JPH10242570A - Compound semiconductor light emitting element and its manufacture - Google Patents

Compound semiconductor light emitting element and its manufacture

Info

Publication number
JPH10242570A
JPH10242570A JP3790897A JP3790897A JPH10242570A JP H10242570 A JPH10242570 A JP H10242570A JP 3790897 A JP3790897 A JP 3790897A JP 3790897 A JP3790897 A JP 3790897A JP H10242570 A JPH10242570 A JP H10242570A
Authority
JP
Japan
Prior art keywords
layer
cleavage
substrate
compound semiconductor
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3790897A
Other languages
Japanese (ja)
Other versions
JP3892519B2 (en
Inventor
Masahiro Yamamoto
雅裕 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3790897A priority Critical patent/JP3892519B2/en
Publication of JPH10242570A publication Critical patent/JPH10242570A/en
Application granted granted Critical
Publication of JP3892519B2 publication Critical patent/JP3892519B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To element-isolate a GaN compound semiconductor laser having a base substrate of sapphire by cleavage with good controllability. SOLUTION: Concerning to a manufacturing method for a compound semiconductor laser having a semiconductor laminated substrate wherein GaN compound semiconductors are laminated, an AlGaN cleavage auxiliary region layer 120 which has a cut line in a direction to be cleaved and does not function mainly for light confinement and current confinement is formed, on the said substrate after the formation of the laminated substrate. Following this, a selective etching for forming an n-side electrode is performed, and p-side and n-side electrodes are formed. Following this, the laminated substrate is cleaved and element isolation is performed, by splitting the cleavage auxiliary region layer 120 along the cut line.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体発光素子に
係わり、特に劈開手法の改良をはかった窒化物系化合物
半導体素子及びその製造方法に関する
[0001] 1. Field of the Invention [0002] The present invention relates to a semiconductor light emitting device, and more particularly to a nitride compound semiconductor device with improved cleavage method and a method of manufacturing the same.

【0002】[0002]

【従来の技術】近年、短波長の光源として、窒化物を含
む化合物半導体発光素子が注目されている。GaNを含
む窒化物系化合物は、青色を含む短波長領域での発光が
可能であり、短波長発光材料として有望である。
2. Description of the Related Art In recent years, a compound semiconductor light emitting device containing a nitride has attracted attention as a short wavelength light source. A nitride compound containing GaN can emit light in a short wavelength region including blue, and is promising as a short wavelength light emitting material.

【0003】この種の材料、特にGaNを主たる成分と
する化合物半導体層は非常に安定であり、逆にそのため
加工しにくい。また、通常この系の化合物半導体は基板
としてサファイアを用いることが多く、例えばGaA
s,GaP基板のように劈開等の性質を用いることはで
きない。このため、チップ化等は非常に困難であり、従
来のように劈開を利用していたレーザダイオード等の共
振器を作成することは困難である。
[0003] This kind of material, especially a compound semiconductor layer containing GaN as a main component, is very stable and, conversely, difficult to process. In general, sapphire is often used as a substrate for this type of compound semiconductor, for example, GaAs.
Properties such as cleavage cannot be used like s, GaP substrates. For this reason, it is very difficult to make a chip or the like, and it is difficult to create a resonator such as a laser diode that uses cleavage as in the conventional case.

【0004】[0004]

【発明が解決しようとする課題】このように従来、Ga
Nを含む窒化物系化合物半導体発光素子においては、劈
開による素子分離が困難であり、また基板をむりやり割
ることで得られた化合物半導体の端面は反射鏡として十
分機能しないという問題があった。
As described above, conventionally, Ga
In a nitride-based compound semiconductor light emitting device containing N, it is difficult to separate the device by cleavage, and there is a problem that the end face of the compound semiconductor obtained by cracking the substrate does not function sufficiently as a reflecting mirror.

【0005】本発明は、上記事情を考慮して成されたも
ので、その目的とするところは、劈開による素子分離を
制御性良く可能とした窒化物系化合物半導体発光素子及
びその製造方法を提供することにある。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a nitride-based compound semiconductor light emitting device capable of controlling the device isolation by cleavage with good controllability and a method of manufacturing the same. Is to do.

【0006】[0006]

【課題を解決するための手段】[Means for Solving the Problems]

(構成)本発明の骨子は、窒化物系化合物半導体素子を
構成するための半導体積層基板に素子分離を主目的とし
て、Alを含んだ独自の層構造を導入することにより、
劈開による素子分離を可能とすることにある。
(Structure) The gist of the present invention is to introduce a unique layer structure containing Al for the main purpose of device isolation into a semiconductor laminated substrate for constituting a nitride-based compound semiconductor device.
An object of the present invention is to enable device isolation by cleavage.

【0007】即ち本発明は、窒化物系化合物半導体を積
層した半導体積層基板を有する化合物半導体発光素子に
おいて、前記積層基板の側部の劈開部分に、光閉じ込め
及び電流閉じ込めを主たる機能としないAlを含む劈開
補助領域が形成されていることを特徴とする。
That is, according to the present invention, in a compound semiconductor light emitting device having a semiconductor laminated substrate on which a nitride compound semiconductor is laminated, Al, which does not mainly function to confine light and current, is added to a cleavage portion on the side of the laminated substrate. And a cleavage assisting region including the cleavage assisting region.

【0008】また本発明は、窒化物系化合物半導体を積
層した半導体積層基板を有する化合物半導体発光素子の
製造方法において、前記積層基板の最上面若しくは内部
に、光閉じ込め及び電流閉じ込めを主たる機能としない
Alを含む層からなり、劈開すべき方向に切れ目を有す
る劈開補助領域を形成する工程と、前記劈開補助領域を
前記切れ目に沿って割ることにより、前記積層基板を劈
開する工程とを含むことを特徴とする。
The present invention also relates to a method of manufacturing a compound semiconductor light emitting device having a semiconductor laminated substrate on which a nitride compound semiconductor is laminated, wherein light confinement and current confinement are not the main functions in the uppermost surface or inside of the laminated substrate. Forming a cleavage auxiliary region formed of a layer containing Al and having a cut in a direction to be cleaved, and cleaving the laminated substrate by dividing the cleavage auxiliary region along the cut. Features.

