JPH10241731A - Polymer solid electrolyte battery and manufacture thereof - Google Patents

Polymer solid electrolyte battery and manufacture thereof

Info

Publication number
JPH10241731A
JPH10241731A JP9043733A JP4373397A JPH10241731A JP H10241731 A JPH10241731 A JP H10241731A JP 9043733 A JP9043733 A JP 9043733A JP 4373397 A JP4373397 A JP 4373397A JP H10241731 A JPH10241731 A JP H10241731A
Authority
JP
Japan
Prior art keywords
solid electrolyte
polymer
polymer solid
sheet
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9043733A
Other languages
Japanese (ja)
Other versions
JP3954682B2 (en
Inventor
Tsukane Ito
束 伊藤
Satoshi Ubukawa
訓 生川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP04373397A priority Critical patent/JP3954682B2/en
Publication of JPH10241731A publication Critical patent/JPH10241731A/en
Application granted granted Critical
Publication of JP3954682B2 publication Critical patent/JP3954682B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polymer solid electrolyte battery with a large capacity and a superior high rate discharging characteristic. SOLUTION: A polymer solid electrolyte battery is formed of a positive electrode, capable of occluding and releasing lithium, a negative electrode which is capable of occluding and releasing lithium and a polymer solid electrolyte layer filled around the positive and the negative electrodes, and the prescribed polymer solid electrolyte layer is made of a mesh structured electron insulated resin sheet with a void fraction of 80-90% and the gelled polymer solid electrolyte containing at least a polymer and a non-aqueous solvent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ゲル状の高分子固
体電解質を用いたリチウムイオン電池に関する。
The present invention relates to a lithium ion battery using a gelled solid polymer electrolyte.

【0002】[0002]

【従来の技術】高分子固体電解質を用いた高分子固体電
解質電池は、漏液等に原因する機器の損傷の恐れがな
く、また電解質がセパレータの役割をも果すので電池の
小型化を図ることができる。特に極めて卑な電位を有す
るリチウムを用いた高分子固体電解質リチウム電池は、
高エネルギー密度で従来にない利便性の高い電池とでき
る可能性を有する。よって、携帯電子機器の駆動電源や
メモリーバックアップ電源として有望視され、近年、活
発な研究開発が行われている。
2. Description of the Related Art A polymer solid electrolyte battery using a polymer solid electrolyte has no risk of damage to equipment due to liquid leakage and the like, and the electrolyte also plays a role of a separator. Can be. In particular, a polymer solid electrolyte lithium battery using lithium having an extremely low potential,
There is a possibility that a battery with high energy density and high convenience, which has not been seen before, can be obtained. Therefore, it is regarded as promising as a drive power supply or a memory backup power supply for portable electronic devices, and has been actively researched and developed in recent years.

【0003】ところで、高分子固体電解質は、従来より
電解液として使用されている液体電解質に比べイオン導
電性が劣り、また固体であるので、活物質との接触性が
劣る。よって、液体電解質電池に比較し、ハイレート放
電特性やサイクル特性が悪く、また電池形状の自由度が
小さいという欠点がある。
[0003] By the way, the solid polymer electrolyte is inferior in ionic conductivity to liquid electrolytes which have been conventionally used as an electrolytic solution, and since it is a solid, it has poor contact with an active material. Therefore, as compared with the liquid electrolyte battery, there are drawbacks that the high-rate discharge characteristics and the cycle characteristics are poor and the degree of freedom of the battery shape is small.

【0004】そこで、この欠点を改善する手段として、
(a) 電解質膜と電極との密着性を高める、(b) 電極の表
面積を大きくし活物質と電解質との接触界面を多くす
る、(c) 電解質膜を薄くする等の方法が提案されてい
る。しかし、未だ十分に改善できていない。このため、
近年では、高分子固体電解質と液体電解質液とを併用す
ることにより、高分子固体電解質の弱点を液体電解質液
で補う方法が提案されている。
Therefore, as a means for improving this disadvantage,
There have been proposed methods for (a) increasing the adhesion between the electrolyte membrane and the electrode, (b) increasing the surface area of the electrode to increase the contact interface between the active material and the electrolyte, and (c) reducing the thickness of the electrolyte membrane. I have. However, it has not been sufficiently improved. For this reason,
In recent years, a method has been proposed in which the weakness of the polymer solid electrolyte is supplemented with the liquid electrolyte solution by using the polymer solid electrolyte and the liquid electrolyte solution together.

【0005】この方法は、液体電解質液の添加により電
極活物質に対する接触性を高めると同時に、電解質層の
イオン導電性を向上させようとするものである。しかし
ながら、この方法においても未だ十分なハイレート放電
特性が得られておらず、更なる改良が要望されている。
In this method, the contact with the electrode active material is increased by adding a liquid electrolyte solution, and at the same time, the ionic conductivity of the electrolyte layer is improved. However, even in this method, sufficient high-rate discharge characteristics have not yet been obtained, and further improvement is demanded.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記に鑑
み、高分子固体電解質層のイオン導電性を高め、同時に
電極と電解質との接触性を向上させ得る手段を提供し、
もって電池容量が大きく、ハイレート放電特性にも優れ
た高分子固体電解質電池を提供しようとするものであ
る。
SUMMARY OF THE INVENTION In view of the above, the present invention provides a means capable of increasing the ionic conductivity of a solid polymer electrolyte layer and simultaneously improving the contact between an electrode and an electrolyte.
It is an object of the present invention to provide a polymer solid electrolyte battery having a large battery capacity and excellent high-rate discharge characteristics.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
の本発明は、次のように構成されている。請求項1記載
の発明は、リチウムを吸蔵放出することのできる正極
と、リチウムを吸蔵放出することのできる負極と、正負
電極の間に介挿された高分子固体電解質層を有する高分
子固体電解質電池において、前記高分子固体電解質層
が、網目構造をした電子絶縁性の樹脂シートと、前記網
目構造内に保持されたゲル状の高分子固体電解質とを含
む高分子固体電解質含有シートで構成され、前記樹脂シ
ートの空隙率が80〜90%であり、前記ゲル状の高分
子固体電解質が、少なくとも重合高分子と非水溶媒とを
含み組成されている高分子固体電解質電池であることを
特徴とする。
The present invention for achieving the above object has the following construction. The invention according to claim 1 provides a solid polymer electrolyte having a positive electrode capable of inserting and extracting lithium, a negative electrode capable of inserting and extracting lithium, and a solid polymer electrolyte layer interposed between positive and negative electrodes. In the battery, the polymer solid electrolyte layer is constituted by a polymer solid electrolyte-containing sheet including an electronically insulating resin sheet having a network structure, and a gel polymer solid electrolyte held in the network structure. The porosity of the resin sheet is 80 to 90%, and the gel polymer solid electrolyte is a polymer solid electrolyte battery including at least a polymer polymer and a non-aqueous solvent. And

