JPH10241715A - Fused carbonate type fuel cell - Google Patents

Fused carbonate type fuel cell

Info

Publication number
JPH10241715A
JPH10241715A JP9045129A JP4512997A JPH10241715A JP H10241715 A JPH10241715 A JP H10241715A JP 9045129 A JP9045129 A JP 9045129A JP 4512997 A JP4512997 A JP 4512997A JP H10241715 A JPH10241715 A JP H10241715A
Authority
JP
Japan
Prior art keywords
current collector
metal
fuel cell
cathode electrode
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9045129A
Other languages
Japanese (ja)
Inventor
Shohei Uozumi
昇平 魚住
Hideo Okada
秀夫 岡田
Masashi Yamaga
賢史 山賀
Masanori Yamaguchi
雅教 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOYU TANSANENGATA NENRYO DENCH
YOYU TANSANENGATA NENRYO DENCHI HATSUDEN SYST GIJUTSU KENKYU KUMIAI
Original Assignee
YOYU TANSANENGATA NENRYO DENCH
YOYU TANSANENGATA NENRYO DENCHI HATSUDEN SYST GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOYU TANSANENGATA NENRYO DENCH, YOYU TANSANENGATA NENRYO DENCHI HATSUDEN SYST GIJUTSU KENKYU KUMIAI filed Critical YOYU TANSANENGATA NENRYO DENCH
Priority to JP9045129A priority Critical patent/JPH10241715A/en
Publication of JPH10241715A publication Critical patent/JPH10241715A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To realize high performance of a fuel cell by reducing a contact resistance between a cathode electrode made of oxide with a high specific resistance, large rigidity and poor accuracy in dimensions and a current collector plate made of metal, in a fused carbonate type fuel cell. SOLUTION: In a fused carbonate type fuel cell, in which an anode electrode made of metal (Ni) and a current collector plate are arranged on the one side, and a cathode electrode 3 made of metal oxide (NiO) and another electrode plate 9 made of metal are arranged sequentially on the other side, a layer of Ni powder 2 is provided as a metal-filling layer between the cathode electrode 3 and the current collector plate 9, so that a contact area is increased. Also, the cathode electrode 3 is adhered to the current collector plate by Ni wax instead, or a thin Ni film layer may be formed on the electrode 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶融炭酸塩型燃料
電池の高性能化に係り、特に電池内部抵抗を低減する構
造を有する溶融炭酸塩型燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improving the performance of a molten carbonate fuel cell, and more particularly to a molten carbonate fuel cell having a structure for reducing the internal resistance of the fuel cell.

【0002】[0002]

【従来の技術】従来の溶融炭酸塩型燃料電池は、内部抵
抗低減のために電解質を含浸させた板状のマトリックス
の厚みを薄くすること、またこのマトリックスの気孔率
を高めること等が主流であって、電池構成部材間の接触
抵抗、特にカソ−ド電極と集電板間の接触抵抗について
はほとんど対策することがなかった。
2. Description of the Related Art Conventional molten carbonate fuel cells mainly include reducing the thickness of a plate-like matrix impregnated with an electrolyte to reduce internal resistance and increasing the porosity of the matrix. There has been almost no countermeasure against the contact resistance between the battery components, especially the contact resistance between the cathode electrode and the current collector.

【0003】[0003]