【0009】ここで、本発明の望ましい実施態様として
は次のものがあげられる。 (1) 劈開補助領域を構成するAlを含む層は、Inx
y Gazp Asqr (x+y+z=1,0<y,
p+q+r=1)であること。 (2) 劈開補助領域を構成するAlを含む層は、積層基板
の最上部に形成されること。 (3) 劈開補助領域を構成するAlを含む層は、積層基板
の形成途中で該基板の内部に形成されること。 (4) 劈開補助領域を構成するAlを含む層は、その層に
クラックが入る臨界膜厚の60%から99%の厚さに形
成すること。 (5) 劈開補助領域を構成するAlを含む層に、電極側か
ら見て素子分離の境界線に対し幅が変化する部分を設け
ること。 (6) 積層基板は、サファイア基板上に化合物半導体の積
層構造が形成されたものであること。 (7) 劈開補助領域に形成する切れ目は60度以下である
こと。
Here, preferred embodiments of the present invention include the following. (1) The layer containing Al constituting the cleavage assist region is made of In x A
l y Ga z N p As q P r (x + y + z = 1,0 <y,
p + q + r = 1). (2) The layer containing Al constituting the cleavage assisting region is formed on the top of the laminated substrate. (3) The layer containing Al constituting the cleavage assisting region is formed inside the laminated substrate during the formation thereof. (4) The layer containing Al constituting the cleavage assisting region is formed to have a thickness of 60% to 99% of a critical film thickness at which the layer is cracked. (5) The layer containing Al constituting the cleavage assisting region is provided with a portion whose width changes with respect to the boundary line of element isolation when viewed from the electrode side. (6) The laminated substrate has a compound semiconductor laminated structure formed on a sapphire substrate. (7) The cut formed in the cleavage assist region should be 60 degrees or less.

【0010】(作用)通常、サファイア基板上にエピタ
キシャル成長させたGaNは、有機金属気相成長(MO
CVD)法での実用的な厚さ領域(例えば、厚く見積も
って15ミクロン)ではクラックフリー(クラックが存
在しない状態)の状態である。一方、Alを含む層、例
えばAlGaNは、Alの組成が大きくなるに従いクラ
ックフリーで成長できる膜厚が減少する。
(Operation) Normally, GaN epitaxially grown on a sapphire substrate is produced by metal organic chemical vapor deposition (MO).
In a practical thickness region (for example, 15 μm thick when estimated) by the CVD method, it is in a crack-free state (a state in which no crack exists). On the other hand, in a layer containing Al, for example, AlGaN, the film thickness that can be grown crack-free decreases as the composition of Al increases.

【0011】クラックフリーで成長できる膜厚は、成長
条件によっても異なることが確認できているが、MOC
VD法の実用的な厚さ領域にその臨界膜厚が存在するこ
とに変わりはない。そして、この厚さ以上に膜を成長さ
せるとクラックが生じてしまい、膜に裂け目が入る。膜
に裂け目が入ると、基板に達するときもあり素子の機能
に大きく障害をもたらす。この裂け目は、Al組成が入
ることによりGaNと比較した場合、格子定数等の物理
パラメータが大きく異なってくることにより生じると考
えられる。
Although it has been confirmed that the film thickness that can be grown crack-free depends on the growth conditions,
The critical thickness still exists in the practical thickness region of the VD method. If the film is grown to a thickness greater than this thickness, cracks will occur and the film will split. If the film has a rupture, it may reach the substrate, which greatly impairs the function of the device. This crack is considered to be caused by a large difference in the physical parameters such as the lattice constant when compared with GaN due to the Al composition.

【0012】本発明者らは、Alを含む層に発生する本
来望ましくない裂け目を積極的に利用することにより劈
開を行うことを考えた。しかし、クラックによる裂け目
はその方向が不規則であり、劈開したい方向を選択する
ことはできない。そこで、クラックによる裂け目ではな
く、Alを含む層の成膜時に劈開したい方向に沿って意
図的に切れ目を設けた。そして、半導体積層構造とAl
組成の値及び厚さを最適に制御することにより、半導体
積層構造を狙った方向に劈開することができるのを見出
した。
[0012] The present inventors have considered that cleavage is performed by actively utilizing the originally undesirable cracks generated in the Al-containing layer. However, the direction of the crack due to the crack is irregular, and it is not possible to select the direction to be cleaved. Therefore, instead of a crack due to a crack, a cut is intentionally formed along the direction in which cleavage is desired when a layer containing Al is formed. Then, the semiconductor laminated structure and Al
It has been found that by optimally controlling the value and thickness of the composition, the semiconductor laminated structure can be cleaved in a target direction.

【0013】ここで、半導体積層基板に導入する劈開の
ためのAlを含む層、即ち劈開補助領域は、光閉じ込め
及び電流閉じ込めを主たる機能としない非クラッド機能
の層であり、積層基板の最上部に形成しても、内部に形
成しても、同様の劈開効果が得られた。劈開補助領域の
膜厚は積層基板にクラックが入る臨界膜厚以内である必
要があるが、あまり薄いと前述した劈開効果が得られな
い。本発明者らの実験によれば、劈開補助領域の膜厚を
臨界膜厚の60%から99%の厚さに設定することによ
って、制御性良く劈開できるのが分かった。
Here, the layer containing Al for cleavage introduced into the semiconductor laminated substrate, that is, the cleavage assisting region, is a layer having a non-cladding function that does not mainly perform light confinement and current confinement. The same cleavage effect was obtained regardless of whether it was formed inside or inside. The film thickness of the cleavage assisting region must be within a critical film thickness at which a crack occurs in the laminated substrate, but if it is too thin, the above-described cleavage effect cannot be obtained. According to experiments performed by the present inventors, it has been found that cleavage can be performed with good controllability by setting the thickness of the cleavage assisting region to a thickness of 60% to 99% of the critical thickness.

