JPH10242572A - Manufacture of semiconductor optical device - Google Patents

Manufacture of semiconductor optical device

Info

Publication number
JPH10242572A
JPH10242572A JP3892897A JP3892897A JPH10242572A JP H10242572 A JPH10242572 A JP H10242572A JP 3892897 A JP3892897 A JP 3892897A JP 3892897 A JP3892897 A JP 3892897A JP H10242572 A JPH10242572 A JP H10242572A
Authority
JP
Japan
Prior art keywords
mask
semiconductor
optical waveguide
layer
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3892897A
Other languages
Japanese (ja)
Inventor
Yasumasa Suzaki
泰正 須崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3892897A priority Critical patent/JPH10242572A/en
Publication of JPH10242572A publication Critical patent/JPH10242572A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the positioning accuracy of a semiconductor optical element from the surface of a semiconductor device by forming a selectively grown film on the surface of a semiconductor structure and, at the same time, a groove around the selectively grown film. SOLUTION: A semiconductor optical element is premised on such a semiconductor structure that an active layer 1 and a GaInAsP optical waveguide 2 having a spot size enlarging function are respectively buried in areas A and B on an InP substrate and a mask 3 is selectively formed on the surface of the structure corresponding to the active layer 1, and then, a groove 6 is formed around the mask 3. After the groove 6 is formed, an epitaxial layer is formed so as to form an over-clad layer 4 in the area B except the part covered with the mask 3 by using the mask 3. Even when a projection 5 is formed at the time of forming the epitaxial layer, the surface of the part other than the groove 6 becomes higher (distance tc) than the film thickness tp and the surface corresponding to the distance tc becomes a reference surface. In addition, this surface height can be controlled in the order of 0.1μm unlike an abnormally grown parts, such as the projection 5, etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光通信に用いる発
光素子や受光素子等の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a light emitting element, a light receiving element and the like used for optical communication.

【0002】[0002]

【従来の技術】光通信において発光素子や受光素子など
を光半導体装置により構成し、また電送媒体を光ファイ
バにて構成することが広く行なわれており、この場合光
半導体装置と光ファイバとを低損失にて効率良く接続す
ることが必要となる。
2. Description of the Related Art In optical communication, a light emitting element, a light receiving element, and the like are generally constituted by an optical semiconductor device, and a transmission medium is constituted by an optical fiber. It is necessary to connect efficiently with low loss.

【0003】従来、この光半導体装置と光ファイバとを
接続する場合、伝搬光のスポットサイズの違いにより、
そのまま接合するだけでは結合損失が生じるので、レン
ズを用いてスポットサイズを一致させて接続していた。
そして更に近年になっては、光半導体装置にスポットサ
イズ変換器を集積し、このスポットサイズを光ファイバ
のスポットサイズ程度まで拡大して結合効率を高くして
いるものがある。
Conventionally, when connecting this optical semiconductor device to an optical fiber, the difference in spot size of the propagating light causes
Since the connection loss occurs if the connection is performed as it is, the connection is performed using a lens with the same spot size.
More recently, a spot size converter has been integrated into an optical semiconductor device, and the spot size has been increased to about the spot size of an optical fiber to increase the coupling efficiency.

【0004】かかるスポットサイズ変換器を備えた光半
導体装置と光ファイバとの結合にあっては、調芯トレラ
ンスが1μm〜2μmと大きいために調芯工程を省略し
たいわゆるパッシブアライメント方式にて接続でき、低
コスト化に有効となっている。しかしながら、位置合せ
に際しては基準面が必要となるので導波路の位置が基準
面からいかほどの距離にあるかをμmオーダにて知る必
要がある。
In the connection between an optical semiconductor device having such a spot size converter and an optical fiber, since the alignment tolerance is as large as 1 μm to 2 μm, connection can be made by a so-called passive alignment method in which the alignment step is omitted. It is effective for cost reduction. However, since a reference plane is required for alignment, it is necessary to know the position of the waveguide at a distance of μm from the reference plane.

【0005】ここで、基準面としては通常光半導体装置
の表裏いずれかの表面が用いられるが、光半導体装置の
場合には端面を壁開にて形成するため、裏面に当る基板
側を研磨することにより光半導体装置の厚さを数百μm
程度に加工しており、この加工精度上の問題から裏面を
基準面とすると数十μm程度の誤差が生じる。
Here, either the front or back surface of the optical semiconductor device is usually used as the reference surface. However, in the case of the optical semiconductor device, the end surface is formed by opening the wall, so that the substrate side corresponding to the rear surface is polished. The thickness of the optical semiconductor device can be reduced to several hundred μm
Due to the problem in processing accuracy, an error of about several tens of μm occurs when the back surface is used as a reference surface.

【0006】他方、光半導体装置の表面に当る結晶成長
面では、有機金属気相エピタキシャル成長法(MOVP
E法)などを用いるとその厚みを0.1μm以下の精度
にて制御できる。この結果、光半導体装置の表面を基準
面として位置決めが行なわれることになる。また、光半
導体装置を固定するSi基板などの固定台では、その表
面が基準面となるので、実装に当っては光半導体装置の
基準面である表面を固定台の表面に接触させるように、
光半導体装置の表裏の上下を逆にして、いわゆるジャン
クションダウンにより実装が行なわれる。
On the other hand, on the crystal growth surface corresponding to the surface of the optical semiconductor device, the metalorganic vapor phase epitaxial growth method (MOVP)
E)) can control the thickness with an accuracy of 0.1 μm or less. As a result, positioning is performed using the surface of the optical semiconductor device as a reference plane. In addition, in the case of a fixing base such as a Si substrate for fixing the optical semiconductor device, its surface is a reference surface, so that the surface that is the reference surface of the optical semiconductor device is brought into contact with the surface of the fixing base during mounting.
The optical semiconductor device is mounted upside down by so-called junction down.

【0007】[0007]

【発明が解決しようとする課題】ところが、光半導体装
置の表面を基準面として固定台にジャンクションダウン
にて精度良く位置決め・実装しようとしても、光半導体
装置の表面の結晶の異常成長により位置決め精度が大幅
に悪化してしまうという問題がある。
However, even if an attempt is made to accurately position and mount the optical semiconductor device on a fixed base with a junction down using the surface of the optical semiconductor device as a reference plane, the positioning accuracy is increased due to abnormal growth of crystals on the surface of the optical semiconductor device. There is a problem that it is greatly deteriorated.

【0008】すなわち、図7に示すように半導体レーザ
を例にとるとき、図7(a),(b)に示すInP基板
上に領域Aにて活性層1が埋込まれ、領域Bにてスポッ
トサイズ変換器2が埋込まれた半導体構造を前提とし
て、この領域A上にのみ電極を形成し領域B上に例えば
オーバクラッド層(径の拡大された導波光がクラッド層
の外に漏れないようにする層)を形成する。この場合、
まず領域Aの結晶成長を行ないたくない部分のみ選択成
長用マスク3を形成し、有機金属気相エピタキシャル成
長法にてガス状の半導体材料を供給する。すると、マス
ク面を除いて領域Bのみならずマイグレーションにより
マスク端にも半導体材料が成長し、オーバクラッド層4
(図7(c)(d)(e))が形成される。
That is, when taking a semiconductor laser as an example as shown in FIG. 7, the active layer 1 is buried in the region A on the InP substrate shown in FIGS. On the premise of the semiconductor structure in which the spot size converter 2 is embedded, an electrode is formed only on this region A, and for example, an over-cladding layer (guided light whose diameter is enlarged does not leak outside the cladding layer) on the region B Is formed. in this case,
First, a selective growth mask 3 is formed only in a portion of the region A where crystal growth is not desired, and a gaseous semiconductor material is supplied by metal organic chemical vapor deposition. As a result, the semiconductor material grows not only in the region B except in the mask surface but also in the mask edge by the migration, and the over cladding layer 4 is formed.
(FIGS. 7C, 7D, and 7E) are formed.

【0009】この場合、マスク端にのみ材料が過剰に供
給され、成長層の厚さが大きい厚膜部が形成され、更に
は、結晶方向が図8に示すように(100)面を表面と
して(011)方向に延びる場合には(111)面での
成長抑制効果により図7(d)に示すような突起5が形
成され、しかもこの突起5は図7(d)のように厚さt
cに対してtpと大きく成長し、またマスク面積や膜質
に大きく依存するため0.1μmオーダの制御は困難と
なる。図9は、こうして突起5が形成された場合の半導
体レーザ素子の斜視図を示している。この結果、突起5
の頂部を基準面とするジャンクションダウン実装では表
面からの位置決め精度は極めて悪くなっている。
In this case, an excessive amount of material is supplied only to the end of the mask, a thick film portion having a large growth layer is formed, and the crystal direction is the (100) plane as shown in FIG. When extending in the (011) direction, a projection 5 as shown in FIG. 7D is formed due to the growth suppressing effect on the (111) plane, and the projection 5 has a thickness t as shown in FIG. 7D.
It grows as large as tp with respect to c, and it is difficult to control on the order of 0.1 μm because it largely depends on the mask area and film quality. FIG. 9 is a perspective view of the semiconductor laser device when the protrusions 5 are formed in this manner. As a result, the protrusion 5
In the case of junction-down mounting using the top as a reference surface, the positioning accuracy from the surface is extremely poor.

【0010】本発明は、上述の問題に鑑み光半導体装置
の表面からの位置決め精度を向上させるようにした半導
体光素子の製造方法を提供する。
The present invention has been made in view of the above problems, and provides a method of manufacturing a semiconductor optical device in which positioning accuracy from the surface of an optical semiconductor device is improved.

【0011】[0011]

【課題を解決するための手段】上述の目的を達成する本
発明は次の発明特定事項を有する。 (1) スポットサイズ拡大機能を有する光導波路と、
前記光導波路に接続された活性光導波路と、前記光導波
路及び前記活性光導波路の上に積層されたクラッド層
と、前記光導波路及び活性光導波路を囲む埋め込み層と
を有する半導体構造を形成する第1の工程と、前記半導
体構造の表面上に、前記活性光導波路を覆うように選択
成長膜を形成すると共に、前記選択成長膜の周囲に溝を
形成する第2の工程と、有機金属気相エピタキシャル成
長法により前記選択成長膜で覆われていない部分に、オ
ーバクラッド層を形成する第3の工程と、を備えたこと
を特徴とする。 (2) (1)において、前記半導体光構造が半導体レ
ーザを形成することを特徴とする。 (3) (1)において、前記半導体光構造が半導体変
調器を形成することを特徴とする。
The present invention that achieves the above-mentioned object has the following matters specifying the invention. (1) an optical waveguide having a spot size enlarging function;
Forming a semiconductor structure having an active optical waveguide connected to the optical waveguide, a cladding layer laminated on the optical waveguide and the active optical waveguide, and a buried layer surrounding the optical waveguide and the active optical waveguide; A second step of forming a selective growth film on the surface of the semiconductor structure so as to cover the active optical waveguide, and forming a groove around the selective growth film; A third step of forming an overcladding layer in a portion not covered with the selective growth film by an epitaxial growth method. (2) In (1), the semiconductor optical structure forms a semiconductor laser. (3) In the constitution (1), the semiconductor optical structure forms a semiconductor modulator.

【0012】活性光導波路に対応する選択成長膜の周囲
に形成した溝は、オーバクラッド層の形成に当って、突
起となる成長層の上端を低く抑えることができ、他のオ
ーバクラッド層の表面より低くなって突起以外の他の表
面にて正確な基準面を得ることができる。
The groove formed around the selective growth film corresponding to the active optical waveguide can keep the upper end of the growth layer serving as a projection low when forming the over cladding layer, and can reduce the surface of the other over cladding layer. It becomes lower and an accurate reference plane can be obtained on the other surface than the projection.

【0013】[0013]

【発明の実施の形態】ここで、図1〜図6を参照して本
発明の実施の形態の一例を説明する。なお、図7と同一
部分には同符号を付す。図1において、InP基板上に
領域Aにて活性層(活性光導波路)1と、領域BにてG
aInAsP系のスポットサイズ拡大機能を有する光導
波路2とが埋込まれた半導体構造を前提として、活性層
1に対応する表面に選択的にマスク3を形成する。そし
て、このマスク3の周囲に溝6を形成する。この溝6
は、後述のオーバクラッド層の形成に当って異常成長抑
制のための溝である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Here, an example of an embodiment of the present invention will be described with reference to FIGS. The same parts as those in FIG. 7 are denoted by the same reference numerals. In FIG. 1, an active layer (active optical waveguide) 1 in a region A and a G
A mask 3 is selectively formed on a surface corresponding to the active layer 1 on the premise of a semiconductor structure in which an aInAsP-based optical waveguide 2 having a spot size expanding function is embedded. Then, a groove 6 is formed around the mask 3. This groove 6
Are grooves for suppressing abnormal growth in forming an overcladding layer described later.

【0014】この後、マスク3を用いてマスク3以外の
部分に選択的に領域Bにオーバクラッド層4を形成すべ
く有機金属気相エピタキシャル成長法にて半導体材料ガ
スを供給してエピタキシャル層を形成する。このとき、
図1(e)に示すように突起5が形成されたとしても膜
厚tpより溝以外の部分の表面の方が高く(距離tc)
なり、この距離tcに当る表面が基準面となる。そし
て、この表面高さは突起5のような異常成長部分と異な
り、0.1μmオーダでの制御が可能となる。
Thereafter, a semiconductor material gas is supplied by metalorganic vapor phase epitaxy to form an overcladding layer 4 in a region B other than the mask 3 selectively using the mask 3 to form an epitaxial layer. I do. At this time,
Even if the protrusions 5 are formed as shown in FIG. 1E, the surface of the portion other than the groove is higher than the film thickness tp (distance tc).
And the surface corresponding to this distance tc is the reference plane. The surface height is different from that of the abnormally grown portion such as the protrusion 5 and can be controlled on the order of 0.1 μm.

【0015】図1の成長は、図8に示す前述した(10
0)面を表面として(011)方向に延びる結晶方向に
基づくものであるが、(100)面を表面として(01
T)方向に延びる結晶方向の場合にも溝の形成により選
択成長を行なっても(111)面での成長抑制が図1
(d)のように生じて表面上面の高さに何ら影響を及ぼ
すものではない。
The growth shown in FIG.
This is based on the crystal direction extending in the (011) direction with the (0) plane as the surface, but is based on the (01) plane with the (100) plane as the surface.
Even in the case of the crystal direction extending in the T) direction, the growth is suppressed on the (111) plane even when the selective growth is performed by forming the grooves in FIG.
This does not affect the height of the upper surface of the surface at all as shown in FIG.

【0016】ここで、図2〜図6を参照してスポットサ
イズ拡大機能付き半導体レーザの製法につき述べる。最
初に有機金属気相エピタキシャル成長法を用いて、n−
InP基板10上にGaInAsP活性層11とp−I
nP第一クラッド層12を形成する(図2(1))。次
にSiNx膜13を形成し、フォトリソグラフィとエッ
チングにより、スポットサイズサイズ変換層となる部分
のSiNx膜を除去し、これをマスクとしてエッチング
により、活性層を除去する(図2(2))。有機金属気
相エピタキシャル選択成長法によりスポットサイズ変換
層14を形成した後にSiNx膜を除去し、p−InP
第二クラッド層15を有機金属気相エピタキシャル成長
法を用いて全面に形成する(図2(3))。次にSiO
2膜16を形成し、フォトリソグラフィとエッチングに
よりストライプ形状のSiO2膜を形成し、これをマス
クとしてエッチングによりストライプメサ構造を形成す
る(図2(4))。またストライプ形状のSiO2膜を
マスクとして有機金属気相エピタキシャル選択成長法に
よりストライプメサ構造を埋め込むようにFe−InP
埋め込み層17を形成する(図3(1))。次にSiO
2膜を形成し、フォトリソグラフィとエッチングにより
活性層の周囲に所定の幅をもった異常成長抑制のための
溝形成部分のSiO2膜18を除去する(図3
(2))。このSiO2膜18をマスクとしてエッチン
グにより所定の深さの異常成長抑制のための溝19を形
成する(図4(1))。次にフォトリソグラフィとエッ
チングにより、活性層上のSiO2膜以外を除去する
(図4(2))。次にこのSiO2膜をマスクとして有
機金属気相エピタキシャル選択成長法によりオーバクラ
ッド層20を形成する(図5)。ついで、活性層上のS
iO2膜18を除去して活性層上以外の部分にSiO2
膜21を再度形成し、最後に電極22を形成する(図
6)。
Here, a method of manufacturing a semiconductor laser having a spot size enlarging function will be described with reference to FIGS. First, using metalorganic vapor phase epitaxial growth, n-
GaInAsP active layer 11 and p-I on InP substrate 10
The nP first cladding layer 12 is formed (FIG. 2A). Next, a SiNx film 13 is formed, the portion of the SiNx film serving as a spot size conversion layer is removed by photolithography and etching, and the active layer is removed by etching using this as a mask (FIG. 2 (2)). After forming the spot size conversion layer 14 by the metalorganic vapor phase epitaxial selective growth method, the SiNx film is removed and p-InP
The second cladding layer 15 is formed on the entire surface by using a metalorganic vapor phase epitaxial growth method (FIG. 2C). Next, SiO
The second film 16 is formed, a stripe-shaped SiO2 film is formed by photolithography and etching, and a stripe mesa structure is formed by etching using this as a mask (FIG. 2D). Also, Fe-InP is embedded by a metalorganic vapor phase epitaxial selective growth method using a stripe-shaped SiO2 film as a mask so as to embed a stripe mesa structure.
The buried layer 17 is formed (FIG. 3A). Next, SiO
Then, the SiO2 film 18 having a predetermined width around the active layer for suppressing abnormal growth is removed by photolithography and etching (FIG. 3).
(2)). Using the SiO2 film 18 as a mask, a groove 19 for suppressing abnormal growth at a predetermined depth is formed by etching (FIG. 4A). Next, portions other than the SiO2 film on the active layer are removed by photolithography and etching (FIG. 4B). Next, using this SiO2 film as a mask, an overcladding layer 20 is formed by metal organic chemical vapor phase epitaxial selective growth (FIG. 5). Then, S on the active layer
The iO2 film 18 is removed, and SiO2
The film 21 is formed again, and finally the electrode 22 is formed (FIG. 6).

【0017】ここで、異常成長抑制のための溝幅は例え
ば50μmであり、また深さは、平坦な基板に、活性層
上に形成したSiO2膜マスクと同じ大きさのマスクを
用いて有機金属気相エピタキシャル選択成長法によりオ
ーバクラッド層と同じ厚さの層を形成した場合にできる
異常成長の突起の高さの頂部が平坦なオーバクラッド層
より低くなるような深さとする。上述の説明はスポット
サイズ拡大機能付き半導体レーザについてしたが、活性
層を光吸収層としたスポットサイズ拡大機能付き光変調
器についても適用できる。この場合、変調器単体として
使用する場合、スポットサイズ拡大機能導波路は光吸収
層の前後に備える。なお、レーザとの某積化では出力側
に備えている。また、本実施例ではGaInAsP/I
nP系での作製方法について述べたが、本発明はIII −
V族化合物半導体全般においてももちろん適用できる。
以上の構成において、結晶成長表面は異常成長による突
起部分よりも高い位置に平坦部が形成され、ジャンクシ
ョンダウン実装が問題なく行えた。
Here, the groove width for suppressing abnormal growth is, for example, 50 μm, and the depth is formed on a flat substrate by using a mask having the same size as the SiO 2 film mask formed on the active layer. The depth is set such that the apex of the abnormally grown projection formed when a layer having the same thickness as the overcladding layer is formed by the vapor phase epitaxial selective growth method is lower than the flat overcladding layer. Although the above description has been made with respect to a semiconductor laser having a spot size expanding function, the present invention is also applicable to an optical modulator having a spot size expanding function in which an active layer is a light absorbing layer. In this case, when used as a modulator alone, the spot size expanding function waveguide is provided before and after the light absorbing layer. It should be noted that a certain integration with a laser is provided on the output side. In this embodiment, GaInAsP / I
Although the production method in the nP system has been described, the present invention relates to III-
Of course, the present invention can also be applied to general group V compound semiconductors.
In the above configuration, a flat portion was formed on the crystal growth surface at a position higher than the protruding portion due to abnormal growth, so that junction-down mounting could be performed without any problem.

【0018】[0018]

【発明の効果】以上、説明したように、本発明の半導体
光素子の製造方法では選択マスクを用いた有機金属気相
エピタキシャル選択成長法において、所定の深さと幅の
異常成長抑制溝を形成したことにより、結晶成長表面を
平坦にすることができジャンクションダウン実装が可能
になる。
As described above, in the method of manufacturing a semiconductor optical device according to the present invention, an abnormal growth suppressing groove having a predetermined depth and width is formed in a metal organic chemical vapor deposition selective growth method using a selection mask. As a result, the crystal growth surface can be flattened and junction-down mounting becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の一例を示すための断面構
成図。
FIG. 1 is a cross-sectional configuration diagram illustrating an example of an embodiment of the present invention.

【図2】本発明方法の一例の最初の工程図。FIG. 2 is a first step diagram of an example of the method of the present invention.

【図3】本発明方法の一例の次の工程図。FIG. 3 is a next step diagram of an example of the method of the present invention.

【図4】本発明方法の一例のその次の工程図。FIG. 4 is a diagram showing the next step of an example of the method of the present invention.

【図5】オーバクラッド層を成長させた斜視図。FIG. 5 is a perspective view in which an over cladding layer is grown.

【図6】電極まで形成した斜視図。FIG. 6 is a perspective view in which electrodes are formed.

【図7】従来例を示すための断面構成図。FIG. 7 is a cross-sectional configuration diagram showing a conventional example.

【図8】InP系の結晶方位の説明図。FIG. 8 is an explanatory diagram of an InP-based crystal orientation.

【図9】従来例による素子の斜視図。FIG. 9 is a perspective view of an element according to a conventional example.

【符号の説明】[Explanation of symbols]

1,11 活性層 2,14 スポットサイズ変換器 4,20 オーバクラッド層 5 突起 1,11 Active layer 2,14 Spot size converter 4,20 Over cladding layer 5 Projection

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 スポットサイズ拡大機能を有する光導波
路と、前記光導波路に接続された活性光導波路と、前記
光導波路及び前記活性光導波路の上に積層されたクラッ
ド層と、前記光導波路及び活性光導波路を囲む埋め込み
層とを有する半導体構造を形成する第1の工程と、 前記半導体構造の表面上に、前記活性光導波路を覆うよ
うに選択成長膜を形成すると共に、前記選択成長膜の周
囲に溝を形成する第2の工程と、 有機金属気相エピタキシャル成長法により前記選択成長
膜で覆われていない部分に、オーバクラッド層を形成す
る第3の工程を備えた半導体光素子の製造方法。
An optical waveguide having a spot size enlarging function; an active optical waveguide connected to the optical waveguide; a cladding layer laminated on the optical waveguide and the active optical waveguide; A first step of forming a semiconductor structure having a buried layer surrounding the optical waveguide; and forming a selective growth film on the surface of the semiconductor structure so as to cover the active optical waveguide; And a third step of forming an over-cladding layer in a portion not covered with the selective growth film by metalorganic vapor phase epitaxy.
【請求項2】 前記半導体光構造が半導体レーザを形成
することを特徴とする請求項1に記載の半導体光素子の
製造方法。
2. The method according to claim 1, wherein the semiconductor optical structure forms a semiconductor laser.
【請求項3】 前記半導体光構造が半導体変調器を形成
することを特徴とする請求項1に記載の半導体光素子の
製造方法。
3. The method of claim 1, wherein the semiconductor optical structure forms a semiconductor modulator.
JP3892897A 1997-02-24 1997-02-24 Manufacture of semiconductor optical device Withdrawn JPH10242572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3892897A JPH10242572A (en) 1997-02-24 1997-02-24 Manufacture of semiconductor optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3892897A JPH10242572A (en) 1997-02-24 1997-02-24 Manufacture of semiconductor optical device

Publications (1)

Publication Number Publication Date
JPH10242572A true JPH10242572A (en) 1998-09-11

Family

ID=12538902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3892897A Withdrawn JPH10242572A (en) 1997-02-24 1997-02-24 Manufacture of semiconductor optical device

Country Status (1)

Country Link
JP (1) JPH10242572A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9698570B2 (en) 2014-01-10 2017-07-04 Fujitsu Limited Optical semiconductor element and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9698570B2 (en) 2014-01-10 2017-07-04 Fujitsu Limited Optical semiconductor element and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US5684902A (en) Semiconductor laser module
JPH1084168A (en) Method of hybrid integration of individual devices on semiconductor substrate and photoelectronic device
JP2008113041A (en) Waveguide
US4589117A (en) Butt-jointed built-in semiconductor laser
JP2003229635A (en) Semiconductor optical integrated element
JPH087288B2 (en) Method for manufacturing hybrid optical integrated circuit
US6596558B2 (en) Method for fabricating optical devices with defectless and antireflecting spot size converter
JPH10242572A (en) Manufacture of semiconductor optical device
JPH0667043A (en) Spot conversion element and its production
US20100080506A1 (en) Semiconductor optical function device
JP3239933B2 (en) Semiconductor optical device, method of manufacturing semiconductor optical device, and mounting structure of semiconductor optical device
JP2002217446A (en) Optical semiconductor integrated device and method of manufacturing the same
JPH0715080A (en) Semiconductor optical component
JP2001135887A (en) Optical semiconductor device and optical transmission system
JP2605650B2 (en) Optical isolator
JP2002270947A (en) Method for manufacturing optical semiconductor device
JPH1027944A (en) Photo-semiconductor element and module and their manufacturing methods
JP2002071992A (en) Method of manufacturing optical semiconductor element
JP2975762B2 (en) Semiconductor laser device and method of manufacturing the same
JPH09102649A (en) Semiconductor optical element junction structure and manufacture of the junction part
JPH10209557A (en) Manufacture of semiconductor laser
EP0872926A1 (en) Optical semiconductor module
JPS6062177A (en) Semiconductor laser
KR100243686B1 (en) Plane buried type semiconductor laser
JPS5882586A (en) Wavelength controlled semiconductor laser

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040511