JPH10249205A - Manufacture of catalyst for exhaust gas purification - Google Patents

Manufacture of catalyst for exhaust gas purification

Info

Publication number
JPH10249205A
JPH10249205A JP9058873A JP5887397A JPH10249205A JP H10249205 A JPH10249205 A JP H10249205A JP 9058873 A JP9058873 A JP 9058873A JP 5887397 A JP5887397 A JP 5887397A JP H10249205 A JPH10249205 A JP H10249205A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
carrier
nox
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9058873A
Other languages
Japanese (ja)
Inventor
Motohisa Kamijo
元久 上條
Hiroshi Akama
弘 赤間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP9058873A priority Critical patent/JPH10249205A/en
Publication of JPH10249205A publication Critical patent/JPH10249205A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To suppress the chemical combination of an NOX absorbent material with alumina and prevent carbonate from becoming decomposed in a manufacturing step and further, improve the NOX absorbing power of a catalyst in a lean atmosphere by manufacturing the catalyst in a carbonic acid gas atmosphere through an entire baking process after the carrying of the NOX absorbent material. SOLUTION: A slurry solution prepared by loading alumina sol obtained by mixing 10g of boehmite alumina with 900g of 1% aqueous nitric acid solution and stirring the mixture, and activated γ alumina powder into a magnetic ball mill and crushing these materials, is made to stick to cordierite formation monolithic carrier. Further, this carrier is baked to obtain a carrier with a coated layer weighing 100g/L. In addition, this carrier material is impregnated with a mixed aqueous solution of rhodium nitrate and dinitrodiamine platinum, and then is baked after drying. Next, the carrier material is impregnated with an aqueous iron nitrate solution and is likewise baked after drying. After that, the carrier material is impregnated with an aqueous lanthanum nitrate solution, then is baked in an air current containing 10% CO2 after drying to obtain a desired catalyst for exhaust gas purification.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガソリン及びディ
ーゼル自動車、ボイラー等の内燃機関から排出される排
気ガス中の炭化水素(HC)、一酸化炭素(CO)およ
び窒素酸化物(NOx)を浄化する排気ガス浄化用触媒
の製造方法に関し、特に酸素過剰雰囲気下でのNOxの
浄化性能に優れる排気ガス浄化用触媒およびその製造方
法に関する。
The present invention relates to the purification of hydrocarbons (HC), carbon monoxide (CO) and nitrogen oxides (NOx) in exhaust gas discharged from internal combustion engines such as gasoline and diesel vehicles and boilers. The present invention relates to a method for producing an exhaust gas purifying catalyst, and more particularly to an exhaust gas purifying catalyst excellent in NOx purification performance in an oxygen-excess atmosphere and a method for producing the same.

【0002】[0002]

【従来の技術】近年、石油資源の枯渇問題および地球温
暖化の観点から、低燃費自動車の実現が期待されてお
り、特にガソリン自動車に関しては希薄燃焼自動車の開
発が望まれている。希薄燃焼自動車においては、希薄燃
焼走行時の排気ガス雰囲気は、理論空燃状態(以下、
「ストイキ状態」と称す)に比べて酸素過剰雰囲気(以
下、「リーン状態」と称す)となる。リーン雰囲気にお
いて、従来の三元触媒を適応させた場合には、過剰な酸
素の影響からNOx浄化作用が不十分になる問題があっ
た。このため酸素過剰雰囲気下においてもNOxを浄化
できる触媒の開発が望まれていた。
2. Description of the Related Art In recent years, from the viewpoint of depletion of petroleum resources and global warming, realization of fuel-efficient vehicles is expected, and development of lean-burn vehicles is particularly desired for gasoline vehicles. In lean-burn vehicles, the exhaust gas atmosphere during lean-burn operation is based on the theoretical air-fuel condition
The atmosphere becomes an oxygen-excess atmosphere (hereinafter, referred to as a "lean state") as compared with the "stoichiometric state". When a conventional three-way catalyst is applied in a lean atmosphere, there has been a problem that the effect of excessive oxygen makes the NOx purification action insufficient. Therefore, development of a catalyst that can purify NOx even in an oxygen-excess atmosphere has been desired.

【0003】従来より、リーン雰囲気下におけるNOx
浄化性能を向上させる触媒は種々提案されており、大別
して二種類ある。一つは排気ガス中のHCを還元剤とし
てNOxを還元浄化するものであり、もう一つはリーン
雰囲気下でNOxを吸収し、ストイキ状態あるいは燃料
過剰(リッチ)雰囲気下でNOxを浄化するものであ
る。
Conventionally, NOx in a lean atmosphere has been
Various catalysts for improving the purification performance have been proposed, and are roughly classified into two types. One is for reducing and purifying NOx by using HC in exhaust gas as a reducing agent, and the other is for absorbing NOx in a lean atmosphere and purifying NOx in a stoichiometric or fuel-rich (rich) atmosphere. It is.

【0004】前者の代表的なものとしては、例えば特開
昭63−100919号公報に、銅(Cu)をゼオライ
トに担持した触媒が開示されている。一方、後者の代表
的なものとしては、例えば特開平5−168860号公
報に、ランタン等を白金(Pt)に担持させてランタン
をNOx吸収材として用いる触媒が開示されている。
As a representative of the former, for example, JP-A-63-100919 discloses a catalyst in which copper (Cu) is supported on zeolite. On the other hand, as a representative of the latter, for example, JP-A-5-168860 discloses a catalyst in which lanthanum is supported on platinum (Pt) and lanthanum is used as a NOx absorbent.

【0005】しかし、上記特開平5−168860号公
報に開示された触媒は、NOx吸収能力が不十分である
という問題があり、かかる問題を解決する目的で、例え
ば特開平5−261287号公報、特開平5−3176
52号公報および特開平6−31139号公報にアルカ
リ、アルカリ土類金属を用いる排気ガス浄化用触媒が開
示されている。また、特開平6−142458号公報お
よび特開平6−262040号公報には、アルカリ金
属、アルカリ土類金属、希土類金属、鉄金属を含有する
排気ガス浄化用触媒が開示されている。
[0005] However, the catalyst disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 5-168860 has a problem that the NOx absorption capacity is insufficient, and for the purpose of solving such a problem, for example, Japanese Patent Application Laid-Open No. 5-261287, JP-A-5-3176
No. 52 and JP-A-6-31139 disclose exhaust gas purifying catalysts using alkali and alkaline earth metals. JP-A-6-142458 and JP-A-6-262040 disclose exhaust gas purifying catalysts containing alkali metals, alkaline earth metals, rare earth metals, and iron metals.

【0006】さらに、特開平7−171399号公報で
は、多孔質単体にBa等NOx吸収材を担持した担体に
対して、炭酸処理を行いNOx吸収材を炭酸塩化した
後、貴金属触媒を担持する工程を順に行うことで、貴金
属触媒担持工程におけるNOx吸収材の溶出と、貴金属
の析出・沈澱を防止し、NOx吸収成分と貴金属触媒の
担持量を増大させ、NOx吸収能力を向上させる方法が
開示されている。
Further, Japanese Patent Application Laid-Open No. 7-171399 discloses a process of carrying out a carbonation treatment on a carrier in which a NOx absorbent such as Ba is carried on a single porous body and carbonating the NOx absorbent, followed by carrying a noble metal catalyst. Are sequentially performed to prevent the elution of the NOx absorbent in the noble metal catalyst supporting step and the precipitation and precipitation of the noble metal, increase the amount of the NOx absorbing component and the noble metal catalyst carried, and improve the NOx absorbing ability. ing.

【0007】このNOx吸収反応の主経路を、典型的な
NOx吸収材であるBaの場合について示すと、 BaCO3 +2NO2 +1/2・O2 →Ba(NO3 2 +CO2 ・・・式1(NOx吸収反応の主経路) であることが報告されており(触媒 Vol.38(1
996)P450〜453)、BaCO3 等の炭酸塩は
NOx吸収反応にとって重要な化学形態であるといえ
る。また、BaCO3 の熱安定性は、分解温度が136
0℃と高いことが知られている。
The main route of this NOx absorption reaction is shown in the case of Ba, which is a typical NOx absorbent, as follows: BaCO 3 + 2NO 2 + 1/2 · O 2 → Ba (NO 3 ) 2 + CO 2. 1 (the main route of NOx absorption reaction) (Catalyst Vol. 38 (1)
996) Carbonates such as P450-453) and BaCO 3 can be said to be important chemical forms for the NOx absorption reaction. The thermal stability of BaCO 3 is such that the decomposition temperature is 136.
It is known that the temperature is as high as 0 ° C.

【0008】[0008]

【発明が解決しようとする課題】ところが、これらBa
等NOx吸収材を、多孔質担体に担持後、炭酸処理によ
り熱安定性の高い炭酸塩としても(図2)、さらに貴金
属触媒を担持し、貴金属触媒を固定化するために焼成す
ると、アルミナとNOx吸収材が化合し、吸収反応に重
要な炭酸塩が分解、減少することが判明した(図3)。
さらにアルミナと化合したNOx吸収材を、室温から炭
酸塩が分解した温度付近でCO2 に曝しても、炭酸塩は
再生せず(図4)、式1に示すNOx吸収反応の主経路
が半減もしくは失われるために、吸収量低下が起きるこ
とがわかった。
However, these Ba
After the NOx absorbent is loaded on the porous carrier, it is converted into a carbonate having high thermal stability by carbonation treatment (FIG. 2). Further, when a noble metal catalyst is loaded and calcined to fix the noble metal catalyst, alumina It was found that the NOx absorbent was combined to decompose and reduce the carbonates important for the absorption reaction (FIG. 3).
Further, even when the NOx absorbent combined with alumina is exposed to CO 2 from room temperature to a temperature near the decomposition of the carbonate, the carbonate is not regenerated (FIG. 4), and the main route of the NOx absorption reaction shown in Equation 1 is reduced by half. Or, it was found that absorption was reduced due to loss.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために研究した結果、NOx吸収材担持後の
全ての焼成工程を炭酸ガス雰囲気下で行うことで、NO
x吸収材とアルミナとの化合を抑制し、製造工程におけ
る炭酸塩の分解を防ぎ(図1)、リーン雰囲気でのNO
x吸収能を向上させることを見いだし、本発明に到達し
た。
Means for Solving the Problems As a result of research conducted to solve the above problems, the present inventors have found that all the sintering steps after carrying the NOx absorbent are carried out in a carbon dioxide gas atmosphere.
x suppresses the combination of the absorber and alumina, prevents the decomposition of carbonate in the manufacturing process (FIG. 1), and reduces NO in a lean atmosphere.
The inventors have found that the x-absorbing ability is improved, and have reached the present invention.

【0010】多孔質担体への、NOx吸収材の担持−焼
成工程と、貴金属の担持−焼成工程と、遷移金属の担持
−焼成工程とは、NOx吸収材担持後に行われる全ての
焼成を炭酸ガス雰囲気下で行う場合、いかなる順序で行
われてもよい。
The steps of carrying and firing the NOx absorbent, the step of supporting and firing the noble metal, and the step of supporting and firing the transition metal on the porous carrier are all carried out after the NOx absorbent is loaded by using carbon dioxide gas. When performed in an atmosphere, they may be performed in any order.

【0011】炭酸ガス雰囲気焼成時の濃度は、CO2
度5%以上であることが好ましい。CO2 濃度5%以下
では、炭酸塩の分解抑制効果が十分得られず、5%以上
であればその効果を得られる。
The concentration during firing in a carbon dioxide gas atmosphere is preferably a CO 2 concentration of 5% or more. When the CO 2 concentration is 5% or less, the effect of suppressing the decomposition of carbonate cannot be sufficiently obtained, and when the CO 2 concentration is 5% or more, the effect can be obtained.

【0012】炭酸ガス雰囲気焼成時の燃焼温度は300
〜700℃であることが好ましい。700℃以上では、
いかなる濃度の炭酸ガス雰囲気下でも、炭酸塩の分解を
防ぐことはできず、一方、300℃以下では、炭酸塩の
分解が起こらない反面、焼成による担持成分の固定化を
十分行うことができず、耐久後に貴金属、遷移金属の凝
集、または、貴金属、遷移金属と基材、NOx吸収材と
の化合が生じ、次式2に示す貴金属、遷移金属の働きが
低下し、前述式1のNOx吸収反応の低下を招く。 NO2 +1/2・O2 →NO3 ・・・式2(貴金属の働き)
The combustion temperature during firing in a carbon dioxide atmosphere is 300
It is preferable that it is -700 degreeC. Above 700 ° C
Under an atmosphere of carbon dioxide of any concentration, decomposition of carbonate cannot be prevented. On the other hand, at a temperature of 300 ° C. or lower, decomposition of carbonate does not occur. After the endurance, agglomeration of a noble metal or a transition metal, or a combination of a noble metal or a transition metal with a base material or a NOx absorbent occurs, and the functions of the noble metal and the transition metal represented by the following formula 2 decrease, and NOx absorption of the above formula 1 This leads to a decrease in the reaction. NO 2 + 1/2 · O 2 → NO 3 ··· Formula 2 (function of precious metal)

【0013】本発明の排気ガス浄化用触媒に用いるNO
x吸収材としては、アルカリ金属、アルカリ土類金属、
および、希土類金属から選ばれる金属の化合物を用いる
ことができる。アルカリ金属としてはK、アルカリ土類
金属としてはBaまたはSr、希土類金属としてはLa
をそれぞれ用いることが好ましい。
NO used in the exhaust gas purifying catalyst of the present invention
x absorbers include alkali metals, alkaline earth metals,
Further, a compound of a metal selected from rare earth metals can be used. K as an alkali metal, Ba or Sr as an alkaline earth metal, La as a rare earth metal
Is preferably used.

【0014】本発明の排気ガス浄化用触媒に用いる貴金
属としては、白金、パラジウム、および、ロジウムから
成る群より選ばれる少なくとも一種が用いられる。
As the noble metal used in the exhaust gas purifying catalyst of the present invention, at least one selected from the group consisting of platinum, palladium and rhodium is used.

【0015】前記貴金属の一部または全部を担持するた
めの基材としては、貴金属の分散性、特に耐久後の貴金
属の分散性を確保するため、比表面積の大きい耐熱性無
機材料が適し、特に活性アルミナが好ましい。耐熱比表
面積を高めるために希土類元素やジルコニア等を添加し
た活性アルミナを用いても良い。
As a substrate for supporting a part or all of the noble metal, a heat-resistant inorganic material having a large specific surface area is suitable in order to secure the dispersibility of the noble metal, particularly, the noble metal after durability. Activated alumina is preferred. Activated alumina to which a rare earth element, zirconia, or the like is added to increase the heat resistant specific surface area may be used.

【0016】本発明の排気ガス浄化用触媒に用いる遷移
金属は、鉄、コバルト、ニッケル、および、マンガンか
ら成る群より選ばれる少なくとも一種が用いられる。
As the transition metal used in the exhaust gas purifying catalyst of the present invention, at least one selected from the group consisting of iron, cobalt, nickel and manganese is used.

【0017】[0017]

【発明の実施の形態】以下、本発明による排気ガス浄化
用触媒の製造方法の実施例を、比較例及び実験例を参照
しながら具体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the method for producing an exhaust gas purifying catalyst according to the present invention will be specifically described with reference to comparative examples and experimental examples.

【0018】(実施例1)1%硝酸水溶液900gにベ
ーマイトアルミナ10gを混合攪拌して得られたアルミ
ナゾルと、活性γアルミナ粉末を磁性ボールミルに投入
し、粉砕してアルミナスラリーを得た。このスラリー液
をコーディエライト質モノリス担体(1L,400セ
ル)に付着させ、400℃で1時間焼成してコート層重
量100g/L担体を得た。
Example 1 An alumina sol obtained by mixing and stirring 10 g of boehmite alumina in 900 g of a 1% aqueous nitric acid solution and activated γ-alumina powder were charged into a magnetic ball mill and pulverized to obtain an alumina slurry. This slurry liquid was adhered to a cordierite-based monolith carrier (1 L, 400 cells) and calcined at 400 ° C. for 1 hour to obtain a coat layer weight of 100 g / L carrier.

【0019】貴金属担持、第1の工程である焼成工程
(工程A);当該コート層重量100g/L担体材料
に、硝酸ロジウム、ジニトロジアミン白金の混合水溶液
を含浸し、乾燥した後、空気中で400℃、1時間の焼
成を行った。当該材料中のロジウムおよび白金の含有量
は、各々0.24g/L、1.18g/Lであった。
Noble metal loading, first baking step (step A): 100 g / L of the coating layer is impregnated with a mixed aqueous solution of rhodium nitrate and dinitrodiamine platinum, dried, and dried in air. The firing was performed at 400 ° C. for one hour. The contents of rhodium and platinum in the material were 0.24 g / L and 1.18 g / L, respectively.

【0020】遷移金属担持、第2の工程である焼成工程
(工程B);工程Aで得た担体材料に、硝酸鉄水溶液を
含浸し、乾燥した後、空気中で400℃、1時間の焼成
を行った。当該材料中の鉄の含有量は、金属モルに換算
して0.1モル/Lであった。
Transition metal loading, second step, firing step (step B); impregnating the carrier material obtained in step A with an aqueous solution of iron nitrate, drying, and then firing in air at 400 ° C. for 1 hour. Was done. The iron content in the material was 0.1 mol / L in terms of mole of metal.

【0021】NOx吸収材担持、第3の工程である焼成
工程(工程C);工程Aおよび工程Bで得た担体材料
に、硝酸ランタン水溶液を含浸し、乾燥した後、10%
CO2含有空気気流中で400℃、1時間の焼成を行っ
た。当該材料中のランタンの含有量は、金属モルに換算
して0.1モル/Lであった。さらに、硝酸バリウムと
酢酸カリウムの混合水溶液を含浸し、乾燥した後、10
%CO2 含有空気気流中で400℃、1時間の焼成を行
った。当該材料中のバリウム、カリウムの含有量は、各
々金属モルに換算して0.1モル/L、0.1モル/L
であった。
The NOx absorbent loading, the third step, a firing step (step C); the carrier material obtained in step A and step B is impregnated with an aqueous lanthanum nitrate solution, dried and then 10%
The calcination was performed at 400 ° C. for 1 hour in an air stream containing CO 2 . The content of lanthanum in the material was 0.1 mol / L in terms of mole of metal. Furthermore, after impregnating with a mixed aqueous solution of barium nitrate and potassium acetate and drying,
The calcination was performed at 400 ° C. for 1 hour in an air stream containing% CO 2 . The contents of barium and potassium in the material are respectively 0.1 mol / L and 0.1 mol / L in terms of metal mol.
Met.

【0022】(実施例2)工程B、工程A、工程Cの順
に行うこと以外は、実施例1と同様にして排気ガス浄化
用触媒を得た。
Example 2 An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that Step B, Step A and Step C were performed in this order.

【0023】(実施例3)工程A、工程C、工程Bの順
に行い、工程Bの焼成を10%CO2 含有空気気流中で
行うこと以外は、実施例1と同様にして排気ガス浄化用
触媒を得た。
(Example 3) A process for purifying exhaust gas was carried out in the same manner as in Example 1 except that Step A, Step C, and Step B were performed in this order, and that the calcination in Step B was performed in an air stream containing 10% CO 2 . A catalyst was obtained.

【0024】(実施例4)工程B、工程C、工程Aの順
に行い、工程Aの焼成を10%CO2 含有空気気流中で
行うこと以外は、実施例1と同様にして排気ガス浄化用
触媒を得た。
Example 4 Exhaust gas purification was performed in the same manner as in Example 1 except that Step B, Step C, and Step A were performed in this order, and that the calcination in Step A was performed in an air stream containing 10% CO 2 . A catalyst was obtained.

【0025】(実施例5)工程C、工程A、工程Bの順
に行い、工程A,Bの焼成を10%CO2 含有空気気流
中で行うこと以外は、実施例1と同様にして排気ガス浄
化用触媒を得た。
Example 5 Exhaust gas was produced in the same manner as in Example 1 except that Step C, Step A, and Step B were performed in this order, and that Steps A and B were performed in an air stream containing 10% CO 2. A purification catalyst was obtained.

【0026】(実施例6)工程C、工程B、工程Aの順
に行い、工程A,Bの焼成を10%CO2 含有空気気流
中で行うこと以外は、実施例1と同様にして排気ガス浄
化用触媒を得た。
(Example 6) Exhaust gas was produced in the same manner as in Example 1 except that the steps C, B, and A were performed in this order, and the calcination of the steps A and B was performed in an air stream containing 10% CO 2. A purification catalyst was obtained.

【0027】(実施例7)工程Cにおいて、焼成を50
%CO2 含有空気気流中で行うこと以外は、実施例1と
同様にして排気ガス浄化用触媒を得た。
(Embodiment 7) In step C, the firing was
An exhaust gas purifying catalyst was obtained in the same manner as in Example 1, except that the reaction was performed in an air stream containing% CO 2 .

【0028】(実施例8)工程Aにおいて、硝酸ロジウ
ム、ジニトロジアミン白金の混合水溶液のかわりに硝酸
パラジウム水溶液を用いること以外は、実施例1と同様
にして排気ガス浄化用触媒を得た。当該材料中のパラジ
ウムの含有量は、2.83g/Lであった。
Example 8 An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that in step A, an aqueous solution of palladium nitrate was used instead of the mixed aqueous solution of rhodium nitrate and dinitrodiamine platinum. The content of palladium in the material was 2.83 g / L.

【0029】(実施例9)工程Bにおいて、硝酸鉄水溶
液のかわりに硝酸コバルト水溶液を用いること以外は、
実施例1と同様にして排気ガス浄化用触媒を得た。当該
材料中のコバルトの含有量は、金属モルに換算して、
0.1モル/Lであった。
(Example 9) In step B, an aqueous cobalt nitrate solution was used instead of the aqueous iron nitrate solution.
An exhaust gas purifying catalyst was obtained in the same manner as in Example 1. The content of cobalt in the material is converted into moles of metal,
It was 0.1 mol / L.

【0030】(実施例10)工程Bにおいて、硝酸鉄水
溶液のかわりに硝酸マンガン水溶液を用いること以外
は、実施例1と同様にして排気ガス浄化用触媒を得た。
当該材料中のマンガンの含有量は、金属モルに換算し
て、0.1モル/Lであった。
Example 10 An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that in step B, a manganese nitrate aqueous solution was used instead of the iron nitrate aqueous solution.
The content of manganese in the material was 0.1 mol / L in terms of mole of metal.

【0031】(実施例11)工程Bにおいて、硝酸鉄水
溶液のかわりに硝酸ニッケル水溶液を用いること以外
は、実施例1と同様にして排気ガス浄化用触媒を得た。
当該材料中のニッケルの含有量は、金属モルに換算し
て、0.1モル/Lであった。
Example 11 An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that in step B, an aqueous solution of nickel nitrate was used instead of the aqueous solution of iron nitrate.
The nickel content in the material was 0.1 mol / L in terms of mole of metal.

【0032】(実施例12)工程Cにおいて、硝酸バリ
ウムを用いないこと以外は、実施例1と同様にして排気
ガス浄化用触媒を得た。
Example 12 An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that barium nitrate was not used in Step C.

【0033】(実施例13)工程Cにおいて、硝酸カリ
ウムを用いないこと以外は、実施例1と同様にして排気
ガス浄化用触媒を得た。
Example 13 An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that potassium nitrate was not used in Step C.

【0034】(実施例14)工程Cにおいて、硝酸ラン
タンを用いないこと以外は、実施例1と同様にして排気
ガス浄化用触媒を得た。
Example 14 An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that lanthanum nitrate was not used in Step C.

【0035】(比較例1)全ての焼成において、10%
CO2 含有空気を用いず、空気中焼成を行うこと以外
は、実施例1と同様にして排気ガス浄化用触媒を得た。
(Comparative Example 1) 10% in all firings
Without using the CO 2 containing air, except that carried in the air fired to obtain the exhaust gas purifying catalyst in the same manner as in Example 1.

【0036】(比較例2)全ての焼成において、10%
CO2 含有空気を用いず、空気中焼成を行うこと以外
は、実施例2と同様にして排気ガス浄化用触媒を得た。
(Comparative Example 2) 10%
Without using the CO 2 containing air, except that carried in the air fired to obtain the exhaust gas purifying catalyst in the same manner as in Example 2.

【0037】(比較例3)全ての焼成において、10%
CO2 含有空気を用いず、空気中焼成を行うこと以外
は、実施例3と同様にして排気ガス浄化用触媒を得た。
(Comparative Example 3) 10% in all firings
An exhaust gas purifying catalyst was obtained in the same manner as in Example 3, except that calcination was performed in air without using CO 2 -containing air.

【0038】(比較例4)全ての焼成において、10%
CO2 含有空気を用いず、空気中焼成を行うこと以外
は、実施例4と同様にして排気ガス浄化用触媒を得た。
(Comparative Example 4) 10% in all firings
Without using the CO 2 containing air, except that carried in the air fired to obtain the exhaust gas purifying catalyst in the same manner as in Example 4.

【0039】(比較例5)全ての焼成において、10%
CO2 含有空気を用いず、空気中焼成を行うこと以外
は、実施例5と同様にして排気ガス浄化用触媒を得た。
(Comparative Example 5) 10%
Without using the CO 2 containing air, except that carried in the air fired to obtain the exhaust gas purifying catalyst in the same manner as in Example 5.

【0040】(比較例6)全ての焼成において、10%
CO2 含有空気を用いず、空気中焼成を行うこと以外
は、実施例6と同様にして排気ガス浄化用触媒を得た。
(Comparative Example 6) 10% in all firings
Without using the CO 2 containing air, except that carried in the air fired to obtain the exhaust gas purifying catalyst in the same manner as in Example 6.

【0041】(比較例7)工程Cの10%CO2 含有空
気中で行う焼成を、250℃で1時間行うこと以外は、
実施例1と同様にして排気ガス浄化用触媒を得た。
(Comparative Example 7) Except that the firing in Step C in air containing 10% CO 2 was performed at 250 ° C for 1 hour,
An exhaust gas purifying catalyst was obtained in the same manner as in Example 1.

【0042】(比較例8)工程Cの10%CO2 含有空
気中で行う焼成を、250℃で1時間行うこと以外は、
実施例2と同様にして排気ガス浄化用触媒を得た。
(Comparative Example 8) Except that the firing in Step C in air containing 10% CO 2 was performed at 250 ° C for 1 hour,
An exhaust gas purifying catalyst was obtained in the same manner as in Example 2.

【0043】(比較例9)工程C,Bの10%CO2
有空気中で行う焼成を、250℃で1時間行うこと以外
は、実施例3と同様にして排気ガス浄化用触媒を得た。
(Comparative Example 9) An exhaust gas purifying catalyst was obtained in the same manner as in Example 3, except that the calcination in Steps C and B in air containing 10% CO 2 was performed at 250 ° C for 1 hour. .

【0044】(比較例10)工程C,Aの10%CO2
含有空気中で行う焼成を、250℃で1時間行うこと以
外は、実施例4と同様にして排気ガス浄化用触媒を得
た。
Comparative Example 10 10% CO 2 of Steps C and A
An exhaust gas purifying catalyst was obtained in the same manner as in Example 4, except that the calcination in the contained air was performed at 250 ° C. for 1 hour.

【0045】(比較例11)工程C,A,Bの10%C
2 含有空気中で行う焼成を、250℃で1時間行うこ
と以外は、実施例5と同様にして排気ガス浄化用触媒を
得た。
(Comparative Example 11) 10% C of steps C, A and B
An exhaust gas purifying catalyst was obtained in the same manner as in Example 5, except that the calcination in the O 2 -containing air was performed at 250 ° C. for 1 hour.

【0046】(比較例12)工程C,A,Bの10%C
2 含有空気中で行う焼成を、250℃で1時間行うこ
と以外は、実施例6と同様にして排気ガス浄化用触媒を
得た。
(Comparative Example 12) 10% C of Steps C, A and B
An exhaust gas purifying catalyst was obtained in the same manner as in Example 6, except that the calcination in the O 2 -containing air was performed at 250 ° C. for 1 hour.

【0047】(比較例13)工程Cの10%CO2 含有
空気中で行う焼成を、750℃で1時間行うこと以外
は、実施例1と同様にして排気ガス浄化用触媒を得た。
(Comparative Example 13) An exhaust gas purifying catalyst was obtained in the same manner as in Example 1, except that the calcination in Step C in air containing 10% CO 2 was performed at 750 ° C for 1 hour.

【0048】(比較例14)工程Cの10%CO2 含有
空気中で行う焼成を、750℃で1時間行うこと以外
は、実施例2と同様にして排気ガス浄化用触媒を得た。
(Comparative Example 14) An exhaust gas purifying catalyst was obtained in the same manner as in Example 2, except that the firing in Step C in air containing 10% CO 2 was performed at 750 ° C for 1 hour.

【0049】(比較例15)工程C,Bの10%CO2
含有空気中で行う焼成を、750℃で1時間行うこと以
外は、実施例3と同様にして排気ガス浄化用触媒を得
た。
Comparative Example 15 10% CO 2 of Steps C and B
An exhaust gas purifying catalyst was obtained in the same manner as in Example 3, except that the calcination in the contained air was performed at 750 ° C. for 1 hour.

【0050】(比較例16)工程C,Aの10%CO2
含有空気中で行う焼成を、750℃で1時間行うこと以
外は、実施例4と同様にして排気ガス浄化用触媒を得
た。
Comparative Example 16 10% CO 2 of Steps C and A
An exhaust gas purifying catalyst was obtained in the same manner as in Example 4, except that the calcination in the contained air was performed at 750 ° C. for 1 hour.

【0051】(比較例17)工程C,A,Bの10%C
2 含有空気中で行う焼成を、750℃で1時間行うこ
と以外は、実施例5と同様にして排気ガス浄化用触媒を
得た。
(Comparative Example 17) 10% C of Steps C, A and B
An exhaust gas purifying catalyst was obtained in the same manner as in Example 5, except that the firing in the O 2 -containing air was performed at 750 ° C. for 1 hour.

【0052】(比較例18)工程C,A,Bの10%C
2 含有空気中で行う焼成を、750℃で1時間行うこ
と以外は、実施例6と同様にして排気ガス浄化用触媒を
得た。
(Comparative Example 18) 10% C of steps C, A and B
An exhaust gas purifying catalyst was obtained in the same manner as in Example 6, except that the calcination in the O 2 -containing air was performed at 750 ° C. for 1 hour.

【0053】(比較例19)工程Cにおいて、焼成を
2.5%CO2 含有空気気流中で行うこと以外は、実施
例1と同様にして排気ガス浄化用触媒を得た。
Comparative Example 19 An exhaust gas purifying catalyst was obtained in the same manner as in Example 1, except that in step C, the calcination was carried out in an air stream containing 2.5% CO 2 .

【0054】上記実施例1〜14および比較例1〜19
の触媒について、工程および触媒組成を、表1に示す。
Examples 1 to 14 and Comparative Examples 1 to 19
Table 1 shows the process and catalyst composition for the catalyst (1).

【0055】[0055]

【表1】 [Table 1]

【0056】(実験例)上記実施例1〜14および比較
例1〜19の触媒について、以下の条件で初期及び耐久
後の触媒活性評価を行った。
(Experimental Examples) The catalysts of Examples 1 to 14 and Comparative Examples 1 to 19 were evaluated for catalytic activity at the initial stage and after the endurance under the following conditions.

【0057】<耐久条件>エンジン4400ccの排気
系に触媒を装着し、600℃で、50時間運転し、耐久
を行った。
<Durability Conditions> A catalyst was mounted in an exhaust system of 4400 cc engine and operated at 600 ° C. for 50 hours to perform durability.

【0058】<評価条件>触媒活性評価は、排気量20
00ccのエンジンの排気系に各種触媒を装着し、A/
F=14.6(ストイキ状態)で30秒間、その後A/
F=22(リーン状態で30秒間の1サイクルを行い、
各々平均転化率を測定し、このA/F=14.6の場合
の平均転化率とA/F=22の場合の平均転化率とを平
均してトータル転化率とした。この評価を、初期及び耐
久後に各々行った。平均転化率の算出法は以下の通りで
ある。
<Evaluation Conditions> The catalyst activity was evaluated using a displacement of 20
Attaching various catalysts to the exhaust system of a 00cc engine, A /
F = 14.6 (stoichiometric state) for 30 seconds, then A /
F = 22 (1 cycle of 30 seconds in lean state,
The average conversion was measured, and the average conversion when A / F = 14.6 and the average conversion when A / F = 22 were averaged to obtain the total conversion. This evaluation was performed at the initial stage and after the endurance. The method of calculating the average conversion is as follows.

【0059】[0059]

【数1】 (Equation 1)

【0060】トータル転化率として得られた触媒活性評
価結果を表2に示す。比較例に比べ、実施例は、触媒活
性が高く、後述する本発明の効果を確認することができ
る。
Table 2 shows the catalytic activity evaluation results obtained as the total conversion. As compared with the comparative example, the example has a higher catalytic activity, and can confirm the effects of the present invention described later.

【0061】[0061]

【表2】 [Table 2]

【0062】請求項記載の排気ガス浄化用触媒製造方法
で得られた触媒は、NOx吸収材担持以降の全ての焼成
を、炭酸ガス雰囲気下で行うことにより、従来の触媒製
造法では十分活性が得られないリーン雰囲気におけるN
Ox浄化性能を、NOx吸収に必要な、吸収材の炭酸化
合状態を維持することにより高めることができる。
The catalyst obtained by the method for producing an exhaust gas purifying catalyst according to the present invention has sufficient activity in the conventional catalyst production method by performing all calcinations after loading the NOx absorbent in a carbon dioxide gas atmosphere. N in a lean atmosphere that cannot be obtained
Ox purification performance can be enhanced by maintaining the carbonation state of the absorbent necessary for NOx absorption.

【0063】[0063]

【発明の効果】以上、詳細に説明してきたように、本発
明の排気ガス浄化用触媒の製造方法では、NOx吸収材
担持後の全ての焼成工程を炭酸ガス雰囲気下で行うこと
で、基材中のアルミナとNOx吸収材の化合を防ぎ、N
Ox吸収反応に重要な炭酸塩を、吸収材担持後の焼成に
より失うことなく製品化することができる。こうして、
触媒中に保持された炭酸塩は、排気ガス雰囲気下におい
ても、排気ガス雰囲気中に含まれる10〜15%のCO
2 により、アルミナと化合することなく、式1に示した
NOx吸収反応式に基づく反応を速やかに実現し、十分
なNOx吸収能を得ることができる。
As described above in detail, in the method for manufacturing an exhaust gas purifying catalyst according to the present invention, all the sintering steps after carrying the NOx absorbent are carried out in a carbon dioxide gas atmosphere. Prevents the combination of alumina and NOx absorbent in the
Carbonates important for the Ox absorption reaction can be commercialized without being lost by firing after supporting the absorbent. Thus,
The carbonate retained in the catalyst is capable of removing 10 to 15% of CO contained in the exhaust gas atmosphere even under the exhaust gas atmosphere.
According to 2 , a reaction based on the NOx absorption reaction formula shown in Formula 1 can be quickly realized without combining with alumina, and a sufficient NOx absorption capacity can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】X線回折ピークパターン(吸収材担持後全工程
炭酸ガス焼成)を示す図である。
FIG. 1 is a view showing an X-ray diffraction peak pattern (all steps of carbon dioxide firing after supporting an absorber).

【図2】X線回折ピークパターン(炭酸ガス処理後)を
示す図である。
FIG. 2 is a view showing an X-ray diffraction peak pattern (after carbon dioxide gas treatment).

【図3】X線回折ピークパターン(貴金属担持、焼成処
理後)を示す図である。
FIG. 3 is a view showing an X-ray diffraction peak pattern (noble metal supported, after firing treatment).

【図4】X線回折ピークパターン(炭酸ガス再処理後)
を示す図である。
FIG. 4 X-ray diffraction peak pattern (after reprocessing of carbon dioxide)
FIG.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 耐久性無機担体上に、貴金属触媒を担
持、焼成する第1の工程と、 遷移金属を担持、焼成する第2の工程と、 NOx吸収材を担持、焼成する第3の工程と、から成る
排気ガス浄化用触媒の製造方法において、 第3の工程以降の全てに含まれる焼成工程を炭酸ガス雰
囲気下で行うことを特徴とする排気ガス浄化用触媒の製
造方法。
1. A first step of supporting and firing a noble metal catalyst on a durable inorganic carrier, a second step of supporting and firing a transition metal, and a third step of supporting and firing a NOx absorbent. The method of manufacturing an exhaust gas purifying catalyst according to claim 1, wherein the firing step included in all of the third and subsequent steps is performed in a carbon dioxide gas atmosphere.
JP9058873A 1997-03-13 1997-03-13 Manufacture of catalyst for exhaust gas purification Pending JPH10249205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9058873A JPH10249205A (en) 1997-03-13 1997-03-13 Manufacture of catalyst for exhaust gas purification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9058873A JPH10249205A (en) 1997-03-13 1997-03-13 Manufacture of catalyst for exhaust gas purification

Publications (1)

Publication Number Publication Date
JPH10249205A true JPH10249205A (en) 1998-09-22

Family

ID=13096883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9058873A Pending JPH10249205A (en) 1997-03-13 1997-03-13 Manufacture of catalyst for exhaust gas purification

Country Status (1)

Country Link
JP (1) JPH10249205A (en)

Similar Documents

Publication Publication Date Title
JP3741303B2 (en) Exhaust gas purification catalyst
JP5826285B2 (en) NOx absorption catalyst
US5814576A (en) Catalyst for purifying exhaust gas and method of producing same
EP1796833B1 (en) Exhaust gas cleaning catalyst, exhaust gas cleaning device, and system comprising internal combustion engine
JP2003320252A (en) Exhaust gas treatment catalyst and production of the same
JP3952617B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JP3965676B2 (en) Exhaust gas purification catalyst and exhaust gas purification system
JP3704701B2 (en) Exhaust gas purification catalyst
JP3789231B2 (en) Exhaust gas purification catalyst
JP2002143683A (en) Catalyst for purification of exhaust gas and method for manufacturing the same
JP3797081B2 (en) Absorption reduction type NOx purification catalyst
JPH10249199A (en) Catalyst for purifying exhaust gas
JP2004216224A (en) Nox occlusion reduction type catalyst
JP3965793B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JP3622893B2 (en) NOx absorbent and exhaust gas purification catalyst using the same
JP4103407B2 (en) NOx storage reduction catalyst
JP3885376B2 (en) Exhaust gas purification catalyst and method of using the same
JP2002168117A (en) Exhaust emission control system
JP3897483B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
JPH1176819A (en) Catalyst for cleaning of exhaust gas
JPH10249205A (en) Manufacture of catalyst for exhaust gas purification
JP2001046835A (en) NOx ABSORBING AND CLEANING MATERIAL AND EXHAUST GAS CLEANING CATALYST USING THE SAME
JP2000325787A (en) Manufacture of exhaust gas cleaning catalyst
JP2003200061A (en) Exhaust gas purifying catalyst and exhaust gas purifying device
JP3885339B2 (en) Exhaust gas purification catalyst, method for producing the same, and method for using the same