【0008】この構成によると、電池内部抵抗の軽減、
内部短絡の防止、イオン導電の円滑化、電池の一層の薄
型化が実現できる。具体的には次のような作用効果があ
る。 上述のごとく、高分子固体電解質はイオン導電性に劣
るので、正負電極間のイオン導電を円滑に行わせるため
には、セパレータ機能を兼ねている高分子固体電解質層
を薄くする必要がある。しかし、高分子固体電解質層は
従来のセパレータに比べ機械的強度が小さいので薄くす
ると、電池組み立て時に破損等して内部短絡の原因とな
る。つまり、イオン導電の円滑化と内部短絡の防止は、
二律背反の関係にある。
According to this configuration, the internal resistance of the battery is reduced,
Prevention of internal short circuit, smoothing of ionic conductivity, and further thinning of the battery can be realized. Specifically, the following operational effects are obtained. As described above, the polymer solid electrolyte is inferior in ionic conductivity. Therefore, in order to smoothly perform ionic conductivity between the positive and negative electrodes, it is necessary to make the polymer solid electrolyte layer also serving as a separator thin. However, the polymer solid electrolyte layer has a smaller mechanical strength than conventional separators, so if it is made thinner, it will be damaged at the time of assembling the battery, causing an internal short circuit. In other words, smoothing of ionic conductivity and prevention of internal short circuit are
They are in conflict.

【0009】ここで、本発明では、高分子固体電解質を
電子絶縁性の樹脂シートに保持させる構成を採用した。
この構成であると、正負電極間の電子絶縁性は樹脂シー
トによって確保されるとともに、この樹脂シートが高分
子固体電解質層の支持体となって電解質層の強度を高め
る。よって、高分子固体電解質層(即ち、高分子固体電
解質含有シート)を薄くすることができ、これにより電
池内部抵抗の軽減、内部短絡の防止、及びイオン導電の
円滑を図ることができる。
Here, the present invention employs a configuration in which the polymer solid electrolyte is held on an electronically insulating resin sheet.
With this configuration, electronic insulation between the positive and negative electrodes is ensured by the resin sheet, and the resin sheet serves as a support for the polymer solid electrolyte layer to increase the strength of the electrolyte layer. Therefore, the polymer solid electrolyte layer (that is, the polymer solid electrolyte-containing sheet) can be thinned, whereby the internal resistance of the battery can be reduced, an internal short circuit can be prevented, and ion conduction can be smoothly performed.

【0010】また、本発明の高分子固体電解質含有シ
ートは、樹脂シートの網目構造内に重合高分子と非水溶
媒を含み組成されたゲル状の高分子固体電解質が保持さ
れた構造をしている。つまり、高分子固体電解質及び非
水溶媒が網目構造内にゲルとして閉じ込められており、
電池内に自由液体電解液が存在しない。よって、液漏れ
が生じない一方、ゲルは固体に比較しイオン移動の自由
度が大きいので、正負電極間のイオンの導電を円滑に行
い得る。更に、非水溶媒を含むゲル状の高分子固体電解
質であると、電解質塩を溶解させることができ、電解質
塩を溶解させることにより格段にイオン導電性を高める
ことができる。加えて、ゲルは固体に比較し、形状的自
由度が大きいので、電池設計の自由度が格段に高まる。
The polymer solid electrolyte-containing sheet of the present invention has a structure in which a gel polymer solid electrolyte containing a polymer and a non-aqueous solvent is held in a network structure of a resin sheet. I have. In other words, the polymer solid electrolyte and the non-aqueous solvent are confined as a gel within the network structure,
There is no free liquid electrolyte in the battery. Therefore, while liquid leakage does not occur, the gel has a greater degree of freedom of ion movement than the solid, so that the conduction of ions between the positive and negative electrodes can be performed smoothly. Further, if the solid polymer electrolyte is a gel polymer containing a non-aqueous solvent, the electrolyte salt can be dissolved, and the ionic conductivity can be significantly improved by dissolving the electrolyte salt. In addition, since the gel has a greater degree of freedom in shape than a solid, the degree of freedom in battery design is greatly increased.

【0011】更に、上記構成の本発明では、空隙率が
80〜90%の網目構造の樹脂シートを高分子固体電解
質の支持体として使用したが、80〜90%の高空隙率
の樹脂シートであると、多量の高分子固体電解質を保持
させることができるので、イオン導電性に優れた高分子
固体電解質含有シートとできる。よって、電池の高容量
化とハイレート放電特性の向上が図れる。
Further, in the present invention having the above structure, a resin sheet having a network structure having a porosity of 80 to 90% is used as a support for the polymer solid electrolyte. However, a resin sheet having a high porosity of 80 to 90% is used. If so, a large amount of solid polymer electrolyte can be held, so that a sheet containing a solid polymer electrolyte having excellent ionic conductivity can be obtained. Therefore, the capacity of the battery can be increased and the high-rate discharge characteristics can be improved.

【0012】なお、従来よりこの種の電池に使用されて
いる樹脂シートの空隙率は50%〜70%である。
The porosity of a resin sheet conventionally used in this type of battery is 50% to 70%.

【0013】請求項2記載の発明は、請求項1記載の高
分子固体電解質電池において、前記高分子固体電解質含
有シートの厚みが、20μm〜50μmであることを特
徴とする。
According to a second aspect of the present invention, in the polymer solid electrolyte battery according to the first aspect, the thickness of the polymer solid electrolyte-containing sheet is 20 μm to 50 μm.

【0014】高分子固体電解質含有シートの厚みが、2
0μm以上であれば電池製造時における破損が少なく、
また電池実働時において絶縁シートとして十分に機能す
る。よって、内部短絡が防止できる。また、高分子固体
電解質含有シートの厚みが、50μmを越えなければ内
部抵抗が過度に増大することがないので、高率放電特性
に優れた電池となすことができる。
When the thickness of the polymer solid electrolyte-containing sheet is 2
If it is 0 μm or more, damage during battery production is small,
Also, it functions sufficiently as an insulating sheet during the actual operation of the battery. Therefore, an internal short circuit can be prevented. If the thickness of the polymer solid electrolyte-containing sheet does not exceed 50 μm, the internal resistance does not increase excessively, so that a battery excellent in high-rate discharge characteristics can be obtained.

【0015】請求項3記載の発明は、高分子固体電解質
電池の製造方法であって、リチウムを吸蔵放出すること
のできる正極と、リチウムを吸蔵放出することのできる
負極との間に、網目構造をした電子絶縁性の樹脂シート
を介在させて成る電極体を、電池ケースに収納する電極
体収納工程と、電極体の収納された電池ケース内に、熱
重合性高分子と非水溶媒とを含み組成された高分子固体
電解質前駆体溶液を注液し、前記樹脂シートの網目構造
内に高分子固体電解質前駆体溶液を含浸させる前駆体溶
液含浸工程と、前記樹脂シートに含浸した前記前駆体溶
液を加熱し、当該前駆体溶液に含まれる重合性高分子を
重合してゲル状の高分子固体電解質となす重合工程と、
を備えることを特徴とする。
According to a third aspect of the present invention, there is provided a method for manufacturing a solid polymer electrolyte battery, wherein a mesh structure is provided between a positive electrode capable of inserting and extracting lithium and a negative electrode capable of inserting and extracting lithium. An electrode body housing step of housing an electrode body having an electronic insulating resin sheet interposed therebetween in a battery case, and a thermopolymerizable polymer and a non-aqueous solvent in the battery case housing the electrode body. A precursor solution impregnating step of injecting the composed polymer solid electrolyte precursor solution and impregnating the polymer solid electrolyte precursor solution in the network structure of the resin sheet, and the precursor impregnated in the resin sheet Heating the solution, a polymerization step of polymerizing the polymerizable polymer contained in the precursor solution to form a gelled polymer solid electrolyte,
It is characterized by having.

【0016】前記請求項1記載の高分子固体電解質電池
が、この構成により製造することができる。
The solid polymer electrolyte battery according to the first aspect can be manufactured by this configuration.

【0017】請求項4記載の発明は、請求項3記載の高
分子固体電解質電池の製造方法において、前記前駆体溶
液含浸工程における注液の方法が、電極体の収納された
電池ケース内を減圧にし、しかる後に高分子固体電解質
前駆体溶液を注液する方法であることを特徴とする。
According to a fourth aspect of the present invention, in the method for manufacturing a solid polymer electrolyte battery according to the third aspect, the method of injecting the precursor solution in the step of impregnating the precursor solution includes a step of reducing the pressure inside the battery case containing the electrode body. And then injecting the solid polymer electrolyte precursor solution.

【0018】この構成によると、簡便かつ確実に樹脂シ
ートの網目構造内に高分子固体電解質前駆体溶液を含浸
させることができる。また、その後行う加熱処理により
非水溶媒を含んだ状態で重合性高分子を重合することが
できるので、これにより樹脂シートの網目構造内にゲル
状の高分子固体電解質を保持させることができる。
According to this configuration, the polymer solid electrolyte precursor solution can be simply and reliably impregnated into the network structure of the resin sheet. In addition, since the polymerizable polymer can be polymerized in a state containing the non-aqueous solvent by the subsequent heat treatment, the gel polymer solid electrolyte can be held in the network structure of the resin sheet.

【0019】請求項5記載の発明は、請求項3または4
記載の高分子固体電解質電池の製造方法において、前記
樹脂シートの空隙率が、80〜90%であることを特徴
とする。
The invention according to claim 5 is the invention according to claim 3 or 4.
The method for producing a solid polymer electrolyte battery according to the above aspect, wherein the porosity of the resin sheet is 80 to 90%.

【0020】樹脂シートの空隙率が80%以上である
と、樹脂シートが大量の高分子固体電解質及び非水溶媒
を保持できる。よって、高分子固体電解質含有シートの
イオン導電性が高まる。但し、空隙率が90%を越える
樹脂シートの作製は困難である。また、90%を越える
空隙率の樹脂シートでは、網目構造を形成する格子が極
めて細くなるので、電池製造時や実働時に高分子固体電
解質含有シートが破損され易くなる。よって、樹脂シー
トの空隙率としては、好ましくは80〜90%とする。
なお、高分子固体電解質含有シートの破損は、内部短絡
に直結し、電池寿命を終焉させる原因になる。
When the porosity of the resin sheet is 80% or more, the resin sheet can hold a large amount of the solid polymer electrolyte and the non-aqueous solvent. Therefore, the ionic conductivity of the polymer solid electrolyte-containing sheet is increased. However, it is difficult to produce a resin sheet having a porosity exceeding 90%. In the case of a resin sheet having a porosity exceeding 90%, the lattice forming the network structure is extremely thin, so that the polymer solid electrolyte-containing sheet is easily damaged during battery production or operation. Therefore, the porosity of the resin sheet is preferably set to 80 to 90%.
In addition, the breakage of the polymer solid electrolyte containing sheet is directly connected to an internal short circuit, which causes the end of the battery life.

【0021】請求項6記載の発明は、請求項3、4、ま
たは5記載の高分子固体電解質電池の製造方法におい
て、前記高分子固体電解質含有シートの厚みが、20μ
m〜50μmであることを特徴とする。
According to a sixth aspect of the present invention, in the method for manufacturing a solid polymer electrolyte battery according to the third, fourth or fifth aspect, the thickness of the sheet containing the solid polymer electrolyte is 20 μm.
m to 50 μm.

【0022】20μm以上の厚みの高分子固体電解質含
有シートであれば、正負電極間を十分に絶縁できる。そ
の一方50μmを越える厚みであると、正負電極間のイ
オンの導電が円滑に行われなくなるので、高率放電特性
が悪くなる。よって、内部短絡を防止し、かつ電池反応
を円滑に進め高率放電特性を高めるためには、高分子固
体電解質含有シートの厚みを好ましくは20μm以上、
50μm以下とする。
With a polymer solid electrolyte containing sheet having a thickness of 20 μm or more, the positive and negative electrodes can be sufficiently insulated. On the other hand, if the thickness exceeds 50 μm, the conduction of ions between the positive and negative electrodes will not be performed smoothly, and the high rate discharge characteristics will deteriorate. Therefore, in order to prevent internal short circuit, and to promote the battery reaction smoothly and enhance the high-rate discharge characteristics, the thickness of the polymer solid electrolyte-containing sheet is preferably 20 μm or more,
It is 50 μm or less.