【0014】このように本発明では、半導体積層基板の
最上部又は内部に、光閉じ込め及び電流閉じ込めを主た
る機能としないAlを含む層からなり、劈開すべき方向
に切れ目を有する劈開補助領域を形成することによっ
て、積層基板を制御性良く劈開することができる。この
劈開で得られた端面の反射率は十分に高いものであり、
共振器の反射鏡として十分に機能するものとなった。従
って本発明によれば、従来より制御性良く、かつ端面状
態の良好な素子分離を行うことが可能となる。この効果
は、半導体のような劈開の性質を持たないサファイア等
を下地基板として用いた半導体積層基板に対して特に有
効である。
As described above, according to the present invention, a cleavage assisting region formed of a layer containing Al which does not mainly perform light confinement and current confinement and having a cut in a direction to be cleaved is formed at the top or inside of the semiconductor laminated substrate. By doing so, the laminated substrate can be cleaved with good controllability. The reflectivity of the end face obtained by this cleavage is sufficiently high,
It was able to function sufficiently as a reflector of the resonator. Therefore, according to the present invention, it is possible to perform element isolation with better controllability and better end face condition than in the past. This effect is particularly effective for a semiconductor laminated substrate using sapphire or the like which does not have cleavage properties like a semiconductor as a base substrate.

【0015】[0015]

【発明の実施の形態】以下、本発明の詳細を図示の実施
形態によって説明する。 (第1の実施形態)図1は、本発明の第1の実施形態に
係わる窒化ガリウム系化合物半導体レーザを説明するた
めの図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to the illustrated embodiments. (First Embodiment) FIG. 1 is a diagram for explaining a gallium nitride based compound semiconductor laser according to a first embodiment of the present invention.

【0016】各層の成長はMOCVD法により行った。
まず、図1(a)に示すように、c面サファイア基板1
01を用意し、熱燐酸を用いて表面の不純物を取り去
る。その後、リアクター内に移し1200度まで昇温す
る。その後、基板温度を550度に下げ、GaNバッフ
ァ層102を成長させる。3分成長させた後、再び基板
温度を上昇させ、1100度でSiH4 ガスを流しなが
ら、n型GaNコンタクト層103を2μm成長させ
る。
Each layer was grown by MOCVD.
First, as shown in FIG. 1A, a c-plane sapphire substrate 1
01, and impurities on the surface are removed using hot phosphoric acid. Then, it is moved into a reactor and heated up to 1200 degrees. After that, the substrate temperature is lowered to 550 degrees, and the GaN buffer layer 102 is grown. After the growth for 3 minutes, the substrate temperature is increased again, and the n-type GaN contact layer 103 is grown to 2 μm while flowing SiH 4 gas at 1100 ° C.

【0017】次いで、n型Al0.2 Ga0.8 Nクラッド
層104を0.5μm成長させる。ここで、基板温度を
800度に下げ、GaN/In0.1 Ga0.9 N/GaN
のSQW層(単一量子井戸層)105を成長させる。こ
のとき、SiH4 の供給は停止している。その後、基板
温度を再び1100度とし、p型Al0.2 Ga0.8 Nク
ラッド層106を0.2μm成長させる。
Next, an n-type Al 0.2 Ga 0.8 N cladding layer 104 is grown to a thickness of 0.5 μm. Here, the substrate temperature is lowered to 800 degrees, and GaN / In 0.1 Ga 0.9 N / GaN
SQW layer (single quantum well layer) 105 is grown. At this time, the supply of SiH 4 is stopped. Thereafter, the substrate temperature is again set to 1100 ° C., and the p-type Al 0.2 Ga 0.8 N cladding layer 106 is grown to 0.2 μm.

【0018】次いで、Cp2 Mgを流しながら同じくp
型AlGaN層107を0.3μm成長させ、続けてp
型GaN層108を成長させる。さらに、Cp2 Mgの
流量を約3倍に上げ、p+ 型GaNコンタクト層109
を0.1μm成長する。
Next, while flowing Cp 2 Mg, p
Type AlGaN layer 107 is grown to 0.3 μm
A type GaN layer 108 is grown. Further, the flow rate of Cp 2 Mg is increased about three times, and the p + -type GaN contact layer 109 is increased.
Is grown 0.1 μm.

【0019】ここで、基板を取り出しパターニングを行
う。このパタ−ニングの際、結晶膜のa軸方向とマスク
パターンとは図1(b)に示す関係となっている。c面
のサファイアではa軸であるが、a面サファイアではa
軸,m軸等に合わせる。ここで、図中のハッチング部分
がマスクの抜きパターンである。さらに、劈開の方向を
考慮して切れ目を付ける。この切れ目の角度は重要であ
り、60度以下であれば劈開方向が安定する。
Here, the substrate is taken out and patterning is performed. In this patterning, the a-axis direction of the crystal film and the mask pattern have a relationship shown in FIG. In the case of c-plane sapphire, the axis is the a-axis.
Axis, m axis, etc. Here, the hatched portions in the figure are the mask removal patterns. Further, a cut is made in consideration of the direction of cleavage. The angle of the cut is important. If the angle is 60 degrees or less, the cleavage direction is stable.

【0020】パターニング終了後、RIBE(反応性イ
オンビームエッチング)により選択エッチングを行い、
AlGaN層107の一部を露出させる。そして、露出
したAlGaN層107の上に基板温度1150度で再
成長を行い、図1(c)に示すようにAl0.25Ga0.75
N層(劈開補助領域)120を成長する。このとき、再
成長領域以外は、適当なマスク(SiO2 ,SiN等を
使用)を付けることにより再成長を防いでいる。このマ
スクは、前記エッチングのマスクに使用したものであっ
てもよい。
After patterning, selective etching is performed by RIBE (reactive ion beam etching).
A part of the AlGaN layer 107 is exposed. Then, regrowth is performed on the exposed AlGaN layer 107 at a substrate temperature of 1150 ° C., and as shown in FIG. 1C, Al 0.25 Ga 0.75
An N layer (cleavage assist region) 120 is grown. At this time, except for the regrowth region, regrowth is prevented by attaching an appropriate mask (using SiO 2 , SiN, etc.). This mask may be the one used for the etching mask.

【0021】本実施形態の特徴はこの再成長にある。こ
の際、劈開補助領域120は劈開を容易にすることを目
的とした層であり、この劈開補助領域層120の歪み緩
和力を劈開に作用させることが本実施形態の特徴であ
る。劈開補助領域層120は、必ずしも基板全体を覆っ
ている必要はなく、最低限劈開に必要とする部分のみを
覆っていればよい。この部分的なAlGaN劈開補助領
域層120の導入が本実施形態の大きな特徴である。
The feature of this embodiment lies in this regrowth. At this time, the cleavage assist region 120 is a layer for facilitating cleavage, and the feature of the present embodiment is that the strain relaxation force of the cleavage assist region layer 120 acts on cleavage. The cleavage assisting region layer 120 does not necessarily need to cover the entire substrate, but only needs to cover at least a portion required for cleavage. This partial introduction of the AlGaN cleavage auxiliary region layer 120 is a major feature of the present embodiment.

【0022】AlGaN劈開補助領域層120の成長終
了後、マスク材を除去し、n側電極形成のためのパタ−
ニングを行う。そして、RIBEにより選択エッチング
を行い、一部n型GaN層103を露出させる。この
後、コンタクト層109上にp側電極を形成し、コンタ
クト層103上にn側電極を形成することにより素子の
基本構造は完成する。なお、電極は各々の素子毎に分離
するようにパターニングする。
After the growth of the AlGaN cleavage auxiliary region layer 120 is completed, the mask material is removed and a pattern for forming an n-side electrode is formed.
Performing Then, selective etching is performed by RIBE to partially expose the n-type GaN layer 103. Thereafter, a p-side electrode is formed on the contact layer 109, and an n-side electrode is formed on the contact layer 103, whereby the basic structure of the element is completed. The electrodes are patterned so as to be separated for each element.

【0023】次いで、電極のパタ−ニングに沿って劈開
を行う。このとき、前述したAlGaN劈開補助領域層
120の働きによって原子層オーダの劈開が初めて可能
となる。この劈開による端面は反射率が高く、共振器の
反射鏡として十分に機能するものであった。得られた素
子の1つを図1(d)に示す。半導体積層基板の側部の
劈開部分に、光閉じ込め及び電流閉じ込めを主たる機能
としないAlを含む劈開補助領域層120が残った状態
となっている。
Next, cleavage is performed along the patterning of the electrodes. At this time, the action of the AlGaN cleavage assisting region layer 120 described above enables cleavage of the atomic layer order for the first time. The end face formed by the cleavage had a high reflectance, and sufficiently functioned as a reflector of the resonator. One of the resulting devices is shown in FIG. In the cleavage portion on the side of the semiconductor laminated substrate, the cleavage auxiliary region layer 120 containing Al which does not mainly function to confine light and current is left.

【0024】このように本実施形態によれば、GaN系
化合物半導体の積層基板の最上部に一部切れ目を有する
AlGaN劈開補助領域層120を形成することによ
り、該層120の切れ目に沿って積層基板を制御性良く
劈開することができる。このため、サファイアを下地基
板として用いた半導体発光素子においても劈開を利用し
た良好な素子分離を行うことができ、98%以上の高い
製造歩留りを実現することができた。また、ここで得ら
れたレーザダイオードは、発振しきい値が40mAで室
温連続発振することが確認され、寿命は10000時間
以上であった。
As described above, according to the present embodiment, the AlGaN cleavage auxiliary region layer 120 having a partial cut is formed at the uppermost portion of the GaN-based compound semiconductor laminated substrate. The substrate can be cleaved with good controllability. Therefore, even in a semiconductor light emitting device using sapphire as a base substrate, good device isolation utilizing cleavage can be performed, and a high production yield of 98% or more can be realized. The laser diode obtained here was confirmed to continuously oscillate at room temperature at an oscillation threshold of 40 mA, and had a life of 10,000 hours or more.

【0025】(第2の実施形態)図2は、本発明の第2
の実施形態に係わる窒化ガリウム系化合物半導体レーザ
を説明するための図である。
(Second Embodiment) FIG. 2 shows a second embodiment of the present invention.
FIG. 4 is a diagram for explaining a gallium nitride-based compound semiconductor laser according to the embodiment.

【0026】本実施形態でも、成長はMOCVD法によ
り行った。まず、図2(a)に示すように、c面サファ
イア基板201を用意し、熱燐酸を用いて表面の不純物
を取り去る。その後、リアクター内に移し1200度ま
で昇温する。その後、基板温度を550度に下げ、Ga
N層202を成長させる。3分成長させた後、再び基板
温度を上昇させ、1100度でSiH4 ガスを流しなが
ら、n型GaNコンタクト層203を2μm成長させ
る。
Also in this embodiment, the growth is performed by the MOCVD method. First, as shown in FIG. 2A, a c-plane sapphire substrate 201 is prepared, and impurities on the surface are removed using hot phosphoric acid. Then, it is moved into a reactor and heated up to 1200 degrees. After that, the substrate temperature is lowered to 550 degrees, and Ga
The N layer 202 is grown. After the growth for 3 minutes, the substrate temperature is increased again, and the n-type GaN contact layer 203 is grown to 2 μm while flowing SiH 4 gas at 1100 ° C.

【0027】次いで、n型Al0.2 Ga0.8 N層204
を0.5μm成長させる。ここで、基板温度を800度
に下げ、GaN/In0.1 Ga0.9 N/GaNのSQW
層205を成長させる。このとき、SiH4 の供給は止
める。基板温度を再び1100度とし、p型Al0.2
0.8 N層206を0.2μm成長させる。
Next, the n-type Al 0.2 Ga 0.8 N layer 204
Is grown 0.5 μm. Here, the substrate temperature was lowered to 800 ° C., and the SQW of GaN / In 0.1 Ga 0.9 N / GaN was used.
The layer 205 is grown. At this time, the supply of SiH 4 is stopped. The substrate temperature is again set to 1100 degrees, and p-type Al 0.2 G
a 0.8 N layer 206 is grown by 0.2 μm.

【0028】次いで、Cp2 Mgを流しながら同じくp
型AlGaN層207を0.3μm成長させ、続けてp
型GaN層208を成長する。ここで、基板を取り出
し、パターニングを行う。このパタ−ニングの際、結晶
膜のa軸方向とマスクパターンとは図2(b)に示す関
係となっている。なお、図中のハッチング部分がマスク
の抜きパターンである。さらに、劈開の方向を考慮し、
切れ目を付ける。この角度は重要であり、60度以下で
あれば劈開方向が安定する。なお、図2(b)のマスク
では後述する劈開補助領域層をほぼ全面に形成するので
あるが、図2(c)に示すようなマスクパターンを設け
ることにより、劈開補助領域層を必要な部分のみに形成
することも可能である。
Next, while flowing Cp 2 Mg, p
Type AlGaN layer 207 is grown to 0.3 μm
A type GaN layer 208 is grown. Here, the substrate is taken out and patterning is performed. In this patterning, the a-axis direction of the crystal film and the mask pattern have the relationship shown in FIG. The hatched portion in the figure is a mask removal pattern. Furthermore, considering the direction of cleavage,
Make a cut. This angle is important, and if it is 60 degrees or less, the cleavage direction is stable. In the mask of FIG. 2B, a cleavage auxiliary region layer to be described later is formed on almost the entire surface. However, by providing a mask pattern as shown in FIG. It is also possible to form it only.

【0029】パターニング終了後、再成長を行う。この
とき、再成長領域以外は適当なマスク(SiO2 ,Si
N等を使用)を付けることにより再成長を防いでいる。
まず、基板温度を850度としInGaN層209を成
長する。さらに、基板温度を1150度とし、p+ 型A
0.25Ga0.75N層(劈開補助領域層)210を成長す
る。このとき、Cp2 Mgも同時に流す。さらに、p型
GaN層211を成長させ、Cp2 Mgの流量を上げ、
+ 型GaN層212を0.1μm成長する。このとき
のInGaN,AlGaN層の再成長が本実施形態の特
徴である。このInGaNとAlGaNの膜厚を調節す
ることにより、劈開が可能となる基板厚を変えることが
でき、この点も本実施形態の特徴である。
After patterning is completed, regrowth is performed. At this time, an appropriate mask (SiO 2 , Si
N, etc.) to prevent regrowth.
First, an InGaN layer 209 is grown at a substrate temperature of 850 degrees. Further, the substrate temperature is set to 1150 ° C. and p + type A
A l 0.25 Ga 0.75 N layer (cleavage auxiliary region layer) 210 is grown. At this time, Cp 2 Mg is also flown at the same time. Further, a p-type GaN layer 211 is grown, and the flow rate of Cp 2 Mg is increased.
The p + -type GaN layer 212 is grown by 0.1 μm. The regrowth of the InGaN and AlGaN layers at this time is a feature of the present embodiment. By adjusting the thicknesses of InGaN and AlGaN, the thickness of the substrate that can be cleaved can be changed, which is also a feature of the present embodiment.

【0030】成長終了後にマスク材を除去し、n側電極
形成のためのパタ−ニングを行う。そして、RIBEに
より選択エッチングを行い、一部n型GaNコンタクト
層203を露出させる。この後、p側及びn側の電極を
構成することにより素子の基本構成は完成する。なお、
電極は各々の素子毎に分離するようにパターニングす
る。
After completion of the growth, the mask material is removed, and patterning for forming the n-side electrode is performed. Then, selective etching is performed by RIBE to partially expose the n-type GaN contact layer 203. Thereafter, the basic configuration of the element is completed by configuring the p-side and n-side electrodes. In addition,
The electrodes are patterned so as to be separated for each element.

【0031】次いで、電極のパターニングに沿って劈開
を行う。このとき、前述した再成長層210の働きによ
り原子層オーダの劈開が初めて可能となる。得られた素
子の構造を電極部を除いて図2(e)に示す。GaN系
半導体積層基板の最上部のほぼ全面に劈開補助領域層が
残った状態となっている。
Next, cleavage is performed along the patterning of the electrodes. At this time, the function of the regrowth layer 210 enables cleavage of the atomic layer order for the first time. FIG. 2E shows the structure of the obtained element except for the electrode portion. The cleavage auxiliary region layer remains almost entirely on the uppermost portion of the GaN-based semiconductor laminated substrate.

【0032】このように本実施形態によっても、AlG
aN劈開補助領域層210を形成することにより、半導
体積層基板を劈開で分離することができ、先の第1の実
施形態と同様の効果が得られた。
As described above, according to the present embodiment, the AlG
By forming the aN cleavage auxiliary region layer 210, the semiconductor multilayer substrate can be separated by cleavage, and the same effect as in the first embodiment can be obtained.

【0033】(第3の実施の形態)図3は、本発明の第
3の実施形態に係わるGaN系化合物半導体レーザの製
造方法を示す断面図である。
(Third Embodiment) FIG. 3 is a sectional view showing a method of manufacturing a GaN-based compound semiconductor laser according to a third embodiment of the present invention.

【0034】成長はMBE(分子線エピタキシャル)法
により行った。まず、図3(a)に示すように、c面サ
ファイア基板301を用意し、熱燐酸を用いて表面の不
純物を取り去る。その後、成長チャンバ内に移し800
度まで昇温する。このとき、RHEED(高エネルギー
電子線反射像)により基板表面が清浄であることを確認
する。
The growth was performed by MBE (molecular beam epitaxy). First, as shown in FIG. 3A, a c-plane sapphire substrate 301 is prepared, and impurities on the surface are removed using hot phosphoric acid. Thereafter, it is moved into a growth chamber and 800
Temperature. At this time, it is confirmed by RHEED (high energy electron beam reflection image) that the substrate surface is clean.

【0035】次いで、基板温度を550度に下げ、Ga
Nバッファ層302を成長させる。3分成長させた後、
再び基板温度を上昇させ、750度でSiセルのシャッ
タをオープンさせ、同時にGaセルとECRプラズマセ
ルのシャッタを開ける。これにより、n型GaNコンタ
クト層303を2μm成長させる。さらに、n型Al
0.2 Ga0.8 Nクラッド層304を0.5μm成長させ
る。ここで、基板温度を700度に下げ、GaN/In
0.1 Ga0.9 N/GaNのSQW層305を成長させ
る。このとき、Siの供給は止める。基板温度を再び8
00度とし、p型Al0.2 Ga0.8 Nクラッド層306
を0.2μm成長させる。
Next, the substrate temperature was lowered to 550 ° C.
The N buffer layer 302 is grown. After growing for 3 minutes,
The substrate temperature is increased again, and the shutter of the Si cell is opened at 750 ° C., and at the same time, the shutters of the Ga cell and the ECR plasma cell are opened. Thereby, the n-type GaN contact layer 303 is grown to 2 μm. Furthermore, n-type Al
A 0.2 Ga 0.8 N cladding layer 304 is grown by 0.5 μm. Here, the substrate temperature is reduced to 700 ° C., and the GaN / In
A SQW layer 305 of 0.1 Ga 0.9 N / GaN is grown. At this time, the supply of Si is stopped. Substrate temperature again 8
00 degrees, p-type Al 0.2 Ga 0.8 N clad layer 306
Is grown 0.2 μm.

【0036】次いで、Mgセルのシャッタを開けながら
同じくp型AlGaN層307を0.3μm成長させ、
続けてp型GaN層308を成長させる。さらに、Mg
の流量を上げ、p+ 型GaNコンタクト層309を0.
1μm成長する。
Next, while opening the shutter of the Mg cell, a p-type AlGaN layer 307 is grown to a thickness of 0.3 μm.
Subsequently, a p-type GaN layer 308 is grown. Furthermore, Mg
And the p + -type GaN contact layer 309 is
Grow 1 μm.

【0037】ここで、基板を取り出し、パターニングを
行う。即ち、図3(b)に示すように、劈開の方向(破
線で示す)を考慮し、劈開補助領域の切れ目となる部分
にSiO2 やSiN等のマスク320を形成する。
Here, the substrate is taken out and patterning is performed. That is, as shown in FIG. 3B, in consideration of the cleavage direction (indicated by a broken line), a mask 320 of SiO 2 , SiN, or the like is formed at a portion that becomes a break in the cleavage assist region.

【0038】次いで、再成長を行う。このとき、再成長
領域以外はマスク320により再成長を防いでいる。基
板温度を800度にし、Al0.25Ga0.75N層310を
成長する。ここで、素子最上部にAlGaN等のAlを
含んだ層310が存在することは本実施形態の一つの特
徴である。既存の素子構造に対し、最上層にAlGaN
層310を、その膜厚を基板厚に対し最適化することに
より、その後の劈開を容易にすることができる。
Next, regrowth is performed. At this time, regrowth is prevented by the mask 320 except for the regrowth region. The substrate temperature is set to 800 ° C. , and an Al 0.25 Ga 0.75 N layer 310 is grown. Here, the presence of the layer 310 containing Al such as AlGaN at the top of the element is one feature of the present embodiment. AlGaN on top of existing device structure
By optimizing the thickness of the layer 310 with respect to the substrate thickness, subsequent cleavage can be facilitated.

【0039】なお、劈開補助領域層は必ずしも半導体積
層基板上の全面に形成する必要はなく、図4に示すよう
に、必要な部分のみに選択的に形成しても良い。AlG
aN層310の成長終了後にマスク材を除去し、n側電
極形成のためのパターニングを行う。そし、RIBEに
より選択エッチングを行い、一部n型GaNコンタクト
層303を露出させる。この後、p側及びn側の電極を
構成することにより素子の基本構成は完成する。なお、
電極は各々の素子毎に分離するようにパターニングす
る。
Note that the cleavage assist region layer does not necessarily need to be formed on the entire surface of the semiconductor laminated substrate, but may be selectively formed only on necessary portions as shown in FIG. AlG
After the growth of the aN layer 310 is completed, the mask material is removed, and patterning for forming an n-side electrode is performed. Then, selective etching is performed by RIBE to partially expose the n-type GaN contact layer 303. Thereafter, the basic configuration of the element is completed by configuring the p-side and n-side electrodes. In addition,
The electrodes are patterned so as to be separated for each element.

【0040】次いで、電極のパターニングに沿って劈開
を行う。このとき、前述した再成長層310の働きによ
り原子層オーダの劈開が初めて可能となる。得られた素
子の構造を電極部を除いて図5に示す。
Next, cleavage is performed along the patterning of the electrode. At this time, the function of the regrowth layer 310 enables cleavage of the atomic layer order for the first time. FIG. 5 shows the structure of the obtained element except for the electrode portion.

【0041】本実施形態のレーザダイオードは、素子の
最上面の一部にAlGaN層を有する構造を持ってお
り、基板裏からのダイシング後、シールに基板を貼るこ
とにより容易に劈開可能である。製造歩留まりは98パ
ーセント以上であり、発振しきい値は40mAであり、
室温連続発振をしているのが確認された。
The laser diode of this embodiment has a structure having an AlGaN layer on a part of the uppermost surface of the element, and can be easily cleaved by dicing from the back of the substrate and attaching the substrate to a seal. The manufacturing yield is over 98%, the oscillation threshold is 40 mA,
It was confirmed that continuous oscillation was performed at room temperature.

【0042】なお、本発明は上述した各実施形態に限定
されるものではない。実施形態ではGaN系化合物半導
体レーザを例にとり説明したが、これに限らず他の化合
物半導体レーザに適用することができる。さらに、半導
体レーザに限らず、発光ダイオードに適用することも可
能である。また、下地基板はサファイアに限るものでは
なく、化合物半導体層を成長できるものであればよい。
その他、本発明の要旨を逸脱しない範囲で、種々変形し
て実施することができる。
The present invention is not limited to the embodiments described above. In the embodiment, the GaN-based compound semiconductor laser has been described as an example. However, the present invention is not limited to this and can be applied to other compound semiconductor lasers. Further, the present invention is not limited to a semiconductor laser, and can be applied to a light emitting diode. The underlying substrate is not limited to sapphire, but may be any substrate as long as it can grow a compound semiconductor layer.
In addition, various modifications can be made without departing from the scope of the present invention.

【0043】[0043]

【発明の効果】以上説明したように本発明によれば、半
導体積層基板の最上部又は内部に、光閉じ込め及び電流
閉じ込めを主たる機能としないAlを含む層からなり、
劈開すべき方向に切れ目を有する劈開補助領域を形成す
ることによって、積層基板を制御性良く劈開することが
できる。従って本発明によれば、従来より制御性良く、
かつ端面状態の良好な素子分離を行うことが可能とな
り、劈開の性質を持たないサファイア等を下地基板とし
て用いた半導体レーザの製造に対して大きな効果を発揮
する。
As described above, according to the present invention, an Al-containing layer which does not mainly function to confine light and current is provided on the uppermost portion or inside of the semiconductor laminated substrate.
By forming the cleavage assisting region having a cut in the direction to be cleaved, the laminated substrate can be cleaved with good controllability. Therefore, according to the present invention, better controllability than before,
In addition, it becomes possible to perform good element isolation in the state of the end face, and it exerts a great effect on the manufacture of a semiconductor laser using sapphire or the like having no cleavage property as a base substrate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施形態に係わる化合物半導体レーザを
説明するための図。
FIG. 1 is a diagram illustrating a compound semiconductor laser according to a first embodiment.

【図2】第2の実施形態に係わる化合物半導体レーザを
説明するための図。
FIG. 2 is a view for explaining a compound semiconductor laser according to a second embodiment.

【図3】第3の実施形態に係わる化合物半導体レーザを
説明するための図。
FIG. 3 is a view for explaining a compound semiconductor laser according to a third embodiment.

【図4】第3の実施形態の変形例を示す斜視図。FIG. 4 is a perspective view showing a modification of the third embodiment.

【図5】第3の実施形態に係わる化合物半導体レーザの
最終構造を示す斜視図。
FIG. 5 is a perspective view showing a final structure of a compound semiconductor laser according to a third embodiment.

【符号の説明】[Explanation of symbols]

101…サファイア基板 102…GaN層 103…n型GaN層 104…n型AlGaN層 105…GaN/InGaN/GaNのSQW層 106…AlGaN層 107…p型AlGaN層 108…p型GaN層 109…p+ 型GaN層 201…サファイア基板 202…GaN層 203…n型GaN層 204…n型AlGaN層 205…GaN/InGaN/GaNのSQW層 206…AlGaN層 207…p型AlGaN層 208…p型GaN層 209…InGaN層 210…p+ 型AlGaN層 211…p型GaN層 212…p+ 型GaN層 301…サファイア基板 302…GaN層 303…n型GaN層 304…n型AlGaN層 305…GaN/InGaN/GaNのSQW層 306…AlGaN層 307…p型AlGaN層 308…p型GaN層 309…p+ 型GaN層 310…AlGaN層Reference Signs List 101 sapphire substrate 102 GaN layer 103 n-type GaN layer 104 n-type AlGaN layer 105 GaN / InGaN / GaN SQW layer 106 AlGaN layer 107 p-type AlGaN layer 108 p-type GaN layer 109 p + GaN layer 201 sapphire substrate 202 GaN layer 203 n-type GaN layer 204 n-type AlGaN layer 205 SQW layer of GaN / InGaN / GaN 206 AlGaN layer 207 p-type AlGaN layer 208 p-type GaN layer 209 ... InGaN layer 210 ... p + type AlGaN layer 211 ... p type GaN layer 212 ... p + type GaN layer 301 ... sapphire substrate 302 ... GaN layer 303 ... n type GaN layer 304 ... n type AlGaN layer 305 ... GaN / InGaN / GaN SQW layer 306 ... AlGaN layer 307 ... p-type A GaN layer 308 ... p-type GaN layer 309 ... p + -type GaN layer 310 ... AlGaN layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】窒化物系化合物半導体を積層した半導体積
層基板を有する化合物半導体発光素子において、 前記積層基板の側部の劈開部分に、光閉じ込め及び電流
閉じ込めを主たる機能としないAlを含む劈開補助領域
が形成されていることを特徴とする化合物半導体発光素
子。
1. A compound semiconductor light emitting device having a semiconductor laminated substrate on which a nitride-based compound semiconductor is laminated, wherein a cleavage part on a side portion of the laminated substrate contains Al which does not mainly function to confine light and current. A compound semiconductor light emitting device, wherein a region is formed.
【請求項2】窒化物系化合物半導体を積層した半導体積
層基板を有する化合物半導体発光素子の製造方法におい
て、 前記積層基板の最上面若しくは内部に、光閉じ込め及び
電流閉じ込めを主たる機能としないAlを含む層からな
り、劈開すべき方向に切れ目を有する劈開補助領域を形
成する工程と、前記劈開補助領域を前記切れ目に沿って
割ることにより、前記積層基板を劈開する工程とを含む
ことを特徴とする化合物半導体発光素子の製造方法。
2. A method for manufacturing a compound semiconductor light emitting device having a semiconductor laminated substrate on which a nitride-based compound semiconductor is laminated, wherein the uppermost surface or the inside of the laminated substrate contains Al which does not mainly function to confine light and current. Forming a cleavage assist region made of a layer and having a cut in a direction to be cleaved, and cleaving the laminated substrate by dividing the cleavage assist region along the cut. A method for manufacturing a compound semiconductor light emitting device.
【請求項3】窒化物系化合物半導体を積層した半導体積
層基板を有する化合物半導体発光素子の製造方法におい
て、 前記積層基板の最上部に、光閉じ込め及び電流閉じ込め
を主たる機能としないInx Aly Gazp Asq
r 層(x+y+z=1,0<y,p+q+r=1)から
なり、劈開すべき方向に切れ目を有する劈開補助領域を
形成する工程と、前記劈開補助領域を切れ目に沿って割
ることにより、前記積層基板を劈開する工程とを含むこ
とを特徴とする化合物半導体発光素子の製造方法。
3. A method of manufacturing a compound semiconductor light emitting device having a semiconductor laminated substrate on which a nitride-based compound semiconductor is laminated, wherein an In x Al y Ga not having light confinement and current confinement as main functions at the top of the laminated substrate. z N p As q P
forming a cleavage auxiliary region comprising an r layer (x + y + z = 1, 0 <y, p + q + r = 1) and having a cut in a direction to be cleaved; and dividing the cleavage auxiliary region along the cut to form the lamination. Cleaving a substrate.
【請求項4】窒化物系化合物半導体を積層した半導体積
層基板を有する化合物半導体発光素子の製造方法におい
て、 前記積層基板の形成の途中で該基板内部に、光閉じ込め
及び電流閉じ込めを主たる機能としないInx Aly
zp Asqr 層(x+y+z=1,0<y,p+
q+r=1)からなり、劈開すべき方向に切れ目を有す
る劈開補助領域を形成する工程と、前記積層基板の形成
の後に前記劈開補助領域を切れ目に沿って割ることによ
り、前記積層基板を劈開する工程とを含むことを特徴と
する化合物半導体発光素子の製造方法。
4. A method for manufacturing a compound semiconductor light emitting device having a semiconductor laminated substrate on which nitride-based compound semiconductors are laminated, wherein light confinement and current confinement are not main functions inside the substrate during the formation of the laminated substrate. In x Al y G
a z N p As q P r layer (x + y + z = 1,0 <y, p +
q + r = 1), a step of forming a cleavage auxiliary region having a cut in a direction to be cleaved, and cleaving the multilayer substrate by dividing the cleavage auxiliary region along the cut after the formation of the multilayer substrate. And a method for manufacturing a compound semiconductor light emitting device.
JP3790897A 1997-02-21 1997-02-21 Method for manufacturing compound semiconductor light emitting device Expired - Fee Related JP3892519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3790897A JP3892519B2 (en) 1997-02-21 1997-02-21 Method for manufacturing compound semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3790897A JP3892519B2 (en) 1997-02-21 1997-02-21 Method for manufacturing compound semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH10242570A true JPH10242570A (en) 1998-09-11
JP3892519B2 JP3892519B2 (en) 2007-03-14

Family

ID=12510652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3790897A Expired - Fee Related JP3892519B2 (en) 1997-02-21 1997-02-21 Method for manufacturing compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3892519B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006041134A1 (en) * 2004-10-15 2006-04-20 Matsushita Electric Industrial Co., Ltd. Nitride compound semiconductor element and production method therefor
US7208096B2 (en) 2002-06-26 2007-04-24 Agency For Science, Technology And Research Method of cleaving GaN/sapphire for forming laser mirror facets
US7459377B2 (en) 2004-06-08 2008-12-02 Panasonic Corporation Method for dividing substrate
US7700392B2 (en) 2004-11-25 2010-04-20 Panasonic Corporation Manufacturing method of semiconductor laser devices and manufacturing apparatus of the same
US7718454B2 (en) 2007-02-15 2010-05-18 Mitsubishi Electric Corporation Method for manufacturing a semiconductor laser
DE102015208952A1 (en) 2014-06-19 2015-12-24 Sumitomo Electric Industries, Ltd. Method for producing a semiconductor device
JP2022504105A (en) * 2018-10-15 2022-01-13 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Manufacturing method of semiconductor laser and semiconductor laser

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7208096B2 (en) 2002-06-26 2007-04-24 Agency For Science, Technology And Research Method of cleaving GaN/sapphire for forming laser mirror facets
SG130935A1 (en) * 2002-06-26 2007-04-26 Agency Science Tech & Res Method of cleaving gan/sapphire for forming laser mirror facets
US7459377B2 (en) 2004-06-08 2008-12-02 Panasonic Corporation Method for dividing substrate
WO2006041134A1 (en) * 2004-10-15 2006-04-20 Matsushita Electric Industrial Co., Ltd. Nitride compound semiconductor element and production method therefor
JPWO2006041134A1 (en) * 2004-10-15 2008-05-22 松下電器産業株式会社 Nitride compound semiconductor device and manufacturing method thereof
CN100454693C (en) * 2004-10-15 2009-01-21 松下电器产业株式会社 Nitride compound semiconductor element and production method therefor
US8093685B2 (en) 2004-10-15 2012-01-10 Panasonic Corporation Nitride compound semiconductor element
US7700392B2 (en) 2004-11-25 2010-04-20 Panasonic Corporation Manufacturing method of semiconductor laser devices and manufacturing apparatus of the same
US7718454B2 (en) 2007-02-15 2010-05-18 Mitsubishi Electric Corporation Method for manufacturing a semiconductor laser
DE102015208952A1 (en) 2014-06-19 2015-12-24 Sumitomo Electric Industries, Ltd. Method for producing a semiconductor device
JP2022504105A (en) * 2018-10-15 2022-01-13 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Manufacturing method of semiconductor laser and semiconductor laser
US12009632B2 (en) 2018-10-15 2024-06-11 Osram Opto Semiconductors Gmbh Semiconductor laser and production method for a semiconductor laser

Also Published As

Publication number Publication date
JP3892519B2 (en) 2007-03-14

Similar Documents

Publication Publication Date Title
US6939730B2 (en) Nitride semiconductor, semiconductor device, and method of manufacturing the same
JP3930161B2 (en) Nitride-based semiconductor device, light-emitting device, and manufacturing method thereof
KR101011945B1 (en) Manufacturing methods for nitride semiconductor and semiconductor device
WO2003036771A1 (en) Nitride semiconductor laser element, and production method therefor
JP2000323797A (en) Nitride semiconductor laser and its manufacture
JPH11135770A (en) Iii-v compd. semiconductor, manufacture thereof and semiconductor element
WO1998044606A1 (en) Compound semiconductor laser
JP2000223417A (en) Growing method of semiconductor, manufacture of semiconductor substrate, and manufacture of semiconductor device
JP2003283052A (en) Semiconductor device and its manufacturing method
JP3892519B2 (en) Method for manufacturing compound semiconductor light emitting device
JP2001148544A (en) Semiconductor light-emitting element
JPH1041586A (en) Method of forming light emissive end face of semiconductor light emitting element
JP3588285B2 (en) Method for manufacturing semiconductor device
KR20000035669A (en) Semiconductor laser, semiconductor device and their manufacturing methods
JP2000164989A (en) Method of growing nitride-based iii-v compound semiconductor and semiconductor device
JP2000307193A (en) Semiconductor laser, its manufacture, semiconductor device and manufacture of the same
JP2000216502A (en) Manufacture of nitride semiconductor element
JP2002164617A (en) Semiconductor laser device
JPH10233531A (en) Semiconductor element and its manufacture
JP4618261B2 (en) Nitride semiconductor device and manufacturing method thereof
JP2001257432A (en) Semiconductor substrate, manufacturing method therefor, and semiconductor light emitting element
JP4179317B2 (en) Nitride semiconductor manufacturing method and semiconductor device manufacturing method
JP2005347630A (en) Nitride semiconductor element and method for manufacturing the same
WO2023069771A1 (en) Methods for fabricating a vertical cavity surface emitting laser
JPH09246666A (en) Manufacture of nitride semiconductor laser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061207

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees