁10が配置され、シリンダボア13の互いに対向
する内壁面上には夫々第2燃料噴射弁11および第2燃
料噴射弁12が配置される。第1燃料噴射弁10からは
シリンダ軸線に沿って燃料が噴射され、第1燃料噴射弁
11および第2燃料噴射弁12からはシリンダ軸線と直
交する同一の噴射軸線に沿って燃料が噴射される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1, 1 is an engine body, 2 is a cylinder block, 3 is a cylinder head, 4 is a piston, 5 is a combustion chamber, 6 is an intake valve, 7 is an intake port,
8 denotes an exhaust valve, and 9 denotes an exhaust port. As shown in FIG. 1, a first fuel injection valve 10 is disposed at the center of the inner wall surface of the cylinder head 3, and a second fuel injection valve 11 and a second fuel injection valve are provided on inner wall surfaces of the cylinder bore 13 facing each other. A valve 12 is arranged. Fuel is injected from the first fuel injection valve 10 along the cylinder axis, and fuel is injected from the first fuel injection valve 11 and the second fuel injection valve 12 along the same injection axis orthogonal to the cylinder axis. .

【0006】図2は燃料噴射弁10の先端部の側面断面
図を示している。図2を参照すると、燃料噴射弁10の
先端部にはノズル口20が形成されており、燃料噴射弁
10内にはこのノズル口20の開閉制御を行うニードル
21が配置されている。ニードル21上には膨大部22
が形成されており、膨大部22の外周面上には斜めに延
びる燃料流通溝23が形成されている。ニードル21の
先端部にはノズル口20の中心部を通って燃焼室5(図
1)内に突出する弁軸24が一体形成されており、この
弁軸24の先端部に円錐状燃料案内面25を有する弁体
26が形成されている。
FIG. 2 is a side sectional view of the tip of the fuel injection valve 10. Referring to FIG. 2, a nozzle port 20 is formed at the tip of the fuel injection valve 10, and a needle 21 for controlling the opening and closing of the nozzle port 20 is disposed in the fuel injection valve 10. The enlarged part 22 is on the needle 21
Are formed, and a fuel flow groove 23 extending obliquely is formed on the outer peripheral surface of the enlarged portion 22. A valve shaft 24 projecting into the combustion chamber 5 (FIG. 1) through the center of the nozzle port 20 is integrally formed at the distal end of the needle 21, and a conical fuel guide surface is formed at the distal end of the valve shaft 24. 25 is formed.

【0007】燃料圧により又は電気的にニードル21が
上昇せしめられると燃料が燃料流通溝23を通って旋回
しつつノズル口20から弁体26の円錐状燃料案内面2
5に向けて噴出される。この噴出燃料は円錐状燃料案内
面25に衝突し、円錐状燃料案内面25により案内され
て円錐状燃料案内面25の表面に沿いつつ円錐状燃料案
内面25の外周部に向かう。円錐状燃料案内面25の外
周部に達すると燃料はそのまままっすぐ進んで円錐状燃
料案内面25から離れ、次いでF1 で示されるように薄
膜の形で円錐状に広がる。一方、第2燃料噴射弁11お
よび第3燃料噴射弁12も第1燃料噴射弁10と同様な
構造を有しており、従って図1においてF2 およびF3
で示されるように第2燃料噴射弁11および第3燃料噴
射弁13からの噴射燃料も薄膜の形で円錐状に広がる。
When the needle 21 is raised by the fuel pressure or electrically, the fuel is swirled through the fuel flow groove 23 and the conical fuel guide surface 2 of the valve 26 is
It is jetted toward 5. The ejected fuel collides with the conical fuel guide surface 25, is guided by the conical fuel guide surface 25, and travels along the surface of the conical fuel guide surface 25 toward the outer peripheral portion of the conical fuel guide surface 25. Upon reaching the outer periphery of the conical fuel guide surface 25 fuel straight willing away from conical fuel guide surface 25 as it is, then the conically expanding in the form of a thin film as shown in F 1. On the other hand, F 2 and F 3 second fuel injection valve 11 and the third fuel injection valve 12 also has the same structure as the first fuel injection valve 10, thus in FIG. 1
The fuel injected from the second fuel injection valve 11 and the third fuel injection valve 13 also spreads conically in the form of a thin film as shown by.

【0008】なお、図2に示される燃料噴射弁10は径
が大きな燃料粒子を燃焼室5内に均一に分散させるのに
適している。即ち、この燃料噴射弁10ではまず初めに
燃料が円錐状燃料案内面25から薄膜の形で円錐状に広
がり、次いで薄膜状燃料は剪断力によりひきちぎられて
燃料粒子となる。このようにして燃料粒子が形成される
と燃料粒子は比較的均一で大きな径となる。
The fuel injection valve 10 shown in FIG. 2 is suitable for uniformly dispersing large diameter fuel particles in the combustion chamber 5. That is, in the fuel injection valve 10, first, the fuel spreads conically in the form of a thin film from the conical fuel guide surface 25, and then the thin film fuel is torn off by the shearing force to become fuel particles. When the fuel particles are formed in this manner, the fuel particles have a relatively uniform and large diameter.

【0009】図3は図1に示される各燃料噴射弁10,
11,12の位置関係と噴霧F1 ,F2 ,F3 を図解的
に示したものである。図1に示される内燃機関はNOX
およびすすがほとんど発生しない新たな燃焼方法を実施
するためのものである。そこで次に本発明のベースとな
っているこの新たな燃焼方法について説明する。なお、
この燃焼方法については最もすすおよびNOX が発生し
やすい高負荷運転時に焦点をあてて説明する。
FIG. 3 shows each of the fuel injection valves 10 and 10 shown in FIG.
FIG. 3 schematically shows the positional relationship between 11, 12 and sprays F 1 , F 2 , F 3 . Internal combustion engine shown in FIG. 1 NO X
The purpose of the present invention is to implement a new combustion method in which little soot is generated. Then, this new combustion method which is the basis of the present invention will be described below. In addition,
This combustion method will be described with a focus on a high load operation in which soot and NO X are most likely to be generated.

【0010】従来のように燃料粒子の平均粒径が50μ
m以下となるように燃料を微粒化して噴射するようにし
ている限り噴射時期をいかに設定しようとも燃料噴射圧
をいかに設定しようともすすとNOX の同時低減を図る
ことは困難であり、ましてやすすおよびNOX の発生量
を実質的に零にすることは不可能である。これは従来の
燃焼方法に本質的な問題があるからである。即ち、従来
の燃焼方法においては燃料粒子の粒径が小さいために燃
料が噴射されるや否や一部の燃料がただちに気化し、こ
の気化した燃料により早期に急激な燃焼が開始される。
このように噴射開始後早期に急激な燃焼が開始されると
後続する噴射燃料が燃焼火炎内に飛び込むためにこれら
の噴射燃料は空気不足の状態で燃焼せしめられることに
なり、斯くしてすすが発生することになる。また噴射燃
料が早期に急激に燃焼して燃焼圧が急激に上昇すると燃
焼温度が高くなり、斯くしてNOX が発生することにな
る。
As in the prior art, the average particle size of the fuel particles is 50 μm.
m possible to fuel the simultaneous reduction of soot and NO X even trying how setting the fuel injection pressure also try to how set as far as the injection timing is to be injected atomized as to become less is difficult, let alone soot and it is substantially impossible to zero the amount of generation of NO X. This is because the conventional combustion method has an essential problem. That is, in the conventional combustion method, as soon as the fuel is injected due to the small particle size of the fuel particles, a part of the fuel is vaporized immediately, and the vaporized fuel starts rapid combustion at an early stage.
As described above, when rapid combustion is started early after the start of injection, the following injected fuel jumps into the combustion flame, so that these injected fuels are burned in a state of insufficient air, so that soot Will happen. The combustion pressure is injected fuel rapidly burns early is rapidly increased and combustion temperature rises, NO X will occur to thus.

【0011】ところが噴射燃料の平均粒径を従来の燃焼
方法において使用されている平均粒径よりも大巾に大き
くし、かつ噴射時期を従来の燃焼方法において通常使用
されている噴射時期よりもかなり早めるとすすおよびN
X の発生量を実質的に零まで低減しうることが判明し
たのである。次にこのことについて説明する。図4の曲
線はピストン4の圧縮作用のみによる燃焼室5内の圧力
Pの変化を示している。図4からわかるように燃焼室5
内の圧力Pはほぼ圧縮上死点前BTDC60度を越える
と急速に上昇する。これは吸気弁6の開弁時期とは無関
係であっていかなる往復動式内燃機関であっても燃焼室
5内の圧力Pは図4に示されるように変化する。
However, the average particle size of the injected fuel is made much larger than the average particle size used in the conventional combustion method, and the injection timing is considerably longer than the injection timing normally used in the conventional combustion method. Soot and N
The generation amount of O X is the fact that can be substantially reduced to zero was found. Next, this will be described. The curve in FIG. 4 shows a change in the pressure P in the combustion chamber 5 due to only the compression action of the piston 4. As can be seen from FIG.
The pressure P inside rises rapidly when the pressure exceeds BTDC 60 degrees before the top dead center of compression. This is independent of the opening timing of the intake valve 6, and the pressure P in the combustion chamber 5 changes as shown in FIG. 4 in any reciprocating internal combustion engine.

【0012】図5の実線で示す曲線は各クランク角にお
ける燃料中の主要成分の沸騰温度、即ち沸点Tを示して
いる。燃焼室5内の圧力Pが上昇すれば主要燃料成分の
沸点Tもそれに伴なって上昇するので主要燃料成分の沸
点Tもほぼ圧縮上死点前BTDC60度を越えると急速
に上昇する。一方、図5において破線は圧縮上死点前B
TDCθ0 度において燃料が噴射されたときの燃料粒子
の径の差による燃料粒子の温度変化の差異を示してい
る。噴射直後の燃料粒子の温度はそのときの圧力により
定まる沸点Tよりも低く、次いで燃料粒子は周囲から熱
を受けて温度上昇する。このときの燃料粒子の温度上昇
速度は粒径が小さいほど速くなる。
The curve shown by the solid line in FIG. 5 shows the boiling temperature, ie, the boiling point T, of the main component in the fuel at each crank angle. If the pressure P in the combustion chamber 5 rises, the boiling point T of the main fuel component also rises accordingly, so that the boiling point T of the main fuel component also rises rapidly when the temperature exceeds BTDC 60 degrees before the compression top dead center. On the other hand, the broken line in FIG.
The difference in temperature change of the fuel particles due to the difference in the diameter of the fuel particles when the fuel is injected at TDC θ 0 degrees is shown. The temperature of the fuel particles immediately after the injection is lower than the boiling point T determined by the pressure at that time, and then the fuel particles receive heat from the surroundings and rise in temperature. At this time, the temperature rise speed of the fuel particles increases as the particle size decreases.

【0013】即ち、燃料粒子の粒径が20μmから50
μm程度であったとすると燃料粒子の温度は噴射後急速
に上昇して圧縮上死点TDCよりもはるか前のクランク
角において沸点Tに達し、燃料粒子からの沸騰による急
激な主要燃料成分の蒸発作用が開始される。また、図5
からわかるように燃料粒子の粒径が200μmの場合で
も燃料粒子の温度は圧縮上死点TDCに達する前に沸点
Tに達し、沸騰による急激な主要燃料成分の蒸発作用が
開始される。このように圧縮上死点TDCに達する前に
沸騰による急激な主要燃料成分の蒸発作用が開始される
とこのとき蒸発した燃料による爆発的な燃焼が生じ、斯
くして前述したように多量のすすおよびNOX が発生す
ることになる。
That is, the particle size of the fuel particles is from 20 μm to 50 μm.
If it is about μm, the temperature of the fuel particles rapidly rises after injection and reaches the boiling point T at a crank angle far before the compression top dead center TDC, and the rapid evaporation of the main fuel component due to boiling from the fuel particles. Is started. FIG.
As can be seen from the graph, even when the particle size of the fuel particle is 200 μm, the temperature of the fuel particle reaches the boiling point T before reaching the compression top dead center TDC, and the rapid evaporation of the main fuel component due to boiling starts. If the rapid evaporation of the main fuel component due to boiling is started before reaching the compression top dead center TDC, explosive combustion occurs at this time due to the evaporated fuel, and as described above, a large amount of soot is generated. And NO X will be generated.

【0014】これに対して燃料粒子の径が500μm程
度よりも大きくなると燃料粒子の温度の上昇速度が遅く
なるためにほぼ圧縮上死点TDC或いはそれ以後になら
ないと燃料粒子の温度が沸点Tに達しない。従って燃料
粒子の径を500μm程度よりも大きくすればほぼ圧縮
上死点TDCに達する前に沸騰による急激な主要燃料成
分の蒸発作用は行われず、ほぼ圧縮上死点TDC或いは
圧縮上死点TDC後に沸騰による急激な主要燃料成分の
蒸発作用が開始されることになる。従って燃料粒子の径
が500μm程度よりも大きくなると圧縮上死点TDC
前の主要燃料成分の沸騰蒸発に基づくすすおよびNOX
の発生を阻止できることになる。
On the other hand, when the diameter of the fuel particle is larger than about 500 μm, the temperature rise rate of the fuel particle is slowed down. Do not reach. Therefore, if the diameter of the fuel particles is set to be larger than about 500 μm, the rapid evaporation of the main fuel component due to boiling will not be performed before reaching the compression top dead center TDC, and almost the compression top dead center TDC or after the compression top dead center TDC A sudden evaporation of the main fuel component due to boiling will be started. Therefore, when the diameter of the fuel particles is larger than about 500 μm, the compression top dead center TDC
Soot and NO X based on boiling and evaporation of the main fuel component prior to
Can be prevented.

【0015】なお、噴射燃料の粒径は完全に均一になる
ことはあり得ないので噴射燃料の粒径を考える場合には
噴射燃料の平均粒径で考えることが好ましいと云える。
このように考えると噴射燃料の平均粒径を燃料粒子の温
度がほぼ圧縮上死点TDC又は圧縮上死点TDC後にそ
のときの圧力により定まる主要燃料成分の沸点Tに達す
る粒径以上とすれば噴射後ほぼ圧縮上死点TDCに達す
るまでは燃料粒子からの沸騰による急激な主要燃料成分
の蒸発は生じず、ほぼ圧縮上死点TDC後に燃料粒子か
らの沸騰による急激な主要蒸発成分を生じることにな
る。
Since the particle size of the injected fuel cannot be completely uniform, it is preferable to consider the average particle size of the injected fuel when considering the particle size of the injected fuel.
Considering the above, if the average particle diameter of the injected fuel is equal to or larger than the particle diameter at which the temperature of the fuel particle reaches the boiling point T of the main fuel component determined by the pressure at the time after the compression top dead center TDC or the compression top dead center TDC, Until the compression top dead center TDC is reached after injection, rapid evaporation of the main fuel component due to boiling from the fuel particles does not occur, and after the compression top dead center TDC a rapid main evaporation component due to the boiling from the fuel particles occurs. become.

【0016】ところですすおよびNOX の発生量をほぼ
零にするためには燃料粒子の径をほぼ500μm程度よ
りも大きくすることに加え、噴射された燃料粒子を燃焼
室5内に均一に分散させることが必要となる。次にこの
ことについて図6を参照しつつ説明する。なお、図6に
おいてXは夫々燃料粒子を示している。上述したように
圧縮行程の早期に燃料を噴射し、このときの燃料粒子X
の径をほぼ500μm程度よりも大きくするとほぼ圧縮
上死点TDCに達するまでは燃料粒子Xからの沸騰によ
る主要燃料成分の蒸発作用が阻止される。しかしながら
噴射燃料中には低沸点成分が含まれており、この低沸点
成分の沸騰温度、即ち初留点は主要燃料成分の沸騰温度
Tよりもかなり低い温度となっている。従って燃料噴射
時における燃焼室5内の温度が初留点以上であれば噴射
燃料中の低沸点成分はただちに蒸発し、これに対して燃
料噴射時における燃焼室5内の温度が初留点以下であれ
ば燃焼室5内の温度が初留点を越えたときに噴射燃料中
の低沸点成分が蒸発せしめられる。噴射燃料中の低沸点
成分が蒸発せしめられると燃料粒子Xの周りには低沸点
成分の蒸発燃料の層が形成されることになる。
By the way to substantially zero the generation amount of soot and NO X in addition to greater than approximately 500μm approximately the diameter of the fuel particles, uniform distribution of injected fuel particles into the combustion chamber 5 It is necessary to make it. Next, this will be described with reference to FIG. In FIG. 6, X indicates fuel particles. As described above, the fuel is injected early in the compression stroke, and the fuel particles X
When the diameter is larger than about 500 μm, the vaporization of the main fuel component due to boiling from the fuel particles X is prevented until the compression top dead center TDC is reached. However, the injected fuel contains a low-boiling component, and the boiling temperature of the low-boiling component, that is, the initial boiling point, is much lower than the boiling temperature T of the main fuel component. Therefore, if the temperature in the combustion chamber 5 at the time of fuel injection is equal to or higher than the initial boiling point, the low boiling point component in the injected fuel evaporates immediately, whereas the temperature in the combustion chamber 5 at the time of fuel injection is lower than the initial boiling point. Then, when the temperature in the combustion chamber 5 exceeds the initial boiling point, the low-boiling components in the injected fuel are evaporated. When the low-boiling component in the injected fuel is evaporated, a layer of the low-boiling component evaporated fuel is formed around the fuel particles X.

【0017】一方、圧縮行程が進むと燃焼室5内の温度
が上昇し、燃焼室5内の温度が一定温度以上になると燃
料粒子X周りの蒸発燃料が酸素と結合して燃焼せしめら
れる。即ち、燃料粒子X周りの蒸発燃料の酸化反応によ
る燃焼が開始される。このとき各燃料粒子X周りの蒸発
燃料の燃焼熱の及ぶ領域が図6の各燃料粒子X周りの破
線Yで示されている。図6(A)に示すように燃料粒子
Xの密度が低いときにはこれら領域Yは互いに離れてお
り、図6(B)に示すように燃料粒子Xの密度が高いと
きには領域Y同志が互いに重なり合う。
On the other hand, as the compression stroke proceeds, the temperature in the combustion chamber 5 rises, and when the temperature in the combustion chamber 5 exceeds a certain temperature, the fuel vapor around the fuel particles X is combined with oxygen and burned. That is, combustion by the oxidation reaction of the evaporated fuel around the fuel particles X is started. At this time, a region where the combustion heat of the evaporated fuel reaches around each fuel particle X is shown by a broken line Y around each fuel particle X in FIG. When the density of the fuel particles X is low as shown in FIG. 6A, the regions Y are separated from each other, and when the density of the fuel particles X is high as shown in FIG. 6B, the regions Y overlap each other.

【0018】図6(B)に示されるように領域Y同志が
互いに重なると燃料粒子X周りの蒸発燃料の燃焼熱によ
り燃料粒子X間の空間領域の温度が高くなる。このよう
に燃料粒子X間の空間領域の温度が高くなると燃料粒子
Xは高温となり、その結果燃料粒子X内の炭化水素が水
素分子H2 や炭素CやメタンCH4 に熱分解される。そ
の結果、燃焼室5内の温度が上昇するとこの水素分子H
2 が爆発的に燃焼し、それによって燃焼室5内の温度が
極度に高温になるために多量のNOX が発生することに
なる。また、熱分解により炭素Cが発生するとこれら炭
素同志が互いに結合してすすが発生することになる。
As shown in FIG. 6B, when the regions Y overlap each other, the temperature of the space region between the fuel particles X increases due to the heat of combustion of the evaporated fuel around the fuel particles X. As described above, when the temperature of the space region between the fuel particles X increases, the temperature of the fuel particles X increases, and as a result, hydrocarbons in the fuel particles X are thermally decomposed into hydrogen molecules H 2 , carbon C, and methane CH 4 . As a result, when the temperature in the combustion chamber 5 rises, the hydrogen molecules H
2 burns explosively, and as a result, the temperature in the combustion chamber 5 becomes extremely high, so that a large amount of NO X is generated. Further, when carbon C is generated by thermal decomposition, these carbons are bonded to each other to generate soot.

【0019】これに対して図6(A)に示されるように
領域Yが互いに離れていると燃料粒子X周りの蒸発燃料
の燃焼熱が他の燃料粒子X周りの領域Yに伝達されず、
その結果、各燃料粒子Xの温度はさほど高くならない。
その結果、燃料粒子X内の炭化水素の熱分解が生じない
ために水素分子H2 による爆発的な燃焼が生じず、従っ
て燃焼室5内の温度が極度に高くなることもないのでN
X の発生が阻止されることになる。また、熱分解によ
り炭素Cが発生することもないので炭素同志が互いに結
合してすすまで成長することがなくなる。このように図
6(A)に示される如く燃料粒子Xが均一に分散されて
燃料粒子Xの密度が低くなればすすおよびNOX の発生
を阻止できることになる。
On the other hand, when the regions Y are separated from each other as shown in FIG. 6A, the combustion heat of the evaporated fuel around the fuel particles X is not transmitted to the region Y around the other fuel particles X,
As a result, the temperature of each fuel particle X does not increase so much.
As a result, the hydrocarbons in the fuel particles X do not undergo thermal decomposition, so that explosive combustion by the hydrogen molecules H 2 does not occur, and the temperature in the combustion chamber 5 does not become extremely high.
Generation of O X is to be prevented. Further, since carbon C is not generated by the thermal decomposition, the carbons are not bonded to each other and grow until the soot. Thus it becomes possible to prevent the fuel particles X is uniformly distributed generation of soot and NO X the lower the density of the fuel particles X as shown in FIG. 6 (A).

【0020】ところで図6(A)に示されるように燃料
粒子Xを燃焼室5内全体に均一に分散させるためには燃
焼室5内の圧力Pが低いときに燃焼噴射弁10から燃料
を噴射させなければならない。即ち、燃焼室5内の圧力
Pが高くなると空気抵抗が大きくなるために噴射燃料の
飛行距離が短かくなり、斯くしてこのとき例えば第1燃
料噴射弁10から噴射された燃料を例にとると、図7
(A)に示されるように燃料粒子が燃焼室5内全体に広
がることができない。前述したように燃焼室5内の圧力
Pはほぼ圧縮上死点前BTDC60度を越えると急速に
上昇して高くなり、事実ほぼ圧縮上死点前BTDC60
度を越えた後に燃料噴射を行うと図7(A)に示される
ように燃料粒子が燃焼室5内に十分に広がらない。これ
に対してほぼ圧縮上死点前BTDC60度以前は燃焼室
5内の圧力Pは低く、従ってほぼ圧縮上死点前BTDC
60度以前に燃料噴射が行われると図7(B)に示され
るように燃料粒子が燃焼室5内の全体に亘って均一に分
散することになる。即ち、燃料粒子を燃焼室5内の全体
に亘って均一に分散させるためには燃料噴射をほぼ圧縮
上死点BTDC60度以前に行う必要がある。
As shown in FIG. 6A, in order to uniformly disperse the fuel particles X in the entire combustion chamber 5, fuel is injected from the combustion injection valve 10 when the pressure P in the combustion chamber 5 is low. I have to do it. That is, when the pressure P in the combustion chamber 5 increases, the air resistance increases, so that the flight distance of the injected fuel becomes shorter. Thus, at this time, for example, the fuel injected from the first fuel injection valve 10 is taken as an example. And FIG.
As shown in (A), the fuel particles cannot spread all over the combustion chamber 5. As described above, when the pressure P in the combustion chamber 5 exceeds BTDC 60 degrees before the compression top dead center, the pressure P rapidly rises and becomes high, and in fact, the BTDC 60 before the compression top dead center DTDC 60 increases.
If the fuel injection is performed after exceeding the temperature, the fuel particles do not sufficiently spread into the combustion chamber 5 as shown in FIG. On the other hand, the pressure P in the combustion chamber 5 is low before the BTDC approximately 60 degrees before the compression top dead center, so that the BTDC before the compression top dead center is almost zero.
If the fuel injection is performed before 60 degrees, the fuel particles are uniformly dispersed throughout the combustion chamber 5 as shown in FIG. 7B. That is, in order to uniformly disperse the fuel particles throughout the combustion chamber 5, it is necessary to perform the fuel injection substantially before the compression top dead center BTDC 60 degrees.

【0021】ところが図8に示されるように燃焼室5内
の温度T0 は圧縮上死点前BTDC90度付近から急速
に上昇を開始し、圧縮上死点前BTDC60度付近では
燃焼室5内の温度T0 が噴射燃料の初留点よりも高くな
る。従って圧縮上死点前BTDC60度以前に燃料噴射
を行えば燃料粒子は広範囲に分散せしめられるがこのと
き燃焼室5内の温度T0 が初留点よりも高いと燃料が噴
射されるや否や噴射燃料中の低沸点成分がただちに蒸発
し、斯くして燃料噴射弁10周りには局所的に低沸点成
分の蒸発燃料の密度の高い領域が形成されることにな
る。
However, as shown in FIG. 8, the temperature T 0 in the combustion chamber 5 starts rising rapidly from around 90 ° BTDC before compression top dead center, and rises around 60 ° C. before compression top dead center. The temperature T 0 becomes higher than the initial boiling point of the injected fuel. Therefore, if the fuel is injected before BTDC 60 degrees before the compression top dead center, the fuel particles are dispersed over a wide range. At this time, when the temperature T 0 in the combustion chamber 5 is higher than the initial boiling point, the fuel is injected as soon as the fuel is injected. The low-boiling components in the fuel evaporate immediately, and thus a region where the density of the evaporated fuel of the low-boiling components is high is locally formed around the fuel injection valve 10.

【0022】このように蒸発燃料の密度の高い領域が形
成されると図6(A)に示されるようにたとえ燃料粒子
X間の間隔が大きくなっていたとしても蒸発燃料の燃焼
熱の及び領域Yは図8(A)に示すように互いに離れた
ような形にはならず、蒸発燃料の密度の高い領域では燃
料粒子X間の空間が蒸発燃料によって埋め尽くされてし
まう。ところがこのように燃料粒子X間の空間が蒸発燃
料によって埋め尽くされるとこの蒸発燃料が燃焼したと
きにこの蒸発燃料の燃焼熱でもって燃料粒子Xが高温と
なる。その結果、燃料粒子X内の炭化水素が水素分子H
2 や炭素Cに熱分解され、斯くしてNOX およびすすが
発生することになる。
As shown in FIG. 6A, when the high-density region of the fuel vapor is formed, as shown in FIG. 6A, even if the interval between the fuel particles X becomes large, the region of the heat of combustion of the fuel vapor and the region As shown in FIG. 8A, Y does not have a shape separated from each other, and the space between the fuel particles X is completely filled with the evaporated fuel in a region where the density of the evaporated fuel is high. However, when the space between the fuel particles X is completely filled with the evaporated fuel in this way, when the evaporated fuel burns, the temperature of the fuel particle X becomes high due to the combustion heat of the evaporated fuel. As a result, the hydrocarbons in the fuel particles X become hydrogen molecules H
Is thermally decomposed into 2 or carbon C, NO X and soot will occur to thus.

【0023】このようなNOX およびすすの発生を阻止
するためには局所的に低沸点成分の蒸発燃料の密度の高
い領域が形成されないようにすること、即ち図6(A)
に示すような状態にすることが必要となる。そのために
は燃料粒子Xが分散を完了したとき、又はその後に燃料
粒子Xからの低沸点成分の蒸発が開始されるようにする
こと、即ち、燃焼室5内の温度T0 が初留点に達するま
でに燃料の噴射作用および燃料粒子Xの分散が完了して
いることが必要となる。燃焼室5内の温度T0が初留点
に達する前に燃料粒子Xが分散せしめられていると燃焼
室5内の温度T 0 が初留点に達したときに各燃料粒子X
からの低沸点成分の蒸発が開始され、斯くして図6
(A)に示されるように領域Yが互いに離れることにな
る。その結果、燃料粒子X内において熱分解が生じず、
斯くしてNOX およびすすが発生しないことになる。
Such NOXPrevents soot and soot
In order to achieve this, locally increase the density of the low-boiling component vaporized fuel.
6A is not formed, that is, FIG.
It is necessary to make the state as shown in FIG. for that reason
Is the time when the fuel particles X have been completely dispersed, or
So that the evaporation of the low-boiling components from the particles X is started
That is, the temperature T in the combustion chamber 50Until the first point is reached
After the fuel injection action and the dispersion of the fuel particles X are completed
It is necessary to be. Temperature T in combustion chamber 50Is the first stop
If the fuel particles X are dispersed before reaching
Temperature T in chamber 5 0Reaches the first boiling point, each fuel particle X
Evaporation of low-boiling components from the mixture starts.
As shown in (A), the regions Y are separated from each other.
You. As a result, no thermal decomposition occurs in the fuel particles X,
Thus NOXAnd soot will not be generated.

【0024】具体例を挙げると通常の軽油は沸点が15
0℃から360℃程度の種々の燃料成分を含んでおり、
従って軽油の初留点は150℃程度である。燃焼室5内
の温度T0 が150℃程度になるのが圧縮上死点前BT
DC70度前後であり、噴射完了後燃料粒子が分散を完
了するまでのクランク角度は40度程度であると考えら
れるので少し余裕を見込んで圧縮上死点前BTDC12
0度位までには噴射を完了させなければならないことに
なる。従って本発明による実施例では軽油を用いた場合
には圧縮上死点前BTDC120度までに燃料噴射を完
了させるようにしている。
As a specific example, ordinary light oil has a boiling point of 15
It contains various fuel components from 0 ° C to 360 ° C,
Therefore, the initial boiling point of light oil is about 150 ° C. The temperature T 0 in the combustion chamber 5 becomes about 150 ° C. when the BT before the compression top dead center is reached.
It is considered that the crank angle from the completion of the injection to the completion of the dispersion of the fuel particles is about 40 degrees.
The injection must be completed by about 0 degrees. Therefore, in the embodiment according to the present invention, when light oil is used, the fuel injection is completed by 120 degrees BTDC before the compression top dead center.

【0025】一方、通常のガソリンは沸点が30℃から
160℃程度の種々の燃料成分を含んでおり、従ってガ
ソリンの初留点は30℃程度である。燃焼室5内の温度
0が30℃程度になるのは圧縮上死点前BTDC10
0度前後であり、前述したように噴射完了後燃料粒子が
分散を完了するまでのクランク角度は40度程度である
と考えられるので少し余裕を見込んで圧縮上死点前BT
DC150度位までには噴射を完了させなければならな
いことになる。従って本発明による実施例ではガソリン
を用いた場合には圧縮上死点前BTDC150度までに
燃料噴射を完了させるようにしている。なお、噴射時期
は圧縮行程時でも吸気行程時でもよい。
On the other hand, normal gasoline contains various fuel components having a boiling point of about 30 ° C. to 160 ° C., and therefore, the initial boiling point of gasoline is about 30 ° C. The temperature T 0 in the combustion chamber 5 becomes about 30 ° C. because the BTDC 10 before the compression top dead center.
Since the crank angle from the completion of the injection to the completion of the dispersion of the fuel particles is considered to be about 40 degrees as described above, the BT before the compression top dead center is considered with some margin.
The injection must be completed by about 150 degrees DC. Therefore, in the embodiment according to the present invention, when gasoline is used, the fuel injection is completed by BTDC 150 degrees before the compression top dead center. The injection timing may be during the compression stroke or the intake stroke.

【0026】上述したようにこのような燃焼方法を実行
するに当って重要な点は大きな粒径の燃料を燃料粒子同
志の間隔を隔だてつつ燃焼室5内全体に分散させること
である。そのためにはまず第1に圧縮上死点前60°以
前に燃料噴射を行わなければならず、第2に燃料を薄膜
状に噴射しなければならず、第3に燃焼室5内の隅々ま
で噴射燃料をゆきわたらせることが必要となる。そのた
めに図1或いは図3に示す実施例では第1燃料噴射弁1
0から燃焼室5内の中心部に向けて薄膜円錐状に燃料F
1 を噴射し、第2燃料噴射弁11および第3燃料噴射弁
12から互いに対向するように薄膜円錐状に燃料F2
3 を噴射し、更にこれら燃料噴射弁10,11,12
からの燃料噴射は、第1燃料噴射弁10からの円錐状噴
霧F1 の先端部が第2燃料噴射弁11および第3燃料噴
射弁12からの円錐状噴霧F2 ,F3 により囲まれた空
間内に位置するように行われる。
As described above, an important point in carrying out such a combustion method is to disperse a fuel having a large particle diameter throughout the combustion chamber 5 while keeping an interval between the fuel particles. For that purpose, firstly, fuel injection must be performed before 60 ° before the compression top dead center, secondly, fuel must be injected in a thin film form, and thirdly, every corner in the combustion chamber 5 It is necessary to spread the injected fuel up to this point. For this purpose, in the embodiment shown in FIG. 1 or FIG.
0 to the center of the combustion chamber 5 in the form of a thin film cone of fuel F
1 from the second fuel injection valve 11 and the third fuel injection valve 12 so that the fuel F 2 ,
Injecting F 3, further these fuel injection valves 10, 11, 12
Fuel injection from the tip of the conical spray F 1 from the first fuel injection valve 10 is surrounded by the conical spray F 2, F 3 from the second fuel injection valve 11 and the third fuel injection valve 12 It is performed to be located in the space.

【0027】このようにすると円錐状噴霧F1 の外側空
間、即ち燃焼室5の上方周辺部の空間に円錐状噴霧
2 ,F3 の燃料粒子が送り込まれ、円錐状噴霧F1
下方空間にも円錐状噴霧F2 ,F3 の燃料粒子が送り込
まれるので燃焼室5内全体に燃料粒子を均一に分散させ
ることができる。従って空気利用率が向上するために機
関高出力が得られることになる。なお、円錐状噴霧
1 ,F2 ,F3 が互いに交錯すると過濃領域が形成さ
れるためにNOX およびすすが発生する。従ってこれら
円錐状噴霧F1 ,F2 ,F3 が図1或いは図3に示され
るように互いに交錯しないように各燃料噴射弁10,1
1,12から燃料を噴射する必要がある。
In this way, the fuel particles of the conical sprays F 2 and F 3 are sent into the space outside the conical spray F 1 , that is, the space above the combustion chamber 5, and the space below the conical spray F 1 . Also, the fuel particles of the conical sprays F 2 and F 3 are fed into the combustion chamber 5 so that the fuel particles can be uniformly dispersed throughout the combustion chamber 5. Therefore, an engine high output is obtained because the air utilization rate is improved. When the conical sprays F 1 , F 2 , and F 3 intersect with each other, an excessively concentrated region is formed, so that NO X and soot are generated. Therefore, these conical spray F 1, F 2, so F 3 does not intersect with each other as shown in FIG. 1 or FIG. 3 the fuel injection valves 10, 1
It is necessary to inject fuel from 1,12.

【0028】次に図9から図15を参照しつつ種々の実
施例について説明する。なお、図9から図15に示す各
実施例では燃料噴射弁および燃料噴霧を図3と同様に図
解的に示す。第2実施例を示す図9を参照すると、
(A)は機関本体の側面図を示しており、(B)は図
(A)のB−B線に沿ってみた図を示している。この実
施例では第2燃料噴射弁11および第3燃料噴射弁12
からは図3に示す第1実施例と同様に互いに対向して薄
膜円錐状に燃料F2 ,F3 が噴射されるが第1燃料噴射
弁10からは薄膜セクター状に燃料F1 が噴射される。
図9からわかるようにこのセクター状噴霧F1 は円錐状
噴霧F2 ,F3 間において円錐状噴霧F2 ,F3 の軸線
に垂直な平面内を延びている。図10はセクター状噴霧
1 を形成するための第1燃料噴射弁10の先端部を示
しており、図10に示されるように第1燃料噴射弁10
の先端部にはスリット状のノズル口20が形成されてい
る。
Next, various embodiments will be described with reference to FIGS. In each of the embodiments shown in FIGS. 9 to 15, the fuel injection valve and the fuel spray are illustrated schematically as in FIG. Referring to FIG. 9 showing the second embodiment,
(A) shows a side view of the engine body, and (B) shows a view taken along line BB in FIG. (A). In this embodiment, the second fuel injection valve 11 and the third fuel injection valve 12
After that, the fuels F 2 and F 3 are injected in a thin film conical shape facing each other as in the first embodiment shown in FIG. 3, but the fuel F 1 is injected from the first fuel injection valve 10 in a thin film sector shape. You.
The sector-shaped spray F 1 As can be seen from Figure 9 and extends in a plane perpendicular to the axis of the conical spray F 2, F 3 in between the conical spray F 2, F 3. Figure 10 is a sector-shaped spray F 1 shows the distal end portion of the first fuel injection valve 10 to form a first fuel injection valve as shown in FIG. 10 10
Is formed with a slit-shaped nozzle port 20 at the front end of the nozzle.

【0029】第3実施例を示す図11を参照すると、こ
の実施例では第1燃料噴射弁10からは第1実施例と同
様に燃焼室5の中心部に向けて薄膜円錐状に燃料F1
噴射されるが第2燃料噴射弁11および第3燃料噴射弁
12は互いに対向する燃焼室5の頂部周縁部に配置され
ており、これら燃料噴射弁11,12からは円錐状噴霧
1 の外側空間、即ち燃焼室5の上方周辺部の空間に向
けて薄膜円錐状に燃料F2 ,F3 が噴射される。
Referring to FIG. 11, which shows the third embodiment, in this embodiment, the fuel F 1 is formed into a thin film cone from the first fuel injection valve 10 toward the center of the combustion chamber 5 similarly to the first embodiment. There are disposed on the top peripheral portion of the combustion chamber 5 is injected second fuel injection valve 11 and the third fuel injection valve 12 that face each other, the conical spray F 1 from these fuel injection valves 11, 12 The fuels F 2 and F 3 are injected in a thin film cone toward the outer space, that is, the space in the upper peripheral portion of the combustion chamber 5.

【0030】第4実施例を示す図12を参照すると、こ
の実施例では第1燃料噴射弁10の両側に隣接して夫々
第2燃料噴射弁11および第3燃料噴射弁12が配置さ
れる。第1燃料噴射弁10の先端部は図10に示される
構造を有しており、従って第1燃料噴射弁10からは図
9(B)に示されるような薄膜セクター状に燃料F1
噴射される。一方、第2燃料噴射弁11および第3燃料
噴射弁12からは片側にのみ薄膜円錐状に燃料F2 ,F
3 が広がるように燃料噴射が行われる。
Referring to FIG. 12, which shows a fourth embodiment, in this embodiment, a second fuel injection valve 11 and a third fuel injection valve 12 are arranged adjacent to both sides of a first fuel injection valve 10, respectively. The distal end of the first fuel injection valve 10 has a structure shown in FIG. 10, thus fuel F 1 is injected from the first fuel injection valve 10 in the thin film sector shape as shown in FIG. 9 (B) Is done. On the other hand, from the second fuel injection valve 11 and the third fuel injection valve 12, the fuel F 2 , F
Fuel injection is performed so that 3 spreads.

【0031】図13は第3燃料噴射弁12の先端部の側
面断面図を示す。図13に示されるように弁体26の一
側には垂直方向に平面状に延びるマスク壁27が形成さ
れ、このマスク壁27によって噴射燃料が円錐状に広が
るのが阻止される。即ち、図13に示されるようにノズ
ル口20から噴出した燃料は一方ではFi で示されるよ
うにマスク壁27に沿って真下に薄膜状に進み、他方で
はF0 で示されるようにマスク壁27と反対側へ薄膜円
錐状に広がる。
FIG. 13 is a side sectional view of the tip of the third fuel injection valve 12. As shown in FIG. 13, a mask wall 27 is formed on one side of the valve body 26 and extends vertically in a plane. The mask wall 27 prevents the injected fuel from spreading in a conical shape. That is, as shown in FIG. 13, the fuel ejected from the nozzle port 20 advances in a thin film along the mask wall 27 as shown by F i on the one hand, and on the mask wall as shown by F 0 on the other hand. It spreads in the shape of a thin film cone to the side opposite to 27.

【0032】従って図12に示されるように第3燃料噴
射弁12からの内側の薄膜平面状噴霧fi はセクター状
噴霧F1 と干渉することなくまっすぐ下方に向かい、外
側の噴霧f0 は円錐状に広がる。一方、第2燃料噴射弁
11の先端部も図13に示す構造を有している。ただ
し、第2燃料噴射弁11の先端部は図13とは左右逆向
きに配置される。従って図12に示されるように第2燃
料噴射弁11からの内側の薄膜平板状噴霧fi はセクタ
ー状噴霧F1 と干渉することなくまっすぐ下方に向か
い、外側の噴霧f0 は円錐状に広がる。
The thin flat spray f i of the inner from the third fuel injection valve 12 as shown in FIG. 12 is directed straight down without interfering with the sector-shaped spray F 1, outside of the spray f 0 is thus conical Spread in shape. On the other hand, the tip of the second fuel injection valve 11 also has the structure shown in FIG. However, the tip of the second fuel injection valve 11 is disposed in a left-right opposite direction to that in FIG. Thus thin flat spray f i of the inner from the second fuel injection valve 11 as shown in FIG. 12 is directed straight down without interfering with the sector-shaped spray F 1, spray f 0 of the outer spread conically .

【0033】第5実施例を示す図14を参照すると、こ
の実施例では第1および第2燃料噴射弁10,11から
なる二つの燃料噴射弁10,11が用いられ、各燃料噴
射弁10,11から夫々薄膜円錐状に燃料F1 ,F2
噴射される。この実施例では燃料が燃焼室5の頂部の互
いに対向する周辺部から燃焼室5の中心部に向けて噴霧
1 ,F2 同志が互いに交錯しないように噴射される。
Referring to FIG. 14, which shows a fifth embodiment, in this embodiment, two fuel injection valves 10, 11 composed of first and second fuel injection valves 10, 11 are used. Fuels F 1 and F 2 are injected from 11 into thin film cones, respectively. In this embodiment, the fuel is injected from the opposing peripheral portions of the top of the combustion chamber 5 toward the center of the combustion chamber 5 so that the sprays F 1 and F 2 do not cross each other.

【0034】第6実施例を示す図15を参照すると、こ
の実施例では第1燃料噴射弁10、第2燃料噴射弁1
1、第3燃料噴射弁12および第4燃料噴射弁13から
なる四つの燃料噴射弁が用いられ、各燃料噴射弁10,
11,12,13からは燃料がF1 ,F2 ,F3 ,F4
で示されるように互いに交錯しないように薄膜セクター
状に噴射される。
Referring to FIG. 15 showing the sixth embodiment, in this embodiment, the first fuel injection valve 10 and the second fuel injection valve 1
Four fuel injection valves including a first fuel injection valve 12, a third fuel injection valve 12, and a fourth fuel injection valve 13 are used.
F 1 fuel from 11,12,13, F 2, F 3, F 4
Are sprayed in a thin-film sector shape so as not to intersect with each other.

【0035】[0035]

【発明の効果】燃焼室内の空気利用率を高めることがで
き、斯くして機関高出力を得ることができる。
According to the present invention, the air utilization rate in the combustion chamber can be increased, and a high engine output can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】圧縮着火式内燃機関の側面断面図である。FIG. 1 is a side sectional view of a compression ignition type internal combustion engine.

【図2】燃料噴射弁の先端部の側面断面図である。FIG. 2 is a side sectional view of a front end portion of the fuel injection valve.

【図3】図1に示す圧縮着火式内燃機関を図解的に示す
図である。
FIG. 3 is a view schematically showing the compression ignition type internal combustion engine shown in FIG. 1;

【図4】ピストンの圧縮作用のみによる燃焼室内の圧力
変化を示す図である。
FIG. 4 is a diagram showing a pressure change in a combustion chamber caused only by a compression action of a piston.

【図5】沸点と燃料粒子の温度変化とを示す図である。FIG. 5 is a diagram showing a boiling point and a temperature change of fuel particles.

【図6】燃料粒子の分布を示す図である。FIG. 6 is a diagram showing a distribution of fuel particles.

【図7】燃料粒子の分布を示す図である。FIG. 7 is a diagram showing a distribution of fuel particles.

【図8】燃焼室内の温度を示す図である。FIG. 8 is a diagram showing a temperature inside a combustion chamber.

【図9】圧縮着火式内燃機関の第2実施例を図解的に示
す図である。
FIG. 9 is a view schematically showing a second embodiment of the compression ignition type internal combustion engine.

【図10】燃料噴射弁の先端部を示す図であって、
(A)は側面断面図、(B)は底面図である。
FIG. 10 is a view showing a tip portion of the fuel injection valve,
(A) is a side sectional view, and (B) is a bottom view.

【図11】圧縮着火式内燃機関の第3実施例を図解的に
示す図である。
FIG. 11 is a view schematically showing a third embodiment of the compression ignition type internal combustion engine.

【図12】圧縮着火式内燃機関の第4実施例を図解的に
示す図である。
FIG. 12 is a view schematically showing a fourth embodiment of a compression ignition type internal combustion engine.

【図13】燃料噴射弁の先端部の側面断面図である。FIG. 13 is a side sectional view of a front end portion of the fuel injection valve.

【図14】圧縮着火式内燃機関の第5実施例を図解的に
示す図である。
FIG. 14 is a view schematically showing a fifth embodiment of the compression ignition type internal combustion engine.

【図15】圧縮着火式内燃機関の第6実施例を図解的に
示す図である。
FIG. 15 is a view schematically showing a sixth embodiment of the compression ignition type internal combustion engine.

【符号の説明】[Explanation of symbols]

5…燃焼室 10,11,12,13…燃料噴射弁 5. Combustion chamber 10, 11, 12, 13 ... Fuel injection valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 燃焼室内に複数個の燃料噴射弁を配置す
ると共に各燃料噴射弁から燃料を薄膜状に噴射し、各燃
料噴射弁からの噴射時期を圧縮上死点前60°以前に設
定すると共に各燃料噴射弁からの噴射方向を各燃料噴射
弁から噴射された薄膜状噴霧が互いに交錯しないように
定めた圧縮着火式内燃機関。
1. A plurality of fuel injection valves are arranged in a combustion chamber, and fuel is injected in a thin film form from each fuel injection valve, and the injection timing from each fuel injection valve is set before 60 ° before compression top dead center. A compression ignition type internal combustion engine in which the direction of injection from each fuel injection valve is determined such that thin film sprays injected from each fuel injection valve do not cross each other.
JP9056504A 1997-03-11 1997-03-11 Compression ignition type internal combustion engine Pending JPH10252608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9056504A JPH10252608A (en) 1997-03-11 1997-03-11 Compression ignition type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9056504A JPH10252608A (en) 1997-03-11 1997-03-11 Compression ignition type internal combustion engine

Publications (1)

Publication Number Publication Date
JPH10252608A true JPH10252608A (en) 1998-09-22

Family

ID=13028960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9056504A Pending JPH10252608A (en) 1997-03-11 1997-03-11 Compression ignition type internal combustion engine

Country Status (1)

Country Link
JP (1) JPH10252608A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078119A1 (en) * 2007-12-17 2009-06-25 Ihi Corporation Fuel injection method for diesel engine and diesel engine
JP2009144593A (en) * 2007-12-13 2009-07-02 Ihi Corp Fuel injection method for diesel engine and diesel engine
WO2014034865A1 (en) * 2012-08-31 2014-03-06 株式会社Ihi Uniflow scavenging two-cycle engine
WO2014057866A1 (en) * 2012-10-12 2014-04-17 トヨタ自動車株式会社 Fuel injection valve
US11834983B2 (en) 2019-07-15 2023-12-05 The Research Foundation For The State University Of New York Method for control of advanced combustion through split direct injection of high heat of vaporization fuel or water fuel mixtures

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009144593A (en) * 2007-12-13 2009-07-02 Ihi Corp Fuel injection method for diesel engine and diesel engine
US8534262B2 (en) 2007-12-13 2013-09-17 Ihi Corporation Fuel injection method for diesel engine and diesel engine
WO2009078119A1 (en) * 2007-12-17 2009-06-25 Ihi Corporation Fuel injection method for diesel engine and diesel engine
JP2009144646A (en) * 2007-12-17 2009-07-02 Ihi Corp Method of fuel injection for diesel engine and diesel engine
US8418673B2 (en) 2007-12-17 2013-04-16 Ihi Corporation Fuel injection method for diesel engine and diesel engine
JP2014047706A (en) * 2012-08-31 2014-03-17 Ihi Corp Uniflow scavenging type two-cycle engine
WO2014034865A1 (en) * 2012-08-31 2014-03-06 株式会社Ihi Uniflow scavenging two-cycle engine
US20150167538A1 (en) * 2012-08-31 2015-06-18 Ihi Corporation Uniflow-scavenging-type two-cycle engine
EP2891779A4 (en) * 2012-08-31 2015-07-15 Ihi Corp Uniflow scavenging two-cycle engine
WO2014057866A1 (en) * 2012-10-12 2014-04-17 トヨタ自動車株式会社 Fuel injection valve
JP2014077425A (en) * 2012-10-12 2014-05-01 Toyota Motor Corp Fuel injection valve
CN104704230A (en) * 2012-10-12 2015-06-10 丰田自动车株式会社 Fuel injection valve
US9574535B2 (en) 2012-10-12 2017-02-21 Toyota Jidosha Kabushiki Kaisha Fuel injection valve
US11834983B2 (en) 2019-07-15 2023-12-05 The Research Foundation For The State University Of New York Method for control of advanced combustion through split direct injection of high heat of vaporization fuel or water fuel mixtures

Similar Documents

Publication Publication Date Title
JP3163906B2 (en) In-cylinder injection spark ignition engine
US5941207A (en) Direct injection spark ignition engine
KR100302434B1 (en) Cylinder direct injection spark-ignition engine
JPS5910734A (en) Compression-ignition type direct-injecting internal-combustion engine
EP0205000B1 (en) Combustion chamber for an internal-combustion engine
JPH10252608A (en) Compression ignition type internal combustion engine
JP2003065056A (en) Cylinder injection type spark-ignition internal combustion engine
JPH1182028A (en) Cylinder injection type spark ignition internal combustion engine
JP3537347B2 (en) In-cylinder injection spark ignition internal combustion engine
JPH086590B2 (en) Combustion chamber of internal combustion engine
JPS62113822A (en) Combustion system for internal combustion engine
US4733641A (en) Direct injection type diesel engine
JP2005509779A (en) Spark ignition direct fuel injection internal combustion engine with ultra high pressure ignition system
JP2001214744A (en) Cylinder injection type spark ignition internal combustion engine
JPH10252604A (en) Fuel injection valve
JPH0435576Y2 (en)
US4738236A (en) Combustion chamber for internal combustion engines
JPH0640901Y2 (en) Combustion chamber of internal combustion engine
JPH059617B2 (en)
JPH04187815A (en) Cylinder direct injection type spark ignition engine
JPH0755295Y2 (en) Combustion chamber of internal combustion engine
JPH05214938A (en) Direct injection type spark ignition engine
JPH032677Y2 (en)
JPH04187816A (en) Cylinder direct injection type spark ignition engine
JPS6238825A (en) Diesel combustion chamber