【0023】[0023]

【実施の形態】以下、実施例に基づいて本発明の実施の
形態を説明する。
Embodiments of the present invention will be described below based on examples.

【0024】(実施例1)電池の作製 (1) LiCoO2 正極の作製 LiCoO2 85重量部、人造黒鉛粉末5重量部、カー
ボンブラック5重量部を充分に混合し、これにN−メチ
ル−2−ピロリドンにポリフッ化ビニリデン(PVd
F)を溶かした溶液をPVdF量として5重量部加えて
混合し、正極活物質スラリーとなした。このスラリーを
厚み20μmのアルミニウム箔からなる集電体の両面に
塗布し、乾燥、圧延した後、所定寸法に切断してLiC
oO2 正極とした。
Example 1 Preparation of Battery (1) Preparation of LiCoO 2 Positive Electrode 85 parts by weight of LiCoO 2 , 5 parts by weight of artificial graphite powder, and 5 parts by weight of carbon black were sufficiently mixed, and N-methyl-2 was added thereto. -Polyvinylidene fluoride (PVd)
The solution in which F) was dissolved was added as a PVdF amount of 5 parts by weight and mixed to form a positive electrode active material slurry. This slurry is applied to both sides of a current collector made of an aluminum foil having a thickness of 20 μm, dried, rolled, cut into a predetermined size, and cut into LiC.
An oO 2 positive electrode was used.

【0025】(2) 黒鉛負極の作製 粒子径5〜25μmの天然黒鉛粉末95重量部に、N−
メチル−2−ピロリドンにポリフッ化ビニリデン(PV
dF)を溶かした溶液をPVdF量として5重量部加え
て、混合し負極活物質スラリーとなした。このスラリー
を厚み18μmの銅箔からなる集電体の両面に塗布し、
乾燥、圧延した後、所定寸法に切断して黒鉛負極とし
た。
(2) Preparation of graphite negative electrode 95 parts by weight of natural graphite powder having a particle size of 5 to 25 μm was added to N-
Methyl-2-pyrrolidone is replaced by polyvinylidene fluoride (PV
A solution in which dF) was dissolved was added in an amount of 5 parts by weight in terms of PVdF, and mixed to form a negative electrode active material slurry. This slurry is applied to both sides of a current collector made of copper foil having a thickness of 18 μm,
After drying and rolling, it was cut into a predetermined size to obtain a graphite negative electrode.

【0026】(3) 電極体の作製 上記正極と上記負極の間に、空隙率90%、厚み30μ
mの網目構造をした樹脂シート(旭化成株式会社製のハ
イポアー3000(商品名))を挟み、この状態で円筒
状に巻回し、長円形にプレスして電極体となした。この
電極体をアルミニウム製の角形電池外装缶(電池ケー
ス)に入れ、外装缶内を減圧(10mmHg)にした
後、熱重合開始剤を添加した高分子固体電解質前駆体溶
液(下記)を真空注液した。これにより、樹脂シートの
網目構造内に高分子固体電解質前駆体溶液が含浸される
ので、この電池外装缶を75℃の恒温槽に0.5時間漬
けて加熱し、前記前駆体溶液中の高分子を熱重合させ
た。このようにして、公称容量550mAh、公称電圧
3.6V、厚み8.1mm、幅22.5mm、高さ48
mmの高分子固体電解質電池を作製した。
(3) Preparation of Electrode Body A porosity of 90% and a thickness of 30 μm are provided between the positive electrode and the negative electrode.
A resin sheet having a mesh structure of m (Hypor 3000 (trade name) manufactured by Asahi Kasei Corporation) was sandwiched, wound in a cylindrical shape in this state, and pressed into an oblong shape to form an electrode body. This electrode body was placed in a prismatic battery outer can (battery case) made of aluminum, the inside of the outer can was evacuated (10 mmHg), and a polymer solid electrolyte precursor solution (described below) to which a thermal polymerization initiator was added was vacuum-injected. Liquid. As a result, the polymer solid electrolyte precursor solution is impregnated in the network structure of the resin sheet. Therefore, the battery outer can is immersed in a constant temperature bath at 75 ° C. for 0.5 hour and heated, and the high temperature in the precursor solution is reduced. The molecules were thermally polymerized. Thus, the nominal capacity is 550 mAh, the nominal voltage is 3.6 V, the thickness is 8.1 mm, the width is 22.5 mm, and the height is 48.
mm solid polymer electrolyte battery was manufactured.

【0027】上記製造方法においては、高分子固体電解
質前駆体溶液として、重合性高分子としてのポリエチレ
ングリコールウレタンアクリレート系ポリマー(化1)
にLiclO4 (電解質塩)を0.1モル溶解した溶液
と、ジエチルカーボネートとエチレンカーボネートとの
等容量混合液とを、重量比1:6で混合した溶液を用い
た。
In the above production method, a polyethylene glycol urethane acrylate-based polymer as a polymerizable polymer is used as the polymer solid electrolyte precursor solution.
A solution obtained by mixing a 0.1 mol solution of LiClO 4 (electrolyte salt) with an equal volume mixture of diethyl carbonate and ethylene carbonate at a weight ratio of 1: 6 was used.

【0028】また、熱重合開始剤としては、パーロイル
TCP(化2)を用い、この重合開始剤を上記高分子固
体電解質前駆体溶液に対し500ppm濃度に添加し
た。
As the thermal polymerization initiator, perloyl TCP (Chemical Formula 2) was used, and this polymerization initiator was added at a concentration of 500 ppm with respect to the polymer solid electrolyte precursor solution.

【0029】更に、上記実施例1、及び以下に示す実施
例2〜6、比較例1〜3においては、樹脂シート100
重量部に対し650重量部の高分子固体電解質前駆体溶
液を使用した。この割合で前駆体溶液を用いた場合、前
駆体溶液はほぼ樹脂シートの網目構造内に取り込まれて
しまうので、高分子固体電解質含有シートの厚みは、実
質的に樹脂シートの厚みと同じになる。
Further, in the above-mentioned Example 1, Examples 2 to 6 and Comparative Examples 1 to 3, the resin sheet 100
650 parts by weight of the polymer solid electrolyte precursor solution was used with respect to parts by weight. When the precursor solution is used at this ratio, the precursor solution is almost taken into the network structure of the resin sheet, so that the thickness of the polymer solid electrolyte containing sheet is substantially the same as the thickness of the resin sheet. .