【発明が解決しようとする課題】燃料電池の内部抵抗
は、電極、集電板、電解質、セパレ−タなどの固有抵抗
とそれぞれの部材の形状、厚さとによる抵抗と、それぞ
れの部材間の接触抵抗とで構成されている。即ち、図6
に示すような溶融炭酸塩型燃料電池おいて、電解質を含
むマトリックス1の一方の面にアノード電極2、集電板
8及びアノ−ド側セパレータ6が順次に接して配置さ
れ、マトリックス1の他方の面にはカソード電極3、集
電板9及びカソ−ド側セパレ−タ7が順次に接して配置
されている。アノード電極2、集電板8はアノ−ド側セ
パレ−タ6に形成された凹部に、またカソード電極3、
集電板9はカソ−ド側セパレ−タ7の凹部に収納されて
いる。各セパレータ6、7は凹部の底面に互いに並列す
る複数の溝からなるガス通路4を有し、ガス通路4を仕
切るリブ5の先端が集電板8、9に接触している。リブ
5は電流の通路ともなる。
The internal resistance of a fuel cell is determined by the specific resistance of electrodes, current collectors, electrolytes, separators, etc., the resistance due to the shape and thickness of each member, and the contact between each member. It consists of a resistor and a resistor. That is, FIG.
In the molten carbonate type fuel cell shown in FIG. 1, an anode electrode 2, a current collector 8 and an anode-side separator 6 are arranged in sequence on one surface of a matrix 1 containing an electrolyte, and the other side of the matrix 1 The cathode electrode 3, the current collecting plate 9 and the cathode-side separator 7 are sequentially arranged on the surface. The anode electrode 2 and the current collecting plate 8 are provided in concave portions formed in the anode-side separator 6, and the cathode electrode 3 and the
The current collector 9 is housed in a recess of the cathode side separator 7. Each of the separators 6 and 7 has a gas passage 4 composed of a plurality of grooves arranged in parallel with each other on the bottom surface of the concave portion. The rib 5 also serves as a current passage.

【0004】マトリックス1は、LiAlO2の粉末などを焼
結した多孔体で、その細孔内に電解質を含んでいる。ア
ノ−ド電極2及びカソ−ド電極3は共に多孔体で、前者
はNi、後者はNiOが主成分である。集電板8、9は、電極
2、3とそれぞれのセパレ−タ6、7のリブ5との間の
電気的な通路であるとともにガス通路4からの反応ガス
が電極2、3に拡散するのを妨げないように多くは穴9
aが形成されたパンチングメタルが使われている。そし
て、アノ−ド側の集電板8ではステンレス鋼SUS310S
が、カソ−ド側の集電板9ではSUS316Lが多く使われて
いる。またセパレ−タ6、7は、一般的にはSUS310Sが
使われている。
The matrix 1 is a porous body obtained by sintering LiAlO 2 powder or the like, and contains an electrolyte in the pores. Both the anode electrode 2 and the cathode electrode 3 are porous, and the former is mainly composed of Ni and the latter is mainly composed of NiO. The current collector plates 8 and 9 are electric passages between the electrodes 2 and 3 and the ribs 5 of the respective separators 6 and 7, and the reaction gas from the gas passage 4 diffuses to the electrodes 2 and 3. Hole 9 so as not to disturb
A punched metal on which a is formed is used. The current collector 8 on the anode side is made of stainless steel SUS310S.
However, SUS316L is often used for the current collector 9 on the cathode side. Generally, SUS310S is used for the separators 6 and 7.

【0005】このように構成された従来の燃料電池につ
いて、その内部抵抗を分離して図示すると図7のように
なる。抵抗R6、R8、R2、R1、R3、R9、R7
は、材料固有の抵抗と寸法、形状とによる抵抗で、R
6、R7はそれぞれアノ−ド側セパレ−タ6及びカソ−
ド側セパレ−タ7の抵抗である。R8、R9は集電板
8、9の抵抗、R2、R3はそれぞれアノ−ド電極2、
カソ−ド電極3の抵抗、そしてR1は電解質を含んだマ
トリックス1の抵抗である。
FIG. 7 shows a conventional fuel cell constructed as described above in which the internal resistance is separated and shown. Resistances R6, R8, R2, R1, R3, R9, R7
Is the resistance due to the material-specific resistance, dimensions, and shape.
6, R7 are anode-side separator 6 and cathode, respectively.
This is the resistance of the side separator 7. R8 and R9 are the resistances of the current collectors 8 and 9, R2 and R3 are the anode electrodes 2, respectively.
The resistance of the cathode electrode 3, and R1 is the resistance of the matrix 1 containing the electrolyte.

【0006】抵抗R(6・8)、R(2・8)、R(3・
9)、R(7・9)は、部材間の接触抵抗で、R(6・
8)、R(7・9)はそれぞれアノ−ド側セパレ−タ6と
集電板8、カソ−ド側セパレ−タ7と集電板9の接触抵
抗である。またR(2・8)、R(3・9)は集電板8とア
ノ−ド電極2、集電板9とカソ−ド電極3の接触抵抗で
ある。これらの抵抗を相対比較が出来るよう単位面積あ
たりの抵抗とし、かつ相対値で示すと表1のようにな
り、マトリックス1の抵抗R1と、集電板9とカソ−ド
電極3間の接触抵抗R(3・9)が電池内部抵抗の大半を
占めることがわかった。
The resistances R (6.8), R (2.8), R (3 • 8)
9) and R (7 · 9) are contact resistance between members, and R (6 · 9)
8) and R (7.9) are contact resistances between the anode side separator 6 and the current collector 8 and the cathode side separator 7 and the current collector 9 respectively. R (2.8) and R (3.9) are the contact resistance between the current collector 8 and the anode electrode 2 and between the current collector 9 and the cathode electrode 3. These resistances are expressed as resistance per unit area so that they can be compared with each other, and expressed as relative values as shown in Table 1. The resistance R1 of the matrix 1, the contact resistance between the current collector 9 and the cathode electrode 3 are shown in Table 1. It was found that R (3.9) accounts for most of the internal resistance of the battery.

【0007】[0007]

【表1】 [Table 1]

【0008】これは他の抵抗が固有抵抗の小さい金属の
抵抗、または締付け時に互いに密に接触し易い(なじみ
の良い)金属間の接触抵抗であるのに対して、マトリッ
クス1部分は固有抵抗の高い非金属材料からなり、また
集電板9とカソ−ド電極3間の接触抵抗R(3・9)は金
属と非金属(NiO)間のなじみの悪い接触であるからで
ある。
This is because the other resistance is a resistance of a metal having a low specific resistance or a contact resistance between metals which are easily brought into close contact with each other during tightening (a familiar), whereas a part of the matrix 1 has a specific resistance. This is because the contact resistance R (3.9) between the current collector plate 9 and the cathode electrode 3 is an unfamiliar contact between metal and nonmetal (NiO).

【0009】従来は、この内部抵抗低減の為に余りなす
べき手段は無く、単にマトリックスの厚みを薄くした
り、気孔率を若干高める程度のことでしかなかった。特
に、固有抵抗が高く、また剛性が大きく、かつ表面に微
小な凹凸があり寸法精度の悪い酸化物(NiO)からなる
カソード電極と金属(ステンレス鋼)からなる集電板との
間の接触抵抗に対してはなんら対策が無かった。
Heretofore, there has been no extra measure to reduce the internal resistance, but merely to reduce the thickness of the matrix or to slightly increase the porosity. In particular, the contact resistance between the cathode electrode made of oxide (NiO), which has high specific resistance, high rigidity, and fine irregularities on the surface and has poor dimensional accuracy, and the current collector plate made of metal (stainless steel) No action was taken against

【0010】本発明は、これらの点に鑑み為されたもの
で、その目的は集電板とカソ−ド電極間の接触抵抗を小
さくして、溶融炭酸塩型燃料電池の高性能化を図ること
にある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and has as its object to reduce the contact resistance between a current collector and a cathode electrode to improve the performance of a molten carbonate fuel cell. It is in.

【0011】[0011]

【課題を解決するための手段】上記目的は、電解質を含
む電解質板を挾んで、一方にそれぞれ金属からなるアノ
−ド電極と一集電板が順に配置され、他方に金属酸化物
からなるカソ−ド電極と金属からなる別の電極板が順に
配置されてなる溶融炭酸塩型燃料電池において、カソ−
ド電極と別の集電板との間に多孔性かつ軟質の金属充填
層を設けることにより達成される。
The object of the present invention is to sandwich an electrolyte plate containing an electrolyte, one of which is provided with an anode electrode made of a metal and the other of a current collector in order, and the other is made of a cathode made of a metal oxide. In a molten carbonate fuel cell in which a cathode electrode and another electrode plate made of metal are arranged in order,
This is achieved by providing a porous and soft metal-filled layer between the negative electrode and another current collector.

【0012】この金属充填層は、(1)NiまたはNiを
主成分とする粉末、(2)カソ−ド電極と別の集電板とを
一体化させる、Niを主成分としたろう材、(3)別の集
電板表面にクラッドされたNi薄膜、あるいは(4)別の
集電板の表面にメッシュ状に形成されたNi、により構
成される。
The metal-filled layer is composed of (1) Ni or a powder containing Ni as a main component, (2) a brazing material containing Ni as a main component for integrating a cathode electrode and another current collector, (3) Ni thin film clad on the surface of another current collector, or (4) Ni formed in a mesh on the surface of another current collector.

【0013】粉末は集電板とカソ−ド電極の間の隙間を
埋めて、接触面積を大きくするのに有効であり、またろ
う材がカソ−ド電極と集電板とを接着することにより、
それぞれ接触抵抗を小さくすることができ、これによっ
て高い電池性能が得られる。また、それぞれ軟質のNi
薄膜またはメッシュ状Ni薄膜を介在させることによっ
て集電板とカソ−ド電極間の接触抵抗を小さくすること
ができる。
The powder is effective to fill the gap between the current collector plate and the cathode electrode and increase the contact area, and the brazing material is used to bond the cathode electrode and the current collector plate. ,
In each case, the contact resistance can be reduced, thereby obtaining high battery performance. In addition, soft Ni
By interposing a thin film or a mesh Ni thin film, the contact resistance between the current collector and the cathode electrode can be reduced.

【0014】[0014]

【発明の実施の形態】以下本発明の実施の形態を図によ
って説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings.

【0015】実施の形態1 図1は本発明の要部を拡大した図で、集電板9とカソ−
ド電極3の間にNi粉末による金属充填層21が介在し
ている。電気的な等価回路は、図1右部分に示すよう
に、金属充填層21自身の抵抗R21、金属充填層21
・集電板9間の接触抵抗及び金属充填層21・カソ−ド
電極3間の接触抵抗の3つを合わせた抵抗R21(3・2
1・9)と、集電板9自身の抵抗R9と、カソ−ド電極3
自身の抵抗R3とで構成される。ここでR21(3・21
・9)は従来電池の集電板9とカソ−ド電極3との接触抵
抗R(3・9)に相当する。
Embodiment 1 FIG. 1 is an enlarged view of a main part of the present invention.
A metal-filled layer 21 of Ni powder is interposed between the gate electrodes 3. As shown in the right part of FIG. 1, the electrical equivalent circuit includes the resistance R21 of the metal-filled layer 21 itself and the resistance of the metal-filled layer 21.
A resistance R21 (3.2) which is a combination of the contact resistance between the current collector 9 and the metal-filled layer 21 and the contact resistance between the cathode electrodes 3.
1.9), the resistance R9 of the current collector 9 itself, and the cathode electrode 3
It consists of its own resistor R3. Here, R21 (3.21)
(9) corresponds to the contact resistance R (3.9) between the current collector plate 9 and the cathode electrode 3 of the conventional battery.

【0016】金属充填層21は、アノ−ド電極2あるい
はカソ−ド電極3を製造する原料粉と同じNi粉(例え
ばINCO社製#255)100重量部を水50重量部、増
粘剤ダイセル1100(ダイセル工業)1.5重量部と
で良く混練し、ペ−スト状になし、これを集電板9に塗
布し、かつカソ−ド電極3と貼り合わせ、100℃で1
時間加圧しながら乾燥して、増粘剤が消散した粉末の層
を得た。これによって集電板9とカソ−ド電極3の間に
形成される部材の平坦度(電極の寸法精度±30μm、
集電板の寸法精度±15μm)に起因するわずかな隙間
が埋め込まれ接触面積が増大し、接触抵抗が低減でき
る。図2に、金属充填層21の有無、即ち本発明にかか
る金属充填層21を含む集電板9・カソ−ド電極3間の
抵抗R21(3・21・9)と、従来法による集電板9・カ
ソ−ド電極3間の抵抗R(3・9)とを示す。金属充填層
21が有る場合には、無しに比較して抵抗が1/2に低
下し、かつバラツキも1/3以下に低減している結果を
得た。
The metal-filled layer 21 is composed of 100 parts by weight of the same Ni powder (for example, # 255 manufactured by INCO) as the raw material powder for producing the anode electrode 2 or the cathode electrode 3, 50 parts by weight of water, and the thickener Daicel. 1100 (Daicel Industries) well kneaded with 1.5 parts by weight to form a paste, which was applied to the current collector 9 and bonded to the cathode electrode 3 at 1100C.
Drying under pressure for an hour gave a powder layer in which the thickener had dissipated. As a result, the flatness of the member formed between the current collector 9 and the cathode electrode 3 (the dimensional accuracy of the electrode ± 30 μm,
A small gap caused by the dimensional accuracy of the current collector (± 15 μm) is buried, the contact area increases, and the contact resistance can be reduced. FIG. 2 shows the presence or absence of the metal-filled layer 21, that is, the resistance R21 (3.21.9) between the current collector 9 and the cathode electrode 3 including the metal-filled layer 21 according to the present invention, and the current collection by the conventional method. The resistance R (3.9) between the plate 9 and the cathode electrode 3 is shown. When the metal-filled layer 21 was present, the resistance was reduced to 1/2 and the variation was reduced to 1/3 or less as compared with the case without the metal-filled layer 21.

【0017】以上説明したように、本実施の形態によれ
ば集電板9とカソ−ド電極3の間にNi粉末による金属
充填層を形成することによって隙間が埋め込まれ、接触
抵抗を1/2以下にできる効果が有る。
As described above, according to the present embodiment, a gap is buried by forming a metal-filled layer of Ni powder between the current collector 9 and the cathode electrode 3, thereby reducing the contact resistance by 1 /. There is an effect that can be reduced to 2 or less.

【0018】なお、金属充填層21の構成法において、
必ずしもペ−スト状の物から構成しなければならないも
のではなく、例えば電池運転の温度で軟くてなじみのよ
いNiの多孔体であるアノ−ド電極を薄く成形したもの
でも良く、この場合には取扱性が大幅に改善できる効果
が付加される。また金属充填層を構成する金属は、Ni
に限らず、電解質に対して耐食性のよいNi−Al、A
u、Au−PdまたはCoなどを用いることもできる。
In the method of forming the metal-filled layer 21,
It is not always necessary to constitute a paste-like material, and for example, an anode electrode which is a soft and familiar Ni porous material at the temperature of battery operation may be thinly formed. Has the effect of greatly improving handling. The metal constituting the metal-filled layer is Ni
Ni—Al, A with good corrosion resistance to the electrolyte
u, Au-Pd or Co can also be used.

【0019】実施の形態2 ニッケルを主成分としたニッケルろう BNi-2(JIS.Z.326
5)を粉末状にしたものを水に分散させ集電板9に薄く塗
布し、これを乾燥した後カソ−ド電極3と貼りあわせ、
1000℃真空炉でろう付けをし、集電板9とカソ−ド
電極3を一体化した。なお、カソ−ド電極3は酸化物
(NiO)が主成分であるが、骨格には金属ニッケル(N
i)が残っているのでろう付けが可能である。またろう
は薄い層で、カソード電極の多孔性を保ったまま付着す
る。この実施の形態におけるろう付け層を含む集電板9
・カソ−ド電極3間の抵抗R21(3・21・9)はほぼ0
Ωで、いわゆる接触抵抗が0となった。また単独では強
度が小さく取扱い性の悪かったカソ−ド電極3が強度の
大きい集電板9と一体化することによって、取扱い性が
非常に良くなった。
Embodiment 2 Nickel solder containing nickel as a main component BNi-2 (JIS.Z.326)
5) The powdered product was dispersed in water, thinly applied to a current collector 9, dried, and then bonded to a cathode electrode 3.
The current collector plate 9 and the cathode electrode 3 were integrated by brazing in a vacuum furnace at 1000 ° C. The cathode electrode 3 is made of an oxide.
(NiO) is the main component, but the metal skeleton (N
Since i) remains, brazing is possible. In addition, the wax is a thin layer and adheres while maintaining the porosity of the cathode electrode. Current collector plate 9 including brazing layer in this embodiment
The resistance R21 (3.21.9) between the cathode electrodes 3 is almost zero
Ω, the so-called contact resistance became zero. In addition, the cathode electrode 3, which had a small strength and was not easy to handle by itself, was integrated with the current collector plate 9 having a large strength, so that the handleability was extremely improved.

【0020】この実施の形態では接触抵抗がほとんど皆
無となった上に、部材の取扱性が良くなる効果が付加さ
れた。
In this embodiment, there is almost no contact resistance, and an effect of improving the handleability of the member is added.

【0021】実施の形態3 集電板9が、70μm厚のNiと300μmのSUS316Lの
クラッド品で、Niがカソ−ド電極3側となるように配
置し、クラッドを含む集電板9とカソード電極3間の抵
抗R21(3・21・9)を実施の形態1と同様に測定し、
その結果を従来例と比較して図3に示した。この実施の
形態では従来例に比べ抵抗17が1/3以下に低下し、
経時的にも安定していることが分かった。また、実施の
形態1の発明(図2参照)に比較しても1/1.5となり、
Niの緻密な層であっても、溶融炭酸塩型燃料電池のよ
うに650℃程度の高温で作動するような場合には非常
に軟らかくなり、集電板9とカソ−ド電極3との間の密
着状態が実施の形態1と同様に改善され、その上、粉末
で構成した金属充填層21より70μm厚のNiクラッ
ド層の方が抵抗が低いので、全体として抵抗が低くなる
ものである。
Embodiment 3 The current collector 9 is a clad product of Ni having a thickness of 70 μm and SUS316L having a thickness of 300 μm, and is arranged so that Ni is on the cathode electrode 3 side. The resistance R21 (3.21.9) between the electrodes 3 was measured in the same manner as in the first embodiment,
The result is shown in FIG. 3 in comparison with the conventional example. In this embodiment, the resistance 17 is reduced to 1/3 or less as compared with the conventional example.
It was found that it was stable over time. Also, it is 1 / 1.5 compared to the invention of Embodiment 1 (see FIG. 2),
Even if it is a dense layer of Ni, when it is operated at a high temperature of about 650 ° C. like a molten carbonate type fuel cell, it becomes very soft, and the gap between the current collector plate 9 and the cathode electrode 3 becomes large. Is improved in the same manner as in the first embodiment. In addition, since the Ni clad layer having a thickness of 70 μm is lower in resistance than the metal-filled layer 21 made of powder, the resistance is lower as a whole.

【0022】実施の形態4 カソ−ド電極3の一方の面に図4に示すようなメッシュ
状のNi膜22を真空蒸着し、これを蒸着面が集電板9
側となるように配置し、抵抗17を実施の形態1と同様
に測定し、その結果を従来例と比較して図5に示した。
この実施の形態では従来例に比べ、メッシュ状Ni膜2
2を含む集電板9・カソ−ド電極3間の抵抗R21(3・
21・9)が2/3以下に低減できる効果と共に、金属充
填層が電極と一体化しているのでその取扱性が非常に良
好になる効果が付加された。
Embodiment 4 A mesh-like Ni film 22 as shown in FIG. 4 is vacuum-deposited on one surface of a cathode electrode 3, and this is deposited on the current collector plate 9.
The resistance 17 is measured in the same manner as in the first embodiment, and the result is shown in FIG. 5 in comparison with the conventional example.
In this embodiment, a mesh-like Ni film 2
The resistor R21 (3 · 3) between the current collector 9 including the cathode 2 and the cathode electrode 3
In addition to the effect of reducing 21.9) to 2/3 or less, the effect that the handleability becomes very good is added because the metal-filled layer is integrated with the electrode.

【0023】なおメッシュ状のNi膜22の形成法は真
空蒸着によるのみではなく、イオンスパッタ、化学蒸着
など多くの方法が有ることを付記しておく。
It should be noted that there are many methods for forming the mesh-like Ni film 22 such as ion sputtering and chemical vapor deposition, as well as vacuum deposition.

【0024】[0024]

【発明の効果】以上説明したように本発明によれば、集
電板とカソ−ド電極との間にNiを主成分とする金属充
填層を設けることによって、集電板とカソ−ド電極との
間の密着性が向上し、接触抵抗を小さくすることが出
来、これによって高い電池性能を得られる効果が有る。
As described above, according to the present invention, by providing a metal-filled layer containing Ni as a main component between the current collector and the cathode electrode, the current collector and the cathode electrode are provided. And the contact resistance can be reduced, which has the effect of obtaining high battery performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の溶融炭酸塩型燃料電池の構成と各構成
部分の電気抵抗の等価回路を示す図。
FIG. 1 is a diagram showing a configuration of a molten carbonate fuel cell of the present invention and an equivalent circuit of electric resistance of each component.

【図2】本発明による燃料電池で、Ni粉末を充填した
カソ−ド電極と集電板間の抵抗の測定結果を示す図。
FIG. 2 is a view showing a measurement result of a resistance between a cathode electrode filled with Ni powder and a current collector plate in the fuel cell according to the present invention.

【図3】本発明による燃料電池で、ニッケルろうで接着
したカソ−ド電極と集電板間の抵抗の測定結果を示す
図。
FIG. 3 is a view showing a measurement result of a resistance between a cathode electrode adhered with nickel brazing and a current collector plate in the fuel cell according to the present invention.

【図4】本発明の燃料電池で、メッシュ状Ni薄膜を形
成したカソ−ド電極の平面図。
FIG. 4 is a plan view of a cathode electrode on which a mesh Ni thin film is formed in the fuel cell of the present invention.

【図5】本発明の燃料電池で、メッシュ状Ni薄膜を形
成したカソ−ド電極と集電板間の抵抗の測定結果を示す
図。
FIG. 5 is a view showing a measurement result of a resistance between a cathode electrode on which a mesh Ni thin film is formed and a current collector in the fuel cell of the present invention.

【図6】溶融炭酸塩型溶融炭酸塩型燃料電池の構成を示
す縦断面図。
FIG. 6 is a longitudinal sectional view showing a configuration of a molten carbonate type molten carbonate fuel cell.

【図7】溶融炭酸塩型燃料電池の電気抵抗を示す等価回
路図。
FIG. 7 is an equivalent circuit diagram showing the electric resistance of the molten carbonate fuel cell.

【符号の説明】[Explanation of symbols]

1…マトリックス 2…アノ−ド電極 3…カソ−ド電極 9…集電板 21…金属充填層 22…Ni膜 DESCRIPTION OF SYMBOLS 1 ... Matrix 2 ... Anode electrode 3 ... Cathode electrode 9 ... Current collector 21 ... Metal filling layer 22 ... Ni film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山賀 賢史 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 山口 雅教 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kenshi Yamaga 7-1-1, Omikacho, Hitachi City, Ibaraki Prefecture Inside Hitachi Research Laboratory, Hitachi, Ltd. (72) Masanori Yamaguchi 7, Omikamachi, Hitachi City, Ibaraki Prefecture No. 1 in the Hitachi Research Laboratory, Hitachi, Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電解質を含む電解質板を挾んで、一方に
それぞれ金属からなるアノ−ド電極と一集電板が順に配
置され、他方に金属酸化物からなるカソ−ド電極と金属
からなる別の集電板が順に配置され、両集電板側から供
給される反応ガスが電気化学反応して電気エネルギーを
生成する溶融炭酸塩型燃料電池において、前記カソ−ド
電極と前記別の集電板との間に多孔性又は軟質の金属充
填層を設けたことを特徴とする溶融炭酸塩型燃料電池。
1. An anode plate made of a metal and a current collector are arranged in this order on one side of an electrolyte plate containing an electrolyte, and the other is made of a cathode electrode made of a metal oxide and a metal on the other side. In the molten carbonate fuel cell in which the reaction gas supplied from both the current collector plates is electrochemically reacted to generate electric energy, the cathode electrode and the separate current collector A molten carbonate fuel cell, wherein a porous or soft metal-filled layer is provided between the fuel cell and the plate.
【請求項2】 前記金属充填層がNi粉末あるいはNi
を主成分とする粉末から構成されていることを特徴とす
る請求項1記載の溶融炭酸塩型燃料電池。
2. The method according to claim 1, wherein the metal-filled layer is made of Ni powder or Ni powder.
2. The molten carbonate fuel cell according to claim 1, wherein the molten carbonate fuel cell is composed of a powder mainly composed of:
【請求項3】 前記金属充填層がNiを主成分とするろ
う材で、前記カソ−ド電極と前記別の集電板とを一体化
させたことを特徴とする請求項1記載の溶融炭酸塩型燃
料電池。
3. The molten carbonic acid according to claim 1, wherein said metal-filled layer is a brazing material containing Ni as a main component, and said cathode electrode and said another current collector are integrated. Salt type fuel cell.
【請求項4】 前記金属充填層が前記別の集電板表面に
クラッドされたNi薄膜であることを特徴とする請求項
1記載の溶融炭酸塩型燃料電池。
4. The molten carbonate fuel cell according to claim 1, wherein the metal-filled layer is a Ni thin film clad on the surface of the another current collector plate.
【請求項5】 前記金属充填層が前記別の集電板の表面
にメッシュ状に形成されたNi薄膜であることを特徴と
する請求項1記載の溶融炭酸塩型燃料電池。
5. The molten carbonate fuel cell according to claim 1, wherein the metal-filled layer is a Ni thin film formed in a mesh on the surface of the another current collector.
JP9045129A 1997-02-28 1997-02-28 Fused carbonate type fuel cell Pending JPH10241715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9045129A JPH10241715A (en) 1997-02-28 1997-02-28 Fused carbonate type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9045129A JPH10241715A (en) 1997-02-28 1997-02-28 Fused carbonate type fuel cell

Publications (1)

Publication Number Publication Date
JPH10241715A true JPH10241715A (en) 1998-09-11

Family

ID=12710669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9045129A Pending JPH10241715A (en) 1997-02-28 1997-02-28 Fused carbonate type fuel cell

Country Status (1)

Country Link
JP (1) JPH10241715A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001069704A1 (en) * 2000-03-15 2001-09-20 Ineos Chlor Limited End plates and current collector plates for fuel cells
US6790554B2 (en) 1998-10-08 2004-09-14 Imperial Chemical Industries Plc Fuel cells and fuel cell plates
JP2009277389A (en) * 2008-05-12 2009-11-26 Central Res Inst Of Electric Power Ind Fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6790554B2 (en) 1998-10-08 2004-09-14 Imperial Chemical Industries Plc Fuel cells and fuel cell plates
WO2001069704A1 (en) * 2000-03-15 2001-09-20 Ineos Chlor Limited End plates and current collector plates for fuel cells
EP1511105A1 (en) * 2000-03-15 2005-03-02 Ineos Chlor Enterprises Limited End plates and current collector plates for fuel cells
JP2009277389A (en) * 2008-05-12 2009-11-26 Central Res Inst Of Electric Power Ind Fuel cell

Similar Documents

Publication Publication Date Title
US5998056A (en) Anode substrate for a high temperature fuel cell
JP2004022250A5 (en)
FR2430102A1 (en) ELECTRIC ACCUMULATOR AND ACCUMULATOR BATTERY
JPH08148176A (en) Reaction layer forming method for fuel cell
US20100081026A1 (en) Cassettes for solid-oxide fuel cell stacks and methods of making the same
JPH10241715A (en) Fused carbonate type fuel cell
JP3842954B2 (en) Fuel cell separator and fuel cell
JP2005100804A5 (en)
JP2014038732A (en) Solid oxide fuel cell
JP2000182640A (en) On-vehicle fuel cell
US20050130015A1 (en) Molten carbonate fuel cell and method for production thereof
DE50114455D1 (en) CELL ARRANGEMENT FOR AN ELECTRONIC ENERGY TRANSDUCER AND METHOD FOR PRODUCING SUCH A
US4581307A (en) High specific energy electrochemical cell with low initial impedance
JP2004319266A (en) Sealing structure and sealing method of solid oxide fuel cell
JP2010140703A (en) Nonaqueous electrolyte battery
JPH07183038A (en) Current collector for molten carbonate fuel cell
JP2658082B2 (en) Molten carbonate fuel cell
JP3151916B2 (en) Solid oxide fuel cell
JPH061700B2 (en) Composite electrode for fuel cell
JPS5990360A (en) Solid secondary battery
JPH0636784A (en) Current collector for fuel cell and fuel cell using it
JPH11162480A (en) Stack structure having passage integral electrode and its manufacture
JP2952966B2 (en) Stack of molten carbonate fuel cell
KR101511342B1 (en) Inverse structured battery
JPH0711407Y2 (en) Structure of fuel cell electrode