JPH10251802A - Pearitic rail having low coefficient thermal expansion - Google Patents

Pearitic rail having low coefficient thermal expansion

Info

Publication number
JPH10251802A
JPH10251802A JP5476497A JP5476497A JPH10251802A JP H10251802 A JPH10251802 A JP H10251802A JP 5476497 A JP5476497 A JP 5476497A JP 5476497 A JP5476497 A JP 5476497A JP H10251802 A JPH10251802 A JP H10251802A
Authority
JP
Japan
Prior art keywords
thermal expansion
rail
coefficient
coefficient thermal
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5476497A
Other languages
Japanese (ja)
Inventor
Hiroyasu Yokoyama
泰康 横山
Sadahiro Yamamoto
定弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP5476497A priority Critical patent/JPH10251802A/en
Publication of JPH10251802A publication Critical patent/JPH10251802A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a rail having a smaller coefficient thermal expansion than the conventional product by containing a specific composition of C, Si, Mn, P, S and making average coefficient thermal expansion in specific temp. range to <= a specific value. SOLUTION: This rail material contains 0.85-1.20% C, 0.10-1.00% Si, 0.40-2.50% Mn, <=0.035% P, <=0.35% S by wt. as the components. Particularly, C is the essential element for lowering the coefficient thermal expansion while securing wear resistance. Then, the average coefficient thermal expansion of the rail material is made to be <=11.5×10<-6> K<-1> between 0-100 deg.C. Since based on this value the coefficient thermal expansion is smaller >=5% than the pearitic rail used at the present, the problem is not occurred in the case of welding to make the long rail and laying. Further, even in the maintenance management for buckling caused by axial force, the drastical saving of the managing cost is attained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶接してロングレ
ール化した場合においても敷設時の温度差を考慮した複
雑なつなぎ目の設定をしなくて済む低熱膨張率のパーラ
イト型レールに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pearlitic rail having a low coefficient of thermal expansion which does not require a complicated seam setting in consideration of a temperature difference at the time of laying even when a long rail is welded.

【0002】[0002]

【従来の技術】従来、レール鋼には耐摩耗性、耐転動疲
労損傷特性重視の観点からパーライト鋼を用い、合金元
素の添加、SQ等によるパーライトラメラー間隔の微細
化を主体とした高強度化のみが指向されてきた。また耐
摩耗性向上の観点から、特開平8-109439号公報、特開平
8-144016号公報、特開平8-246100号公報、特開平8-2461
01号公報のようにC量を増加してセメンタイトによる耐
摩耗性の向上を図った例もある。
2. Description of the Related Art Conventionally, pearlite steel has been used for rail steel from the viewpoint of emphasizing wear resistance and anti-rolling fatigue damage characteristics, and high strength mainly based on addition of alloying elements and miniaturization of pearlite lamellar spacing by SQ or the like. Has only been oriented. Further, from the viewpoint of improving wear resistance, JP-A-8-109439,
8-144016, JP-A-8-246100, JP-A-8-2461
There is also an example in which the amount of carbon is increased to improve wear resistance due to cementite, as in JP-A-01.

【0003】従来、レールの敷設においては、一定長さ
のレールを継ぎ目板を用いて連続化していた。この手法
は簡便に敷設できるという利点はあるが、近年の鉄道輸
送の高速化、高軸重化に伴いレールの使用条件はますま
す厳しいものになってきている。従って継ぎ目板を用い
てつなぐ場合には、つなぎ目での騒音、振動が問題とな
るためレールの熱膨張を考慮して鉄道会社毎、敷設区間
毎に複雑に設定された隙間を開けた方式が用いられてい
る。この場合、継ぎ目の部分で車輪がレールの端部に衝
撃的に荷重を加えるため、レール端部の損傷が発生す
る。こういった損傷を低減するためには敷設レールを溶
接してロングレール化することが有効であり、実際にフ
ラッシュバット溶接、テルミット溶接等でロングレール
化が行われている。
Conventionally, in laying rails, rails of a fixed length have been made continuous using seam plates. Although this method has an advantage that it can be easily laid, the use conditions of rails have become more and more severe with the recent increase in speed of rail transport and higher axle weight. Therefore, when connecting using a seam plate, noise and vibration at the seam will be a problem, so a method is used in which complicated gaps are set for each railway company and each laying section in consideration of the thermal expansion of the rail. Have been. In this case, since the wheel applies an impact load to the end of the rail at the joint, damage to the end of the rail occurs. In order to reduce such damages, it is effective to weld the laying rails to make them longer rails. In practice, flash butt welding, thermite welding, and the like are used to make the rails longer.

【0004】しかし、ロングレール化した場合にもロン
グレール毎のつなぎ目は存在し、ここの熱膨張対策を考
慮する必要がある。特にロングレールの場合には熱膨張
率が同じであれば定尺レールよりも温度差に起因する膨
張・収縮は大きくなり、より十分な配慮が必要となる。
[0004] However, even when a long rail is used, there are seams for each long rail, and it is necessary to take measures against thermal expansion here. In particular, in the case of a long rail, if the coefficient of thermal expansion is the same, expansion and contraction due to a temperature difference become larger than that of a fixed-length rail, and more careful consideration is required.

【0005】[0005]

【発明が解決しようとする課題】すなわち、亜共折およ
び共折型の現状使用されているパーライト型レールを溶
接によりロングレール化した場合、以下の問題がある。 (1)夏期には80℃以上になる敷設場所が多々あるた
め、熱による膨張に起因したレールの座屈(湾曲)など
の問題が生じやすい。
That is, if the currently used pearlite type rails of the sub-co-folding type and the co-folding type are made long by welding, there are the following problems. (1) Since there are many places where the temperature rises to 80 ° C. or more in summer, problems such as buckling (curving) of the rail due to expansion due to heat are likely to occur.

【0006】(2)冬期には−30℃にもなるような敷
設箇所も多々あるため、足部が枕木に拘束された状態で
収縮することによる破断が生じやすい。 (3)夏期の膨張に起因したレールの座屈(湾曲)の防
止のためにロングレール毎の継ぎ目間隔を広くする必要
があり、レール端部への車輪の衝撃が大きくなり、損傷
が生じやすい。
(2) Since there are many places where the temperature can be as high as −30 ° C. in the winter, breakage is likely to occur due to shrinkage of the feet while being restrained by the sleepers. (3) In order to prevent buckling (bending) of the rail due to summer expansion, it is necessary to widen the seam interval between the long rails, and the impact of the wheel on the rail end becomes large, and damage is likely to occur. .

【0007】このようにロングレール化を考慮した場
合、熱膨張率の低減は重要な課題であるが、このような
観点からパーライトレール鋼について系統的に検討を行
った例はない。
[0007] In consideration of the long rail, reduction of the coefficient of thermal expansion is an important issue, but there is no example of systematically examining pearlite rail steel from such a viewpoint.

【0008】本発明はこのような問題に鑑みなされたも
ので、その目的とするところは,従来の亜共折および共
折型パーライトレール鋼に比べて熱膨張率が小さいレー
ルを提供することを目的とするものである。
The present invention has been made in view of the above problems, and has as its object to provide a rail having a smaller coefficient of thermal expansion than conventional sub-co-folded and co-folded pearlite rail steel. It is the purpose.

【0009】[0009]

【課題を解決するための手段】すなわち、本発明は以下
に示す通りである。 (1)重量%で、C:0.85〜1.20%、Si:
0.10〜1.00%、Mn:0.40〜2.50%、
P:0.035%以下、S:0.035%以下を有し、
0〜100℃間の平均熱膨張係数が11.5×10-6
-1以下であることを特徴とする低熱膨張率を有するパー
ライト型レール。
That is, the present invention is as follows. (1) By weight%, C: 0.85 to 1.20%, Si:
0.10-1.00%, Mn: 0.40-2.50%,
P: 0.035% or less, S: 0.035% or less,
The average coefficient of thermal expansion between 0 and 100 ° C. is 11.5 × 10 −6 K
A pearlite-type rail having a low coefficient of thermal expansion characterized by being -1 or less.

【0010】(2)重量%で、Cr:0.05〜1.5
0%、Cu:0.10〜1.00%、Ni:0.10〜
1.00%、及びMo:0.10〜2.00%の群から
選択された1種または2種以上を含有することを特徴と
する請求項1記載の低熱膨張率を有するパーライト型レ
ール。
(2) Cr: 0.05 to 1.5% by weight
0%, Cu: 0.10 to 1.00%, Ni: 0.10
The pearlite-type rail having a low coefficient of thermal expansion according to claim 1, comprising one or more members selected from the group of 1.00% and Mo: 0.10 to 2.00%.

【0011】(3)重量%で、Nb:0.005〜0.
15%、及びV:0.05〜0.15%の群から選択さ
れた1種または2種を含有することを特徴とする請求項
1もしくは2記載の低熱膨張率を有するパーライト型レ
ール。
(3) Nb: 0.005 to 0.5% by weight.
The pearlitic rail having a low coefficient of thermal expansion according to claim 1 or 2, comprising one or two selected from the group of 15% and V: 0.05 to 0.15%.

【0012】[0012]

【発明の実施の形態】以下、本発明を詳細に説明する。
表1に成分を示すC−0.25Si−0.95Mn鋼に
ついて、図1にC添加量を変化させた場合の熱膨張率の
変化を示す。熱膨張率の測定には外径5mm、長さ25
mmの丸棒試験片を用い、0℃から100℃の平均値を
求めた。熱膨張率はC量の増加と共に低下しており、
0.85%を超えることにより現状のパーライトレール
鋼と比べて5%以上低くなっている。ここで5%以上熱
膨張率が低いということは、軸力も相対的に低くなるこ
とを意味している。従来、JISの60Kレールと50
Nレールでは断面積の違いに起因する軸力差を考慮し、
60Kレールでは50Nレールと異なる厳しい保守管理
を行ってきている。しかし、C量を増加して現状のパー
ライトレール鋼よりも5%以上熱膨張率を低くした60
Kレールであれば、50Nレールと同等の保守管理で十
分なため、保守管理費の低減を図ることが可能となるこ
とがわかる。本発明は、このような知見に基づいて、完
成されたものである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
FIG. 1 shows the change in the coefficient of thermal expansion when the amount of C added was changed for the C-0.25Si-0.95Mn steel whose components are shown in Table 1. For measurement of coefficient of thermal expansion, outer diameter 5mm, length 25
An average value from 0 ° C. to 100 ° C. was determined using a mm round bar test piece. The coefficient of thermal expansion decreases with increasing C content,
By exceeding 0.85%, it is 5% or more lower than the current pearlite rail steel. Here, a low coefficient of thermal expansion of 5% or more means that the axial force is also relatively low. Conventionally, JIS 60K rail and 50
N-rails consider the difference in axial force due to the difference in cross-sectional area,
For the 60K rail, strict maintenance management different from the 50N rail has been performed. However, the C content was increased to lower the coefficient of thermal expansion by 5% or more compared to the current pearlite rail steel.
In the case of the K rail, it is understood that maintenance management equivalent to that of the 50N rail is sufficient, so that maintenance management costs can be reduced. The present invention has been completed based on such findings.

【0013】[0013]

【表1】 [Table 1]

【0014】本発明における熱膨張率、化学成分の限定
理由を述べる。 (熱膨張率)0〜100℃間の平均熱膨張係数が11.
5×10-6-1以下 平均熱膨張係数が11.5×10-6-1以下であれば、
現状使用されているパーライトレールよりも熱膨張率が
5%以上小さくなるため、ロングレール化して敷設する
場合に問題が生じない。また、軸力に起因する座屈に対
する保守管理においても大幅な管理費の削減を図ること
ができる。
The reasons for limiting the coefficient of thermal expansion and chemical components in the present invention will be described. (Coefficient of thermal expansion) The average coefficient of thermal expansion between 0 and 100 ° C. is 11.
5 × 10 −6 K −1 or less If the average thermal expansion coefficient is 11.5 × 10 −6 K −1 or less,
Since the coefficient of thermal expansion is at least 5% smaller than that of the currently used pearlite rail, there is no problem when laying it on a long rail. In addition, it is possible to significantly reduce management costs in maintenance management for buckling caused by axial force.

【0015】(化学成分) C:0.85〜1.20% Cは耐摩耗性を確保しつつ熱膨張率を低くするための必
須元素であり、図1に示したように0.85%未満では
十分に低い熱膨張率とすることが難しい。また、1.2
0%を超えると熱間圧延後の変態時に初析セメンタイト
が生成し、延靱性が著しく低下し、レールとしての基本
性能を満たさなくなる。図2に延性、靱性におよぼすC
の影響を調べた結果を示す。供試鋼は表1に成分範囲を
示すように、C、Si、Mn、Cr、Ni、Mo、N
b、Vを種々変化させた成分で、1250℃に加熱し、
920℃で圧延を終了後、0.2〜3℃/secで冷却
した板厚12mmの鋼板を使用した。各鋼板は現状のレ
ール鋼と同じHV250〜400の硬さレベルとした。
これらの鋼板の中央部から9φの丸棒引張試験片、2m
mUノッチの衝撃試験片を採取し、室温における延性、
靱性(吸収エネルギー)の評価を行った。C量が0.6
0〜0.83%の鋼は現状使用されているレール鋼と同
等の成分組成である。図2から理解できるように、C量
の増加に伴い延性、靱性は低下するが、特に1.20%
以上のC量では延靱性の低下レベルに実用上問題が生じ
る値を示す。従って図1の熱膨張率の観点と延靱性の観
点から0.85〜1.20%に限定した。
(Chemical component) C: 0.85 to 1.20% C is an essential element for lowering the coefficient of thermal expansion while ensuring wear resistance. As shown in FIG. If it is less than this, it is difficult to make the coefficient of thermal expansion sufficiently low. Also, 1.2
If it exceeds 0%, proeutectoid cementite is formed during transformation after hot rolling, and the ductility is remarkably reduced, and the basic performance as a rail is not satisfied. Figure 2 shows the effect of C on ductility and toughness.
The results of examining the effects of As shown in Table 1, the test steels contained C, Si, Mn, Cr, Ni, Mo, N
b, with variously changed components, heated to 1250 ° C,
After finishing the rolling at 920 ° C., a 12 mm thick steel sheet cooled at 0.2 to 3 ° C./sec was used. Each steel plate had the same hardness level of HV250-400 as the current rail steel.
From a central part of these steel plates, a 9φ round bar tensile test piece, 2 m
An mU notch impact test specimen was taken and ductile at room temperature,
The toughness (absorbed energy) was evaluated. C content is 0.6
The steel composition of 0 to 0.83% has the same composition as that of the currently used rail steel. As can be understood from FIG. 2, the ductility and the toughness decrease with an increase in the amount of C.
With the above C content, a value that causes a problem in practical use is shown in the level of decrease in ductility. Therefore, it is limited to 0.85 to 1.20% from the viewpoint of the coefficient of thermal expansion and the viewpoint of ductility in FIG.

【0016】Si:0.10〜1.00% Siは、脱酸剤として有効なだけでなく、固溶して強度
を上昇させ耐摩耗性を向上させる元素であるが、0.1
0%未満ではその効果が認められない。一方、Siの有
する高い酸素との結合力のため、添加量が1.00%を
超えると溶接性を劣化させる。従って、0.10〜1.
00%に限定した。
Si: 0.10 to 1.00% Si is not only effective as a deoxidizing agent, but also an element which forms a solid solution to increase strength and improve wear resistance.
If it is less than 0%, the effect is not recognized. On the other hand, if the addition amount exceeds 1.00% due to the high bonding force of Si with oxygen, the weldability deteriorates. Therefore, 0.10-1.
Limited to 00%.

【0017】Mn:0.40〜2.50% Mnは変態温度を低下させてパーライト組織のラメラー
間隔を細かくすることでレールの高強度化、高延靱性化
に寄与する元素である。しかし、0.40%以下ではそ
の効果が小さく、2.50%を超えると鋼のミクロ偏析
によるマルテンサイト組織を生じ易く、熱処理時及び溶
接時に硬化や脆化を生じ材質劣化を来すので好ましくな
い。従って、0.40〜2.50%に限定した。
Mn: 0.40 to 2.50% Mn is an element that contributes to increasing the strength and the toughness of the rail by lowering the transformation temperature and reducing the lamella spacing of the pearlite structure. However, if the content is less than 0.40%, the effect is small, and if it exceeds 2.50%, a martensitic structure is easily generated due to micro-segregation of steel, and hardening and embrittlement occur during heat treatment and welding, resulting in deterioration of the material. Absent. Therefore, it was limited to 0.40 to 2.50%.

【0018】P:0.035%以下 Pは靱性を劣化することから、0.035%以下と限定
した。 S:0.035%以下 Sは主に介在物の形態で鋼中に存在するが、0.035
%を超えるとこの介在物量が著しく増加し、脆化による
材質の劣化を引き起こすので0.035%以下と限定し
た。
P: 0.035% or less Since P deteriorates toughness, it is limited to 0.035% or less. S: 0.035% or less S is present in steel mainly in the form of inclusions, but 0.035% or less.
%, The amount of the inclusions significantly increases and causes deterioration of the material due to embrittlement. Therefore, the content is limited to 0.035% or less.

【0019】Cr:0.05〜1.50% Crは固溶強化により高強度化を図るために非常に重要
な元素である。0.05%未満では十分な強化が得られ
ない。一方、1.50%を超えるとCrの有する高い酸
素との結合力のため接合性を阻害する要因となる。従っ
て、0.05〜1.50%に限定し、必要に応じて添加
できるものとした。
Cr: 0.05-1.50% Cr is a very important element for achieving high strength by solid solution strengthening. If it is less than 0.05%, sufficient reinforcement cannot be obtained. On the other hand, if the content exceeds 1.50%, the bonding strength of Cr with high oxygen has a factor of impairing the bondability. Therefore, the content is limited to 0.05 to 1.50% and can be added as needed.

【0020】Cu:0.10〜1.00% CuはCrと同様に固溶強化により高強度化を図るため
に非常に重要な元素である。0.10%未満では十分な
強化が得られない。一方、1.00%を超えるとCu割
れが生じる。従って、0.10〜1.00%に限定し、
必要に応じて添加できるものとした。
Cu: 0.10 to 1.00% Cu is a very important element, like Cr, for achieving high strength by solid solution strengthening. If it is less than 0.10%, sufficient reinforcement cannot be obtained. On the other hand, if it exceeds 1.00%, Cu cracks occur. Therefore, it is limited to 0.10-1.00%,
It could be added as needed.

【0021】Ni:0.10〜1.00% Niは靱性向上と固溶強化による高強度化を図るために
非常に重要な元素である。0.10%未満では十分な特
性が得られない。一方、1.00%を超えるとその効果
は飽和する。従って、0.10〜1.00%に限定し、
必要に応じて添加できるものとした。
Ni: 0.10 to 1.00% Ni is a very important element for improving toughness and strengthening by solid solution strengthening. If it is less than 0.10%, sufficient characteristics cannot be obtained. On the other hand, if it exceeds 1.00%, the effect is saturated. Therefore, it is limited to 0.10-1.00%,
It could be added as needed.

【0022】Mo:0.10〜2.00% Moは固溶強化により高強度化を図るために非常に重要
な元素である。0.10%未満では十分な強化が得られ
ない。一方、2.00%を超えるとベイナイト組織が生
じやすくなり、耐摩耗性の低下が懸念される。従って、
0.10〜2.00%に限定し、必要に応じて添加でき
るものとした。
Mo: 0.10 to 2.00% Mo is a very important element for achieving high strength by solid solution strengthening. If it is less than 0.10%, sufficient reinforcement cannot be obtained. On the other hand, if it exceeds 2.00%, a bainite structure is likely to be generated, and there is a concern that the wear resistance may decrease. Therefore,
It was limited to 0.10 to 2.00%, and could be added as needed.

【0023】Nb:0.005〜0.15% Nbは鋼中のCと結び付いて圧延後に析出することか
ら、頭部の内部まで析出強化により硬度を高くし耐摩耗
性を向上させ、レールの寿命を延ばすために有効であ
る。ただし、この効果はNbで0.005%未満の添加
では有効ではなく、また0.15%を超えて添加しても
その効果は飽和してしまう。従って、0.005〜0.
15%に限定し、必要に応じて添加できるものとした。
Nb: 0.005 to 0.15% Since Nb is associated with C in steel and precipitates after rolling, the hardness is increased by precipitation strengthening up to the inside of the head to improve wear resistance, and the rail has It is effective for extending the life. However, this effect is not effective when Nb is added in less than 0.005%, and the effect is saturated when added in more than 0.15%. Therefore, 0.005-0.
It was limited to 15%, and could be added as needed.

【0024】V:0.05〜0.15% Vは、Nbと同様に鋼中のCと結び付いて圧延後に析出
することから、頭部の内部まで析出強化により硬度を高
くし耐摩耗性を向上させ、レールの寿命を延ばすために
有効である。ただし、この効果は0.05%未満の添加
では有効ではなく、また0.15%を超えて添加しても
その効果は飽和してしまう。従って、0.05〜0.1
5%に限定し、必要に応じて添加できるものとした。
V: 0.05 to 0.15% V, like Nb, combines with C in steel and precipitates after rolling, so that the hardness is increased by precipitation strengthening up to the inside of the head and the wear resistance is improved. It is effective for improving and extending the life of the rail. However, this effect is not effective when the addition is less than 0.05%, and the effect is saturated even when the addition exceeds 0.15%. Therefore, 0.05 to 0.1
It was limited to 5% and could be added as needed.

【0025】[0025]

【実施例】以下に本発明の具体的な実施例を示す。な
お、本文、図、表中で、ρは熱膨張率、HVはビッカー
ス硬さを表している。
EXAMPLES Specific examples of the present invention will be described below. In the text, figures and tables, ρ represents the coefficient of thermal expansion, and HV represents Vickers hardness.

【0026】(実施例1)表2に示す成分を有する供試
鋼を1250℃に加熱し、920℃で圧延を終了後、
0.5℃/secで冷却した板厚12mmの鋼板を使用
し、熱膨張率測定、硬さ測定、引張試験、衝撃試験を行
った。熱膨張率については外径5mm、長さ25mmの
円柱試験片を圧延材の板厚中央から採取し、0〜100
℃の間の平均熱膨張係数を測定した。硬さ測定について
は板厚中央部で10kgの圧子を用いてビッカース硬さ
を測定した。引張試験は9φの丸棒試験片を板厚中央部
から採取し、強度、延性を調べた。また衝撃試験は板厚
中央部から2mmUノッチを入れたJIS4号の衝撃試
験片を採取し、20℃における吸収エネルギーを測定し
た。熱膨張率、硬さ、延性、靱性を表3に示す。表3に
示すように、本発明範囲よりもC量が低い2−1、2、
3については、熱膨張率が高い。また、本発明範囲より
もC量が高い2−8、9、10についてはミクロ組織で
粗い初析セメンタイトが生成しているため、熱膨張率は
低いものの延靱性が低く、レールとしての使用に不適当
である。これに対し、本発明範囲内の成分である2−
4、5、6、7は熱膨張率、硬さ、延性、靱性のいずれ
も優れた特性を示している。
Example 1 A test steel having the components shown in Table 2 was heated to 1250 ° C., and after rolling at 920 ° C.,
Using a steel plate having a thickness of 12 mm cooled at 0.5 ° C./sec, a thermal expansion coefficient measurement, a hardness measurement, a tensile test, and an impact test were performed. Regarding the coefficient of thermal expansion, a cylindrical test piece having an outer diameter of 5 mm and a length of 25 mm was sampled from the center of the rolled material in a thickness of 0 to 100.
The average coefficient of thermal expansion between ° C was measured. About hardness measurement, Vickers hardness was measured using a 10 kg indenter at the center of the plate thickness. In the tensile test, a 9φ round bar test piece was sampled from the center of the plate thickness and examined for strength and ductility. In the impact test, a JIS No. 4 impact test piece with a 2 mm U notch was taken from the center of the plate thickness, and the absorbed energy at 20 ° C. was measured. Table 3 shows the coefficient of thermal expansion, hardness, ductility, and toughness. As shown in Table 3, the amount of C is lower than the range of the present invention.
For No. 3, the coefficient of thermal expansion is high. Further, as for the propellant cementites 2-8, 9 and 10 having a higher C content than the range of the present invention, coarse eutectoid cementite is generated in the microstructure, so that although the coefficient of thermal expansion is low, the ductility is low and the use as a rail is difficult. Improper. On the other hand, component 2- within the scope of the present invention
Nos. 4, 5, 6, and 7 show excellent properties in all of the coefficient of thermal expansion, hardness, ductility, and toughness.

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【表3】 [Table 3]

【0029】(実施例2)表4に示す成分を有する供試
鋼について実施例1と同様に熱膨張率測定、硬さ測定、
引張試験、衝撃試験を行った。熱膨張率、硬さ、延性、
靱性を表5に示す。
(Example 2) For the test steels having the components shown in Table 4, in the same manner as in Example 1, the coefficient of thermal expansion and the hardness were measured.
A tensile test and an impact test were performed. Coefficient of thermal expansion, hardness, ductility,
Table 5 shows the toughness.

【0030】Si、Mnの含有量が本発明範囲よりも低
い4−1、8、11は熱膨張率は優れた値を示すが硬度
が低い。それに対し、Si、Mn、P、Sの含有量が本
発明囲内である4−2、3、4、5、6、9、10は熱
膨張率、硬さ、延性、靱性のいずれも優れた値を示して
いる。しかし、Si、Mnの含有量が本発明範囲よりも
高い4−7、12ではSi、Mnによる延性、靱性の向
上効果が飽和している。また、P、Sが高い4−13、
14は靱性が劣化している。
Samples 4-1, 8, and 11 having contents of Si and Mn lower than the range of the present invention have excellent coefficients of thermal expansion but low hardness. On the other hand, 4-2, 3, 4, 5, 6, 9, and 10, in which the contents of Si, Mn, P, and S are within the range of the present invention, were excellent in all of the coefficient of thermal expansion, hardness, ductility, and toughness. Indicates the value. However, in 4-7 and 12 in which the contents of Si and Mn are higher than the range of the present invention, the effect of improving the ductility and toughness by Si and Mn is saturated. Moreover, P and S are high 4-13,
No. 14 has deteriorated toughness.

【0031】[0031]

【表4】 [Table 4]

【0032】[0032]

【表5】 [Table 5]

【0033】(実施例3)表6に示す成分を有する供試
鋼について実施例1と同様に熱膨張率測定、硬さ測定、
引張試験、衝撃試験を行った。熱膨張率、硬さ、延性、
靱性を表7に示す。
Example 3 For the test steels having the components shown in Table 6, in the same manner as in Example 1, the coefficient of thermal expansion and the hardness were measured.
A tensile test and an impact test were performed. Coefficient of thermal expansion, hardness, ductility,
Table 7 shows the toughness.

【0034】6−1はCr、Cu、Ni、Mo、Nb、
Vを添加していないが本発明範囲内の成分で、熱膨張率
も本発明の範囲内であり、硬さ、延性、靱性のいずれも
所望の値を示している。Cr、Cu、Ni、Mo、N
b、Vの含有量が本発明範囲よりも低い6−2、3、
4、5、6、7はCr、Cu、Ni、Mo、Nb、Vを
添加していない6−1に比べ熱膨張率、硬さ、延性、靱
性のいずれもほとんど変化がなく、Cr、Cu、Ni、
Mo、Nb、V添加の効果が現れていない。Cr、C
u、Ni、Moの1種または2種の添加量が本発明範囲
を満たしている6−8、9、10、11、12、13は
特に延靱性の向上を示しており、かつ6−1より優れた
値を示している。Cr、Cu、Ni、Moの添加量が本
発明範囲を超える6−14、15、16、17は延靱性
が6−8、9、10、11と同等であり、Cr、Cu、
Ni、Mo添加の効果が飽和している。Nb、Vの添加
量が本発明範囲を満たしている6−18、19、20は
熱膨張率、硬さ、延性、靱性のいずれも本発明範囲内の
値を示しており、かつ6−1より優れた硬さを示してい
るが、Nb、Vの添加量が本発明範囲を超える6−2
1、22は硬さが6−18、19と同等であり、Nb、
V添加の効果が飽和している。
6-1 is Cr, Cu, Ni, Mo, Nb,
Although V is not added, it is a component within the range of the present invention, and the coefficient of thermal expansion is also within the range of the present invention, and each of the hardness, ductility, and toughness shows desired values. Cr, Cu, Ni, Mo, N
6-2, 3, wherein the content of b and V is lower than the range of the present invention.
4, 5, 6, and 7 showed little change in thermal expansion coefficient, hardness, ductility, and toughness as compared with 6-1 to which Cr, Cu, Ni, Mo, Nb, and V were not added. , Ni,
The effect of the addition of Mo, Nb, and V is not exhibited. Cr, C
6-8, 9, 10, 11, 12, and 13 in which the addition amount of one or two of u, Ni, and Mo satisfy the range of the present invention, particularly show an improvement in ductility, and 6-1. It shows better values. 6-14, 15, 16, and 17 in which the added amounts of Cr, Cu, Ni, and Mo exceed the range of the present invention have the same toughness as 6-8, 9, 10, and 11, and Cr, Cu,
The effect of the addition of Ni and Mo is saturated. 6-18, 19, and 20 in which the added amounts of Nb and V satisfy the range of the present invention, all of the coefficients of thermal expansion, hardness, ductility, and toughness are within the range of the present invention, and 6-1. Although it shows more excellent hardness, the addition amount of Nb and V exceeds the range of the present invention.
1 and 22 have the same hardness as 6-18 and 19, and Nb,
The effect of V addition is saturated.

【0035】[0035]

【表6】 [Table 6]

【0036】[0036]

【表7】 [Table 7]

【0037】[0037]

【発明の効果】本発明により、低熱膨張率を有するパー
ライト型レールを製造することができる。
According to the present invention, a pearlite type rail having a low coefficient of thermal expansion can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】C量と熱膨張係数の関係を示す図。FIG. 1 is a diagram showing the relationship between the C amount and the coefficient of thermal expansion.

【図2】C量と延性、靱性の関係を示す図。FIG. 2 is a graph showing the relationship between the C content and ductility and toughness.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.85〜1.20%、
Si:0.10〜1.00%、Mn:0.40〜2.5
0%、P:0.035%以下、S:0.035%以下を
有し、0〜100℃間の平均熱膨張係数が11.5×1
-6-1以下であることを特徴とする低熱膨張率を有す
るパーライト型レール。
1. C .: 0.85 to 1.20% by weight,
Si: 0.10 to 1.00%, Mn: 0.40 to 2.5
0%, P: 0.035% or less, S: 0.035% or less, and the average coefficient of thermal expansion between 0 and 100 ° C. is 11.5 × 1
A pearlite-type rail having a low coefficient of thermal expansion, which is not more than 0 -6 K -1 .
【請求項2】 重量%で、Cr:0.05〜1.50
%、Cu:0.10〜1.00%、Ni:0.10〜
1.00%、及びMo:0.10〜2.00%の群から
選択された1種または2種以上を含有することを特徴と
する請求項1に記載の低熱膨張率を有するパーライト型
レール。
2. Cr: 0.05-1.50% by weight
%, Cu: 0.10-1.00%, Ni: 0.10
The pearlite-type rail having a low coefficient of thermal expansion according to claim 1, comprising one or more selected from the group of 1.00% and Mo: 0.10 to 2.00%. .
【請求項3】 重量%で、Nb:0.005〜0.15
%、V:0.05〜0.15%の群から選択された1種
または2種を含有することを特徴とする請求項1または
2に記載の低熱膨張率を有するパーライト型レール。
3. Nb: 0.005 to 0.15 by weight%
%, V: one or two selected from the group of 0.05 to 0.15%, the pearlite-type rail having a low coefficient of thermal expansion according to claim 1 or 2.
JP5476497A 1997-03-10 1997-03-10 Pearitic rail having low coefficient thermal expansion Pending JPH10251802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5476497A JPH10251802A (en) 1997-03-10 1997-03-10 Pearitic rail having low coefficient thermal expansion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5476497A JPH10251802A (en) 1997-03-10 1997-03-10 Pearitic rail having low coefficient thermal expansion

Publications (1)

Publication Number Publication Date
JPH10251802A true JPH10251802A (en) 1998-09-22

Family

ID=12979851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5476497A Pending JPH10251802A (en) 1997-03-10 1997-03-10 Pearitic rail having low coefficient thermal expansion

Country Status (1)

Country Link
JP (1) JPH10251802A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280617A (en) * 2008-07-30 2008-11-20 Shimadzu Corp Composite film deposition system
JP2013224472A (en) * 2012-04-23 2013-10-31 Nippon Steel & Sumitomo Metal Corp Rail excellent in delayed-fracture resistance characteristics
JP2016128723A (en) * 2016-04-06 2016-07-14 ナブテスコ株式会社 Eccentric oscillation type gear device
KR101669096B1 (en) * 2015-08-19 2016-11-01 한국철도기술연구원 Construction method for concrete track using temporary rail of composite material having low temperature expansion coefficient

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280617A (en) * 2008-07-30 2008-11-20 Shimadzu Corp Composite film deposition system
JP2013224472A (en) * 2012-04-23 2013-10-31 Nippon Steel & Sumitomo Metal Corp Rail excellent in delayed-fracture resistance characteristics
KR101669096B1 (en) * 2015-08-19 2016-11-01 한국철도기술연구원 Construction method for concrete track using temporary rail of composite material having low temperature expansion coefficient
JP2016128723A (en) * 2016-04-06 2016-07-14 ナブテスコ株式会社 Eccentric oscillation type gear device

Similar Documents

Publication Publication Date Title
JP3545980B2 (en) Ultra high strength electric resistance welded steel pipe with excellent delayed fracture resistance and manufacturing method thereof
JP4721956B2 (en) Thick steel plate with excellent base metal toughness and fatigue crack growth characteristics
WO2005056856A1 (en) Steel product for structural member of automobile and method for production thereof
JP5182642B2 (en) High strength thick steel plate with excellent delayed fracture resistance and weldability and method for producing the same
WO1999036583A1 (en) Bainite type rail excellent in surface fatigue damage resistance and wear resistance
JP5892267B2 (en) ERW steel pipe
JPH09316598A (en) Pearlitic rail, excellent in wear resistance and weldability, and its production
JP2019116657A (en) Thick walled large diameter electroseamed steel pipe excellent in fatigue strength, and manufacturing method therefor
JP2019116658A (en) Electroseamed steel pipe excellent in fatigue strength, and manufacturing method therefor
JP6773021B2 (en) Thick-walled large-diameter electric resistance pipe with excellent fatigue strength and its manufacturing method
JP7332460B2 (en) perlite rail
JP5089224B2 (en) Manufacturing method of on-line cooling type high strength steel sheet
JP5532789B2 (en) High hardness internal pearlitic steel rail with excellent flash butt weld joint characteristics and welding method thereof
JP5401762B2 (en) High-strength pearlite rail with excellent delayed fracture resistance
JP3649872B2 (en) Bainite steel rail with excellent weldability
JPH10251802A (en) Pearitic rail having low coefficient thermal expansion
JP3267124B2 (en) High-strength rail excellent in delayed fracture resistance, wear resistance and toughness, and a method for manufacturing the same
JP4331832B2 (en) Azuroll ERW steel pipe with excellent wear resistance
JP6844758B2 (en) Electric resistance sewn steel pipe for hollow stabilizer and its manufacturing method
JP3579557B2 (en) H-section steel for tunnel support and method of manufacturing the same
KR20220004758A (en) Electric resistance welded steel pipe for hollow stabilizer
JP3117916B2 (en) Manufacturing method of pearlitic rail with excellent wear resistance
JP4513311B2 (en) Welded joint with excellent fatigue strength characteristics
JP3832169B2 (en) Method for manufacturing pearlitic steel rails with excellent wear resistance and ductility
JP3117915B2 (en) Manufacturing method of high wear resistant pearlite rail