【0030】ここで、空隙率は、数1で定義される値を
いう。
Here, the porosity is a value defined by the following equation (1).

【0031】[0031]

【数1】空隙率%=(1−D/D0 )×100 但し、D;樹脂シートの密度、 D0 ;樹脂シートを組成する繊維の真比重Porosity% = (1−D / D 0 ) × 100 where D: density of the resin sheet, D 0 : true specific gravity of the fiber constituting the resin sheet

【0032】また、上記ハイポアー3000は、無数の
網目状格子からなる多孔体で、その格子直径は約0.0
5〜0.5μmのポリオレフィン系樹脂からなるシート
であり、このシートは、一般には相分離法により作製さ
れる。具体的には例えば次のようにして作製される。加
熱した溶媒Aにポリオレフィン樹脂を溶解し、その後急
冷して樹脂を析出させる。これにより網目状の樹脂体が
できる。そこで、溶媒Aと相溶性のある溶媒Bを用い
で、この樹脂体に残留する溶媒Aを除去する。その後こ
の樹脂体をシート状に加工する。この製法において、空
隙率を大きくするためには、樹脂と共にシリカ粉末を溶
媒Aに添加しておくのがよい。このようにすると、シリ
カ粉末を抱き込んだ状態で糸状の樹脂が析出するので、
その後、シリカ粉末をアルカリで除去すると、空隙率の
大きい網状の樹脂シートとなすことができる。
The hypopore 3000 is a porous body composed of an infinite number of mesh-like lattices having a lattice diameter of about 0.0
It is a sheet made of a polyolefin resin having a thickness of 5 to 0.5 μm, and this sheet is generally produced by a phase separation method. Specifically, for example, it is manufactured as follows. The polyolefin resin is dissolved in the heated solvent A and then rapidly cooled to precipitate the resin. Thereby, a mesh-like resin body is formed. Therefore, the solvent A remaining in the resin body is removed by using a solvent B compatible with the solvent A. Thereafter, the resin body is processed into a sheet. In this production method, in order to increase the porosity, silica powder is preferably added to the solvent A together with the resin. In this way, a thread-like resin precipitates while holding the silica powder,
Thereafter, when the silica powder is removed with an alkali, a net-like resin sheet having a large porosity can be formed.

【0033】[0033]

【化1】 Embedded image

【0034】[0034]

【化2】 Embedded image

【0035】(実施例2〜6)空隙率及び厚みが相違す
る前記ハイポアーを用いたこと以外は、上記実施例1と
同様にして実施例2〜6にかかる高分子固体電解質電池
を作製した。この実施例2〜6で用いた樹脂シート(ハ
イポアー)の空隙率と厚みについては、下記表2に一括
して記載する。
Examples 2 to 6 Polymer solid electrolyte batteries according to Examples 2 to 6 were produced in the same manner as in Example 1 except that the above-mentioned hypopores having different porosity and thickness were used. The porosity and thickness of the resin sheet (hypore) used in Examples 2 to 6 are collectively described in Table 2 below.

【0036】(比較例1〜3)空隙率及び厚みが相違す
る前記ハイポアーを用いたこと以外は、上記実施例1と
同様にして比較例1〜3の高分子固体電解質電池を作製
した。この比較例1〜3で用いた樹脂シート(ハイポア
ー)の空隙率と厚みについても、下記表2に一括して記
載する。
Comparative Examples 1 to 3 Polymer solid electrolyte batteries of Comparative Examples 1 to 3 were prepared in the same manner as in Example 1 except that the above-mentioned hypopores having different porosity and thickness were used. The porosity and thickness of the resin sheet (hypoir) used in Comparative Examples 1 to 3 are also collectively described in Table 2 below.

【0037】[0037]

【表1】 [Table 1]

【0038】上記で作製した実施例1〜6、及び比較例
1〜3の電池について、表1の条件で充放電を行い、各
々の電池の0.2C容量、1.0C容量を測定した。ま
た、活性化処理の1サイクル目が終了した電池を用い、
コールコールプロット法で電池内部抵抗を測定した。こ
れらの測定結果を表2に一覧表示する。
The batteries prepared in Examples 1 to 6 and Comparative Examples 1 to 3 were charged and discharged under the conditions shown in Table 1, and the 0.2 C capacity and the 1.0 C capacity of each battery were measured. Also, using a battery in which the first cycle of the activation process has been completed,
The battery internal resistance was measured by the Cole-Cole plot method. These measurement results are listed in Table 2.

【0039】また、表2の結果を判りやすくするため
に、図1に樹脂シートの空隙率と放電容量の関係(高分
子固体電解質シートの厚みは30μm共通)を示す。ま
た、図2に樹脂シートの空隙率と1.0C/0.2C放
電容量比(百分率)の関係(高分子固体電解質シートの
厚みは30μm共通)を示す。更に、図3に高分子固体
電解質含有シートの厚みと放電容量との関係(樹脂シー
トの空隙率は90%共通)を示し、図4に高分子固体電
解質含有シートの厚みと1.0C/0.2C放電容量比
(百分率)の関係(樹脂シートの空隙率は90%共通)
を示す。
FIG. 1 shows the relationship between the porosity of the resin sheet and the discharge capacity (the solid polymer electrolyte sheet has a common thickness of 30 μm) so that the results in Table 2 can be easily understood. FIG. 2 shows the relationship between the porosity of the resin sheet and the discharge capacity ratio (percentage) of 1.0 C / 0.2 C (the thickness of the polymer solid electrolyte sheet is commonly 30 μm). FIG. 3 shows the relationship between the thickness of the polymer solid electrolyte containing sheet and the discharge capacity (the porosity of the resin sheet is common to 90%), and FIG. 4 shows the relationship between the thickness of the polymer solid electrolyte containing sheet and 1.0 C / 0. Relationship of 2C discharge capacity ratio (percentage) (porosity of resin sheet is common to 90%)
Is shown.

【0040】[0040]

【表2】 [Table 2]

【0041】図1から、樹脂シートの空隙率が小さくな
ると放電容量が小さくなり、特に空隙率が80%未満と
なると、顕著に放電容量が低下することが判る。また、
図2から、空隙率が80%未満となると、1.0C/
0.2C放電容量比が極端に低下することが判る。この
ことからして、高分子固体電解質及び非水溶媒(非水電
解液)を保持させる樹脂シートの空隙率は、80%以上
とする必要がある。但し、90%を越える空隙率の樹脂
シートの作製は容易でなく、また90%を越える空隙率
の樹脂シートではネットワークが少なくなり、高分子固
体電解質の保持力が弱くなるので好ましくない。よっ
て、現実的には80%以上、90%以下の空隙率の樹脂
シートを用いるのがよいといえる。なお、1.0C/
0.2C放電容量比が小さいことは、高率放電特性が悪
いことを意味している。
FIG. 1 shows that the discharge capacity decreases as the porosity of the resin sheet decreases, and that the discharge capacity decreases significantly when the porosity is less than 80%. Also,
From FIG. 2, when the porosity is less than 80%, 1.0 C /
It can be seen that the 0.2 C discharge capacity ratio is extremely reduced. For this reason, the porosity of the resin sheet holding the solid polymer electrolyte and the non-aqueous solvent (non-aqueous electrolyte) needs to be 80% or more. However, it is not easy to produce a resin sheet having a porosity of more than 90%, and a resin sheet having a porosity of more than 90% is not preferable because the network is reduced and the holding power of the solid polymer electrolyte is reduced. Therefore, it can be said that it is practical to use a resin sheet having a porosity of 80% or more and 90% or less. In addition, 1.0C /
A small 0.2 C discharge capacity ratio means that high-rate discharge characteristics are poor.

【0042】一方、図3から、高分子固体電解質含有シ
ートの厚みが50μmを越えると、顕著に放電容量が低
下することが判る。また、図4から、高分子固体電解質
含有シートの厚みが50μmを越えると、1.0C/
0.2C放電容量比が顕著に悪化することが判る。この
ことから、高分子固体電解質含有シートの厚みは50μ
m以下が好ましい。但し、20μm未満とすると、薄く
なり過ぎる結果、電子絶縁性が不十分になる。よって、
高分子固体電解質含有シートの厚みは、20μm以上、
50μm以下とするのが好ましい。
On the other hand, FIG. 3 shows that when the thickness of the polymer solid electrolyte-containing sheet exceeds 50 μm, the discharge capacity is significantly reduced. FIG. 4 shows that when the thickness of the polymer solid electrolyte-containing sheet exceeds 50 μm, 1.0 C /
It can be seen that the 0.2 C discharge capacity ratio is significantly deteriorated. From this, the thickness of the polymer solid electrolyte containing sheet is 50 μm.
m or less is preferable. However, if the thickness is less than 20 μm, the thickness becomes too thin, resulting in insufficient electronic insulation. Therefore,
The thickness of the polymer solid electrolyte containing sheet is 20 μm or more,
The thickness is preferably 50 μm or less.

【0043】(その他の事項) 上記実施例では、電極体を電池外装缶に挿入した後、
樹脂シートに高分子固体電解質前駆体溶液を含浸させ、
しかる後に加熱して高分子固体電解質含有シーートを作
製する方法を用いたが、本発明はこれに限定されるもの
ではない。例えば、予め別個に高分子固体電解質含有シ
ートを作製しておき、この電解質含有シートを正負電極
の間に介挿して発電要素となし、この発電要素を電池ケ
ース(電池外装缶)に挿入する方法で電池を組み立てて
もよい。そして、このような電池組み立て方法において
は、種々の重合方法が採用できる。具体的には、紫外線
などの光線、熱(加熱)、または電子線を照射する方法
等を用いることができる。 上記実施例では、樹脂シートの材質としてポリオレフ
ィン系樹脂を用い、また重合性高分子としてポリエチレ
ングリコールウレタンアクリレート系ポリマーを用いた
が、これに限定する意図ではない。樹脂シートの原材料
としては、例えばポリエステル系樹脂、フッ化ビニリデ
ン樹脂などが使用できる。
(Other Matters) In the above embodiment, after inserting the electrode body into the battery outer can,
Impregnating the resin sheet with the polymer solid electrolyte precursor solution,
Thereafter, a method of producing a sheet containing a polymer solid electrolyte by heating was used, but the present invention is not limited to this. For example, a method in which a polymer solid electrolyte-containing sheet is separately prepared in advance, the electrolyte-containing sheet is interposed between positive and negative electrodes to form a power generating element, and the power generating element is inserted into a battery case (battery outer can). The battery may be assembled with. In such a battery assembling method, various polymerization methods can be adopted. Specifically, a method of irradiating light such as ultraviolet rays, heat (heating), or electron beam can be used. In the above embodiment, a polyolefin resin was used as the material of the resin sheet, and a polyethylene glycol urethane acrylate polymer was used as the polymerizable polymer. However, the present invention is not limited to this. As a raw material of the resin sheet, for example, a polyester resin, a vinylidene fluoride resin, or the like can be used.

【0044】また、重合性高分子としては、光、熱また
は電子線で重合可能な各種の重合性高分子が使用でき
る。このうち好ましいものとしては、アクリレート官能
基、メタクリレート官能基を有する有機高分子があげら
れ、より好ましくは、有機溶媒と親和性が高いことか
ら、その構造中にポリエチレングリコール、ポリアクリ
ロニトリル、ポリエステルなどを取り込んでなる有機高
分子物質がよい。このような物質として、例えばポリエ
チレングリコールジアクリレート、ポリエチレングリコ
ールトリメタクリレートが例示できる。
As the polymerizable polymer, various polymerizable polymers which can be polymerized by light, heat or electron beam can be used. Among these, preferred are organic polymers having an acrylate functional group and a methacrylate functional group, and more preferably, because of their high affinity for organic solvents, polyethylene glycol, polyacrylonitrile, polyester, etc. An organic polymer substance taken in is preferred. Examples of such a substance include polyethylene glycol diacrylate and polyethylene glycol trimethacrylate.

【0045】上記実施例では、非水溶媒としてジエチ
ルカーボネートとエチレンカーボネートとの等容量混合
液を用いたが、これらに限定されるものではない。本発
明で使用できる他の非水溶媒としては、例えばプロビレ
ンカーボネート、スルフォラン、γーブチロラクタン、
ジエチルカーボネート、ジメチルカーボネート、エチル
メチルカーボネート、ジメトキシエタン、プロピオン酸
メチル、プロピオン酸エチルなどが使用できる。 更に、上記実施例では、電解質塩(LiclO4 )を
用いたが、イオン導電性に優れた非水溶媒を使用する場
合においては、電解質塩を使用しなくても十分に本発明
の効果が得られる。なお、LiclO4 以外の電解質塩
としては、例えばLiCl4 、LiPF4 、LiB
4 、LiBF6 、LiCF3 SO3 等が使用できる。
In the above embodiment, an equal volume mixture of diethyl carbonate and ethylene carbonate was used as the non-aqueous solvent, but the present invention is not limited to these. Other non-aqueous solvents that can be used in the present invention include, for example, provylene carbonate, sulfolane, γ-butyrolactan,
Diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, dimethoxyethane, methyl propionate, ethyl propionate and the like can be used. Furthermore, although the electrolyte salt (LiClO 4 ) is used in the above embodiment, when a non-aqueous solvent having excellent ionic conductivity is used, the effect of the present invention can be sufficiently obtained without using the electrolyte salt. Can be The electrolyte salt other than LiClO 4 includes, for example, LiCl 4 , LiPF 4 , LiB
F 4 , LiBF 6 , LiCF 3 SO 3 and the like can be used.

【0046】また、本発明で使用する負極活物質とし
ては、リチウムイオンをドープ・脱ドープ等する所謂難
黒鉛化炭素やコークス、又はリチウムイオンをインター
カレート・デインターカレートする黒鉛(天然黒鉛、人
工黒鉛を問わない)など、リチウムイオン電池用負極に
使用される種々の炭素材料が使用可能である。そして、
これらの炭素粒子の粒子径は特に限定されるものではな
く、スラリ−性及び塗布性を考慮して、適当に決めるこ
とができる。他方、正極活物質としては、例えばLiC
oO2 、LiNiO2 、LiMnO2 、LiFeO2
どが使用できる。但し、正負活物質は、これらに限定さ
れるものでないことは勿論である。
As the negative electrode active material used in the present invention, so-called non-graphitizable carbon or coke for doping or undoping lithium ions, or graphite for intercalating or deintercalating lithium ions (natural graphite) is used. And any of various types of carbon materials used for a negative electrode for a lithium ion battery. And
The particle size of these carbon particles is not particularly limited, and can be appropriately determined in consideration of slurry properties and coatability. On the other hand, as the positive electrode active material, for example, LiC
oO 2, LiNiO 2, LiMnO 2 , LiFeO 2 and the like can be used. However, the positive and negative active materials are not limited to these.

【0047】[0047]

【発明の効果】以上から明らかなように、正負電極の間
にゲル状高分子固体電解質含有シートを介在させること
を特徴とする本発明では、上記電解質含有シートが正負
電極間の電子絶縁性を確保する一方、円滑なイオン導電
性を確保する。よって、本発明によると、電極と電解質
界面の内部抵抗の軽減、正負電極間の内部短絡の防止、
正負電極間のイオン導電の円滑化が実現できるので、電
池容量の大きい、ハイレート放電特性にも優れた高分子
固体電解質電池が提供できるという顕著な効果が得られ
る。
As is evident from the above, in the present invention characterized in that a sheet containing a gel polymer solid electrolyte is interposed between positive and negative electrodes, the above-mentioned electrolyte-containing sheet improves the electronic insulation between the positive and negative electrodes. On the other hand, smooth ion conductivity is ensured. Therefore, according to the present invention, the internal resistance at the interface between the electrode and the electrolyte is reduced, the internal short circuit between the positive and negative electrodes is prevented,
Since the ionic conductivity between the positive and negative electrodes can be smoothed, a remarkable effect of providing a polymer solid electrolyte battery having a large battery capacity and excellent high-rate discharge characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】樹脂シートの空隙率と放電容量の関係(高分子
固体電解質シートの厚みは30μm共通)を示す。
FIG. 1 shows the relationship between the porosity of a resin sheet and discharge capacity (the thickness of a polymer solid electrolyte sheet is commonly 30 μm).

【図2】樹脂シートの空隙率と1.0C/0.2C放電
容量比(百分率)の関係(高分子固体電解質シートの厚
みは30μm共通)を示す。
FIG. 2 shows a relationship between a porosity of a resin sheet and a discharge capacity ratio (percentage) of 1.0 C / 0.2 C (the thickness of a polymer solid electrolyte sheet is common to 30 μm).

【図3】高分子固体電解質含有シートの厚みと放電容量
との関係(樹脂シートの空隙率は90%共通)を示す。
FIG. 3 shows the relationship between the thickness of the polymer solid electrolyte containing sheet and the discharge capacity (the porosity of the resin sheet is common to 90%).

【図4】高分子固体電解質含有シートの厚みと1.0C
/0.2C放電容量比(百分率)の関係(樹脂シートの
空隙率は90μm共通)を示す。
FIG. 4 shows the thickness and 1.0C of the polymer solid electrolyte containing sheet.
/0.2C discharge capacity ratio (percentage) (porosity of resin sheet is common to 90 μm).

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 リチウムを吸蔵放出することのできる正
極と、リチウムを吸蔵放出することのできる負極と、正
負電極の間に介挿された高分子固体電解質層を有する高
分子固体電解質電池において、 前記高分子固体電解質層が、網目構造をした電子絶縁性
の樹脂シートと、前記網目構造内に保持されたゲル状の
高分子固体電解質とを含む高分子固体電解質含有シート
で構成され、 前記樹脂シートの空隙率が80〜90%であり、前記ゲ
ル状の高分子固体電解質が、少なくとも重合高分子と非
水溶媒とを含み組成されていることを特徴とする高分子
固体電解質電池。
1. A polymer solid electrolyte battery having a positive electrode capable of inserting and extracting lithium, a negative electrode capable of inserting and extracting lithium, and a polymer solid electrolyte layer interposed between positive and negative electrodes. The polymer solid electrolyte layer is composed of a polymer solid electrolyte containing sheet including an electronically insulating resin sheet having a network structure, and a gel polymer solid electrolyte held in the network structure, A solid polymer electrolyte battery, wherein the porosity of the sheet is 80 to 90%, and the gel polymer solid electrolyte comprises at least a polymer polymer and a non-aqueous solvent.
【請求項2】 前記高分子固体電解質含有シートの厚み
が、20μm〜50μmであることを特徴とする、請求
項1記載の高分子固体電解質電池。
2. The polymer solid electrolyte battery according to claim 1, wherein the thickness of the polymer solid electrolyte-containing sheet is 20 μm to 50 μm.
【請求項3】 リチウムを吸蔵放出することのできる正
極と、リチウムを吸蔵放出することのできる負極との間
に、網目構造をした電子絶縁性の樹脂シートを介在させ
て成る電極体を、電池ケースに収納する電極体収納工程
と、 電極体の収納された電池ケース内に、熱重合性高分子と
非水溶媒とを含み組成された高分子固体電解質前駆体溶
液を注液し、前記樹脂シートの網目構造内に高分子固体
電解質前駆体溶液を含浸させる前駆体溶液含浸工程と、 前記樹脂シートに含浸した前記前駆体溶液を加熱し、当
該前駆体溶液に含まれる重合性高分子を重合してゲル状
の高分子固体電解質となす重合工程と、を備える高分子
固体電解質電池の製造方法。
3. An electrode comprising a mesh-structured electronically insulating resin sheet interposed between a positive electrode capable of inserting and extracting lithium and a negative electrode capable of inserting and extracting lithium. An electrode body housing step of housing the case, and a polymer solid electrolyte precursor solution containing a thermopolymerizable polymer and a non-aqueous solvent is injected into the battery case housing the electrode body, and the resin A precursor solution impregnating step of impregnating the polymer solid electrolyte precursor solution in the network structure of the sheet, and heating the precursor solution impregnated in the resin sheet to polymerize the polymerizable polymer contained in the precursor solution And producing a gel polymer solid electrolyte.
【請求項4】 前記前駆体溶液含浸工程における注液の
方法が、電極体の収納された電池ケース内を減圧にし、
しかる後に高分子固体電解質前駆体溶液を注液する方法
であることを特徴とする、請求項3記載の高分子固体電
解質電池の製造方法。
4. A method for injecting a liquid in the precursor solution impregnating step, wherein the pressure inside the battery case containing the electrode body is reduced.
The method for producing a solid polymer electrolyte battery according to claim 3, wherein the method is a method of injecting a solid polymer electrolyte precursor solution thereafter.
【請求項5】 前記樹脂シートの空隙率が、80〜90
%であることを特徴とする請求項3または4記載の高分
子固体電解質電池の製造方法。
5. The porosity of the resin sheet is 80 to 90.
5. The method for producing a solid polymer electrolyte battery according to claim 3, wherein
【請求項6】 前記高分子固体電解質含有シートの厚み
が、20μm〜50μmであることを特徴とする請求項
3、4、または5記載の高分子固体電解質電池。
6. The polymer solid electrolyte battery according to claim 3, wherein the thickness of the polymer solid electrolyte-containing sheet is from 20 μm to 50 μm.
JP04373397A 1997-02-27 1997-02-27 Method for producing polymer solid electrolyte battery Expired - Fee Related JP3954682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04373397A JP3954682B2 (en) 1997-02-27 1997-02-27 Method for producing polymer solid electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04373397A JP3954682B2 (en) 1997-02-27 1997-02-27 Method for producing polymer solid electrolyte battery

Publications (2)

Publication Number Publication Date
JPH10241731A true JPH10241731A (en) 1998-09-11
JP3954682B2 JP3954682B2 (en) 2007-08-08

Family

ID=12671992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04373397A Expired - Fee Related JP3954682B2 (en) 1997-02-27 1997-02-27 Method for producing polymer solid electrolyte battery

Country Status (1)

Country Link
JP (1) JP3954682B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176555A (en) * 1999-12-20 2001-06-29 Sunstar Eng Inc Polymeric solid electrolytic lithium ion secondary battery
KR100461876B1 (en) * 2002-06-01 2004-12-14 새한에너테크 주식회사 Method Of Fabricating Lithium Ion Battery
US7078131B2 (en) 2001-08-17 2006-07-18 Samsung Sdi Co., Ltd. Polymeric sol electrolyte and lithium battery using the same
JP2009529768A (en) * 2006-03-10 2009-08-20 エクセラトロン ソリッド ステート,エルエルシー Air battery and manufacturing method thereof
JP2014105263A (en) * 2012-11-27 2014-06-09 Toagosei Co Ltd Active energy ray curing type coating agent composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176555A (en) * 1999-12-20 2001-06-29 Sunstar Eng Inc Polymeric solid electrolytic lithium ion secondary battery
US7078131B2 (en) 2001-08-17 2006-07-18 Samsung Sdi Co., Ltd. Polymeric sol electrolyte and lithium battery using the same
KR100461876B1 (en) * 2002-06-01 2004-12-14 새한에너테크 주식회사 Method Of Fabricating Lithium Ion Battery
JP2009529768A (en) * 2006-03-10 2009-08-20 エクセラトロン ソリッド ステート,エルエルシー Air battery and manufacturing method thereof
JP2014105263A (en) * 2012-11-27 2014-06-09 Toagosei Co Ltd Active energy ray curing type coating agent composition

Also Published As

Publication number Publication date
JP3954682B2 (en) 2007-08-08

Similar Documents

Publication Publication Date Title
JP3556636B2 (en) Flat secondary battery and method of manufacturing the same
JP2004185862A (en) Lithium ion secondary battery and its manufacturing method
JP2000235868A (en) Nonaqueous electrolyte secondary battery
JPH10334948A (en) Electrode, lithium secondary battery, and electric double layer capacitor using the electrode
JP2001176497A (en) Nonaqueous electrolyte secondary battery
JP4031635B2 (en) Electrochemical devices
KR100768836B1 (en) Lithium polymer secondary cell and the method for manufacture thereof
JP3850977B2 (en) Method for producing polymer solid electrolyte battery
JP2004362859A (en) Lithium-ion secondary battery
JP2001319689A (en) Lithium-polymer secondary battery
JP4751502B2 (en) Polymer battery
JP2001210377A (en) Polymer electrolyte composition, its manufacturing method and lithium secondary battery which utilizes it
JP4507345B2 (en) Method for producing lithium polymer secondary battery
JP4142921B2 (en) Lithium ion secondary battery
JP2005222773A (en) Nonaqueous electrolyte secondary battery and anode for the same
JP2006079960A (en) Flat nonaqueous electrolyte secondary battery
JP2000149905A (en) Solid electrolyte battery
JP3954682B2 (en) Method for producing polymer solid electrolyte battery
JP4015827B2 (en) Non-aqueous electrolyte battery
JP3351765B2 (en) Non-aqueous electrolyte secondary battery
JP2006024392A (en) Charging method of lithium-ion secondary battery
JP2000113872A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP4031407B2 (en) Secondary battery
JPH10261437A (en) Polymer electrolyte and lithium polymer battery using it
JP4448963B2 (en) Flat type non-aqueous electrolyte secondary battery and method for manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees