JPH10241677A - Secondary battery and manufacture thereof - Google Patents

Secondary battery and manufacture thereof

Info

Publication number
JPH10241677A
JPH10241677A JP9058243A JP5824397A JPH10241677A JP H10241677 A JPH10241677 A JP H10241677A JP 9058243 A JP9058243 A JP 9058243A JP 5824397 A JP5824397 A JP 5824397A JP H10241677 A JPH10241677 A JP H10241677A
Authority
JP
Japan
Prior art keywords
particles
secondary battery
active material
electrode active
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9058243A
Other languages
Japanese (ja)
Other versions
JP3373751B2 (en
Inventor
Akihisa Ozawa
昭弥 小沢
Shunzo Mase
俊三 間瀬
Atsushi Sato
厚 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP05824397A priority Critical patent/JP3373751B2/en
Priority to US08/826,681 priority patent/US5958623A/en
Priority to DE69710434T priority patent/DE69710434T2/en
Priority to EP97120470A priority patent/EP0848441B1/en
Priority to CNB971218978A priority patent/CN1135643C/en
Publication of JPH10241677A publication Critical patent/JPH10241677A/en
Application granted granted Critical
Publication of JP3373751B2 publication Critical patent/JP3373751B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To extend charge and discharge cycles, reduce the internal resistance of a secondary battery, and enhance the quick charge performance of the battery by using composite particles in which carbon particulates of a specific median diameter are stuck onto the surface of an electrode active material, so as to form conduction paths. SOLUTION: Carbon particulates 1 whose median diameter is 600 nanometer or less, preferably 300 nanometer or less, are adsorbed on the surfaces of electrode active material particles 2, or particles 3 which is produced by the change of the electrode active material so as to form a conductive mesh 4. Since the mesh 4 is formed of the particulates, the same can be freely deformed as keeping a mutual contact on the electrode active material surface with the expansion and contraction of the electrode active material. A charge current flows from a collector 5 through the mesh 4, and it can be inferred that the surfaces of the inert particles are electrolyzed, so that the active material is regenerated. Preferably, the carbon particles 1 have such minute structures such that still further finer particles are linked chain-like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は電気容量が大き
く、充放電の繰り返しに伴う電気容量の低下の少ない二
次電池およびその製造法に関するものであり、特にリチ
ウムイオン二次電池、ニッケル水素二次電池、ニッケル
カドミウム二次電池、アルカリマンガン電池、鉛蓄電池
等の充放電のサイクル寿命を著しく延長し、且つその容
量を増大することができるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery having a large electric capacity and a small decrease in electric capacity due to repeated charge and discharge, and a method for manufacturing the same. It can significantly extend the charge / discharge cycle life and increase the capacity of batteries, nickel cadmium secondary batteries, alkaline manganese batteries, lead storage batteries, and the like.

【0002】[0002]

【従来の技術】 二次電池は充放電の繰り返しに伴い、
正極および負極の電極活物質が電気化学反応に伴い、体
積変化を繰り返す結果、これらの粒子や導電性物質であ
るグラファイトの粒子の間に隙間ができ、電気的導通が
断たれ、電池の容量が減少する。従来これらの電極活物
質と集電体との導通を確保する目的で5マイクロメート
ル前後の粒子径を持ったグラファイトを30〜40%混
合していたが、充放電に伴う電気的導通の減少を防止す
るには不十分であった。また、活物質を充填するスペー
スを犠牲にしていた。更に、活物質とグラファイトとの
電気的な接触を助けるために、より細かなカーボンブラ
ックを加えることも行われていた。しかしながら、カー
ボンブラックは非常に嵩高な粉末であり、これを加える
ことにより電極活物質層の密度が小さくなる傾向にあ
り、電極活物質層を高い圧力で押さえつける等の対策が
採られてきていたが、その圧力をカーボンブラックがつ
ぶれる程高くするとグラファイトが変形して電解液の滲
込む隙間が無くなってしまい、所定の特性が得られない
という問題が有った。
2. Description of the Related Art Secondary batteries have been repeatedly charged and discharged.
As a result of the electrochemical reaction of the positive and negative electrode active materials repeating the volume change, gaps are formed between these particles and the conductive material graphite particles, the electrical conduction is cut off, and the capacity of the battery is reduced. Decrease. Conventionally, 30 to 40% of graphite having a particle size of about 5 micrometers has been mixed for the purpose of securing conduction between these electrode active materials and the current collector. It was not enough to prevent it. Further, a space for filling the active material is sacrificed. In addition, finer carbon black has also been added to aid electrical contact between the active material and the graphite. However, carbon black is a very bulky powder, and the density of the electrode active material layer tends to be reduced by adding it, and measures such as pressing the electrode active material layer at a high pressure have been taken. However, if the pressure is increased to such an extent that the carbon black is crushed, the graphite is deformed, so that there is no space for the electrolyte to permeate, and the predetermined characteristics cannot be obtained.

【0003】[0003]

【発明が解決しようとする課題】 本発明はこれらの従
来の方法について、そのメカニズムを究明することによ
って、長寿命で、且つ安価に製造できる電池構造とその
製造法を見いだしたものである。本発明の第一の目的は
二次電池の充放電サイクル寿命を延長させることにあ
る。本発明の第二の目的は二次電池の容量を増大させる
ことにある。本発明の第三の目的は二次電池の内部抵抗
を減少させることにある。本発明の第四の目的は二次電
池の急速充電性能を向上させることにある。本発明の第
五の目的は二次電池の材料コストを低減させることにあ
る。
SUMMARY OF THE INVENTION The present invention has been made to find a battery structure which can be manufactured at low cost with a long service life and a method for manufacturing the same by investigating the mechanism of these conventional methods. A first object of the present invention is to extend the charge / discharge cycle life of a secondary battery. A second object of the present invention is to increase the capacity of a secondary battery. A third object of the present invention is to reduce the internal resistance of a secondary battery. A fourth object of the present invention is to improve the rapid charging performance of a secondary battery. A fifth object of the present invention is to reduce the material cost of a secondary battery.

【0004】[0004]

【課題を解決するための手段】 本発明は、メジアン径
が600ナノメートル以下、好ましくは300ナノメー
トル以下の炭素の微粒子好ましくは煤の粉砕物が表面に
付着することにより導電路が形成された電極活物質をも
ちいた二次電池、および、煤あるいはメジアン径が60
0ナノメートル以下の炭素の微粒子好ましくは煤の粉砕
物を、電極活物質と混合し、該電極活物質の表面に前記
炭素の微粒子を付着せしめることにより導電路を形成し
た複合粒子となし、この複合粒子を集電体上に付着せし
める二次電池の製造法である。本発明で電極活物質と称
するものは、例えばMnO、NiOOH、水素吸蔵合
金、LiMn、Li含浸グラファイト、Pb
、PbSO等を言い、二次電池としてはリチウム
イオン二次電池、ニッケル水素二次電池、ニッケルカド
ミウム二次電池、アルカリマンガン電池、鉛電池等が対
象となる。
Means for Solving the Problems According to the present invention, a conductive path is formed by attaching fine carbon particles, preferably soot, having a median diameter of 600 nm or less, preferably 300 nm or less, to the surface. A secondary battery using an electrode active material and a soot or median diameter of 60
Fine particles of carbon, preferably soot, of 0 nanometers or less, and pulverized soot, are mixed with an electrode active material, and the fine particles of carbon are attached to the surface of the electrode active material to form composite particles having a conductive path formed thereon. This is a method for manufacturing a secondary battery in which composite particles are attached to a current collector. In the present invention, what is called an electrode active material includes, for example, MnO 2 , NiOOH, a hydrogen storage alloy, LiMn 2 O 4 , Li-impregnated graphite, Pb
O 2, refers to PbSO 4 or the like, lithium ion secondary batteries, nickel-hydrogen secondary batteries, nickel-cadmium secondary battery, alkaline manganese battery, lead battery and the like of interest as a secondary battery.

【0005】[0005]

【作用】 炭素の微粒子が電極活物質表面に付着して導
電路が形成された電極活物質をもちいることによる充放
電サイクル寿命の延長および電池容量の増大のメカニズ
ムは、次の様に考えられる。即ち、リチウムイオン電池
を例にとって説明すると、二次電池の正極活物質である
LiCoOやLiNiO、LiMnは、充放
電に伴って必ずその金属原子の原子価が下記のa〜cに
示す様に変化し、原子価の大きい原子のイオン半径は原
子価の小さい原子のそれに比べて15〜25%も小さ
い。
The mechanism of extending the charge-discharge cycle life and increasing the battery capacity due to the use of the electrode active material having a conductive path formed by the carbon fine particles adhering to the surface of the electrode active material is considered as follows. . That is, taking a lithium ion battery as an example, LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 , which are positive electrode active materials of a secondary battery, have metal atoms having the following valences a to c with charge and discharge. And the ionic radius of the higher-valent atom is 15 to 25% smaller than that of the lower-valent atom.

【0006】[0006]

【化1】 Embedded image

【0007】従って活物質は放電したときはその体積が
膨張し、充電したときにはその体積が収縮する。充放電
を繰り返すと電池が劣化する原因は、この膨張と収縮を
繰り返しにより、活物質と炭素材料との接触あるいは炭
素材料相互間の接触が不十分となり、内部抵抗が増大す
ることによるところが大きい。
Therefore, the volume of the active material expands when discharged, and the volume shrinks when charged. The cause of deterioration of the battery when charge and discharge are repeated is largely due to the fact that the contact between the active material and the carbon material or the contact between the carbon materials becomes insufficient due to the repeated expansion and contraction, and the internal resistance increases.

【0008】また、リチウムイオン電池の負極の活物質
として用いられるLiイオンを吸蔵・脱離しるカーボン
系材料についても、従来、Liイオンの吸蔵・脱離を繰
り返すと、膨張収縮が起こり、これに伴い前記カーボン
系材料相互間の導電性の劣化が避けられ無かった。
[0008] In addition, with respect to a carbon-based material used as an active material of a negative electrode of a lithium ion battery, which absorbs and desorbs Li ions, conventionally, when the storage and desorption of Li ions are repeated, expansion and contraction occur. Accordingly, the deterioration of the conductivity between the carbon-based materials was unavoidable.

【0009】本発明においては図1に示す様に、炭素の
微粒子1は電極活物質の粒子2、あるいは電極活物質が
変化して生成した粒子3の表面に吸着して導電性の網目
4を形成する。この網目4は微粒子によって構成されて
いるため、電極活物質の膨張収縮に伴って電極活物質表
面上で相互に接触を保ちつつ自由に変形することができ
るので、この網目4を伝って集電体5から充電電流が流
れ、今まで不活性であった粒子3の表面が電気分解され
て活物質が再生するものと推定する。
In the present invention, as shown in FIG. 1, carbon fine particles 1 are adsorbed on the surfaces of particles 2 of the electrode active material or particles 3 formed by changing the electrode active material to form a conductive network 4. Form. Since the mesh 4 is composed of fine particles, it can be freely deformed while maintaining contact with each other on the surface of the electrode active material as the electrode active material expands and contracts. It is assumed that the charging current flows from the body 5 and the surface of the particle 3 which has been inactive until now is electrolyzed to regenerate the active material.

【0010】また、MnOでは図4に示す様に20〜
30m/gの気孔を持つものが電池に使用されてい
る。これは非常にいりくんだ表面と微細な孔を沢山持
ち、その電極反応の95%以上がこの孔の壁面で起こっ
ている。従来の粗粒のグラファイトや未粉砕のカーボン
ブラックではこのいりくんだ表面や孔に付着することは
出来なかったが100ナノメートルオーダー以下になっ
た炭素の微粒子ではこれらの表面に付着して導電路を形
成することができるので、理想的な電池活物質構造を構
成することができる。
[0010] In addition, 20 as shown in FIG. 4, MnO 2
Those having pores of 30 m 2 / g are used for batteries. It has a very elaborate surface and a lot of fine holes, of which more than 95% of the electrode reactions take place on the walls of these holes. Conventional coarse-grained graphite and unground carbon black could not adhere to these eroded surfaces and pores, but carbon particles smaller than 100 nanometers adhered to these surfaces and formed conductive paths. Since it can be formed, an ideal battery active material structure can be formed.

【0011】即ち従来のグラファイトの粉砕によって得
られた粒子の場合には図5に示す様に近似した大きさの
活物質粒子12とグラファイト粒子11とが相互に入り
組んだ石垣状の構造であったために、活物質の膨張収縮
に伴いグラファイト粒子間の接触およびグラファイト粒
子と活物質粒子間の接触が分断されていたのに対し、本
発明の構造では導電性の微粒子の大きさが直径100ナ
ノメートルのオーダーであり、活物質の大きさの直径1
0000ナノメートルのオーダーに比べて遥に小さいた
め、導電性の微粒子が比較的自由に配置を変えることが
出来、活物質が膨張収縮しても導電性の網目が切れるこ
とが少ないものと推定する。
That is, in the case of the particles obtained by the conventional pulverization of graphite, since the active material particles 12 and the graphite particles 11 having similar sizes are interlocked with each other as shown in FIG. In contrast, the contact between the graphite particles and the contact between the graphite particles and the active material particles were interrupted due to the expansion and contraction of the active material, whereas in the structure of the present invention, the size of the conductive fine particles was 100 nm in diameter. And the diameter of the active material is 1
Since it is much smaller than the order of 0000 nanometers, it is presumed that the conductive fine particles can relatively freely change the arrangement, and the conductive network is hardly cut even when the active material expands and contracts. .

【0012】負極の電極活物質であるLiイオンを吸蔵
・脱離しるカーボン系材料については、その直径500
0ないし30000ナノメートルの活物質粒子の表面に
本発明の100ナノメートルオーダーの導電性の微粒子
を付着させることにより、その活物質粒子の充放電に伴
う膨張収縮による活物質粒子本体の導電性の劣化が起こ
っても、活物質粒子の表面に導電性の微粒子で形成され
た導電路により全体としては良好な導電性が保たれる。
A carbon-based material capable of inserting and extracting Li ions as an electrode active material of a negative electrode has a diameter of 500
By adhering the conductive fine particles of the order of 100 nanometers of the present invention to the surface of the active material particles of 0 to 30000 nanometers, the conductivity of the active material particle main body due to expansion and contraction accompanying the charge and discharge of the active material particles is increased. Even if the deterioration occurs, good conductivity as a whole is maintained by the conductive path formed of conductive fine particles on the surface of the active material particles.

【0013】このように電極表面に有った不活性の粒子
が活物質に再生されるため、電池の内部抵抗が大幅に低
下し、容量が増加し、急速充電にも耐えるものとなる。
As described above, since the inactive particles on the electrode surface are regenerated into the active material, the internal resistance of the battery is greatly reduced, the capacity is increased, and the battery can withstand rapid charging.

【0014】更に、ニッケル水素二次電池では水素吸蔵
合金の粉末を、炭素の微粒子と有機高分子とを混合した
懸濁液中に浸けるだけで水素吸蔵合金の粉末の表面に炭
素微粒子の層が形成され水素イオンとの電子の授受が容
易になり、この様に炭素の微粒子を被覆した水素吸蔵合
金の粉末を用いたニッケル水素二次電池では電池の内部
抵抗が減少する。
Further, in a nickel-metal hydride secondary battery, a layer of carbon fine particles is formed on the surface of the hydrogen storage alloy powder only by immersing the powder of the hydrogen storage alloy in a suspension of a mixture of carbon fine particles and an organic polymer. Transfer of electrons with the formed hydrogen ions is facilitated, and the internal resistance of the nickel-hydrogen secondary battery using the powder of the hydrogen storage alloy coated with the fine particles of carbon is reduced.

【0015】石油、天然ガス、動植物油等を燃焼して得
られる煤、例えばアセチレンブラック、カーボンブラッ
ク、ケチェンブラック等は数十ナノメートルの微細な粒
子がチエーン状につながって、図3(A)に示すような
直径10000〜50000ナノメートルの比較的大き
な塊となっており、このままでは非常に嵩高であり、電
極活物質の表面に付着して導電路を形成するには嵩密度
が小さくなりすぎて不適当である。ところがこれを粉砕
して図3(B)に示す様に100ナノメートルのオーダ
ーにすると嵩密度を下げずに電極活物質の表面に付着し
て導電路を形成することが可能となり、本発明で用いる
微粒子として好適である。これに、同一分子中に親水基
と疎水基とを持つ高分子、例えば膠、アラビアゴム、ポ
リビニルアルコール、ポリビニルピロリドン、カーボキ
シメチルセルロース、カゼイン等の有機高分子の分散助
剤(保護コロイド)を加えた墨汁は安定なコロイドを形
成し、電極活物質と混合することにより活物質粒子の表
面に容易に付着させることができる。また、炭素微粒子
の水への分散を促進する為に界面活性剤を加えることも
できる。
Soot obtained by burning petroleum, natural gas, animal and vegetable oils and the like, for example, acetylene black, carbon black, Ketjen black, and the like, have fine particles of several tens of nanometers connected in a chain form, and FIG. ), A relatively large lump having a diameter of 10,000 to 50,000 nanometers, which is very bulky as it is, and has a low bulk density for forming a conductive path by adhering to the surface of the electrode active material. Too improper. However, when this is crushed to have an order of 100 nanometers as shown in FIG. 3B, it becomes possible to adhere to the surface of the electrode active material and form a conductive path without lowering the bulk density. It is suitable as fine particles to be used. To this, a dispersion aid (protective colloid) of a polymer having a hydrophilic group and a hydrophobic group in the same molecule, for example, an organic polymer such as glue, gum arabic, polyvinyl alcohol, polyvinylpyrrolidone, carboxymethylcellulose, and casein is added. The ink forms a stable colloid and can be easily attached to the surface of the active material particles by mixing with the electrode active material. Further, a surfactant can be added to promote the dispersion of the carbon fine particles in water.

【0016】煤を粉砕する方法としては、これに水、有
機液体、あるいは高分子を含んだ溶液との混合物である
高粘性流体あるいは可塑性の塊に強い剪断力をかけてチ
エーン状の構造を短く切断する方法が特に好ましく、例
えば、印刷インキ、墨汁等の製造に用いられているトリ
ロールミル、手練り、アトリッションミル、等が好適に
用いられる。
As a method of pulverizing soot, a high-viscosity fluid or a plastic mass, which is a mixture with water, an organic liquid, or a solution containing a polymer, is subjected to strong shearing force to shorten the chain-like structure. A cutting method is particularly preferable. For example, a triroll mill, hand kneading, an attrition mill, and the like used in the production of printing ink, ink, and the like are suitably used.

【0017】添加する導電性の微粒子の量は導電性の微
粒子の粒子径が小さいほど少量で良い。特にチエーン状
の微構造を持った微粒子、例えば煤を使うと、充放電に
伴う活物質の膨張収縮に追随してチエーン状の微粒子で
形成されている網目状の導電路が伸縮し、電極活物質が
電気的に孤立することが無いものと推定する。この様に
チエーン状の微粒子のゆるやかな結合により、導電性が
保たれるという効果は従来の粗いグラファイトの粒子を
電極活物質と混合したものでは全く期待できなかった効
果であり、本発明の微粒の炭素粒子を使うことによって
始めて達成されたものである。
The amount of conductive fine particles to be added may be small as the particle size of the conductive fine particles is small. In particular, when fine particles having a chain-like fine structure, such as soot, are used, the mesh-like conductive path formed by the chain-like fine particles expands and contracts following the expansion and contraction of the active material due to charge and discharge, and the electrode active. It is assumed that the substance will not be electrically isolated. The effect that the conductivity is maintained by the loose bonding of the chain-like fine particles in this manner is an effect that could not be expected at all by mixing the conventional coarse graphite particles with the electrode active material. This was achieved for the first time by using carbon particles.

【0018】更に、本発明の微粒の炭素粒子を使う場
合、その添加量が従来の粗いグラファイトを添加する場
合に比べて遥に少量の数%でも十分な導電性が得られる
ので、電池の一定の体積当たりのカーボン量を減らし、
活物質の量を増やすことができるので、電池のエネルギ
ー密度を高めることが可能になる。
Further, when the fine carbon particles of the present invention are used, sufficient conductivity can be obtained even when the amount of addition is much smaller than that in the case where conventional coarse graphite is added. Reduce the amount of carbon per volume of
Since the amount of the active material can be increased, the energy density of the battery can be increased.

【0019】即ち、リチウムイオン電池を例にその様子
を説明すると、リチウムイオン電池の正極はLiCoO
の粉にグラファイトの粉末とポリフッ化ビニリデンな
どのバインダーを混合した正極合剤を電極集電体のアル
ミ箔の表面に厚さ200マイクロメートル程度に塗布し
ている。この場合、本発明の炭素微粒子で覆ったLiC
oOの粉を使用すれば、同じ厚さでより多くのLiC
oOを塗布できるのみならず、更に活物質層の電気抵
抗が小さいので活物質層を例えば400マイクロメート
ルと厚くしても電池の内部抵抗に悪影響を及ぼさない。
従ってその分だけ短いアルミ箔で済ませることができる
ので、セパレーターや負極の集電体の銅箔も短くなり、
30〜40%もの材料の節減となり、製造費用を低減で
きる。
That is, a lithium ion battery will be described as an example. The positive electrode of the lithium ion battery is LiCoO 2
The second powder is applied to about 200 micrometers thickness on the surface of the aluminum foil graphite powder and polyvinylidene fluoride binder mixed positive electrode mixture of the electrode current collector, such as. In this case, LiC covered with the carbon fine particles of the present invention
Using oO 2 powder, more LiC at the same thickness
In addition to being able to apply oO 2 , since the electric resistance of the active material layer is further small, even if the active material layer is thickened, for example, to 400 μm, it does not adversely affect the internal resistance of the battery.
Therefore, the shorter the aluminum foil, the shorter the copper foil for the separator and the current collector for the negative electrode,
The material can be saved by as much as 30 to 40%, and the manufacturing cost can be reduced.

【0020】本発明の複合粒子の製造方法としては、電
極活物質の粒子と微粒の炭素粒子とを水あるいは有機溶
媒中で粉砕・混合すれば良い。またこの際、炭素微粒子
の分散と電極活物質の粒子表面への付着を助け、更に剪
断力による粉砕を助け、炭素微粒子と分散媒との親和性
を高めるために、適当な有機高分子、たとえば、ポリビ
ニルアルコール、膠、アラビアゴム、ポリビニルピロリ
ドン、カーボキシメチルセルロース、カゼイン等の分散
助剤を加えるのが望ましい。この他、従来法で電極活物
質の粒子を塗布した正極に微粒の炭素粒子と水または有
機溶媒からなるスラリーを塗布して含浸させることによ
り、電極活物質の粒子の表面に微粒の炭素粒子を付着さ
せても良い。
In the method for producing the composite particles of the present invention, the particles of the electrode active material and the fine carbon particles may be ground and mixed in water or an organic solvent. Also, at this time, a suitable organic polymer, for example, to help the dispersion of the carbon fine particles and the adhesion of the electrode active material to the particle surface, further aid the pulverization by shearing force, and increase the affinity between the carbon fine particles and the dispersion medium It is desirable to add a dispersing aid such as polyvinyl alcohol, glue, gum arabic, polyvinyl pyrrolidone, carboxymethylcellulose, and casein. In addition, by applying and impregnating a slurry composed of fine carbon particles and water or an organic solvent on the positive electrode coated with the electrode active material particles by the conventional method, the fine carbon particles are coated on the surface of the electrode active material particles. You may make it adhere.

【0021】更に、本発明の炭素微粒子で覆った電極活
物質を用いる場合、電解液に微量の有機ゲルマニウムを
添加すると電極活物質表面の導電性が一層改善され、充
放電サイクル寿命の延長に有効である。
Further, when the electrode active material covered with the carbon fine particles of the present invention is used, if a trace amount of organic germanium is added to the electrolyte, the conductivity of the surface of the electrode active material is further improved, which is effective in extending the charge / discharge cycle life. It is.

【0022】[0022]

【実施例】【Example】

【実施例1】メジアン径140ナノメートルのカーボン
ブラック1重量%、ポリビニルアルコール0.6重量
%、残部が水よりなる懸濁液5mlと、LiCoO
末5グラムとをボールミル中で混合・粉砕し、乾燥し
た。この乾燥物を解砕して、バインダーとしてポリフッ
化ビニリデン0.3グラム、溶剤として、N−メチルピ
ロリドンを加え、混合してスラリー状とし、アルミ箔上
に塗布乾燥し正極とした。負極用には、銅箔上にコーク
ス層を塗布して乾燥した。これを多孔質ポリプロピレン
のセパレーターを介して巻回し、1MのLiPFのエ
チルメチルカーボネート−エチレンカーボネート(混合
比3:1)溶液を電解液として加え、電池容器中に密封
した。充電終了電圧4.2V、放電終了電圧3.0V、
充電0.25C、放電0.5Cで充放電サイクル試験を
行った。その結果正極に従来のグラファイト2グラム、
LiCoO粉末3.3グラムを用いた場合に比べて表
1に示す様に2倍以上の充放電サイクル寿命が得られ、
且つ電気容量も約50%多かった。図3はこの試験に用
いた懸濁液の粒度分布を堀場製作所製レーザ回折/散乱
式粒度分布測定装置LA−910Wで測定した結果であ
り、そのメジアン径は約140ナノメートル(0.14
μm)であり、且つ粒子の分布範囲はほぼ70〜300
ナノメートルの範囲にあり、且つその90%以上が90
〜250ナノメートルの狭い範囲に集中している。
Example 1 1% by weight of carbon black having a median diameter of 140 nm, 0.6% by weight of polyvinyl alcohol, 5 ml of a suspension consisting of water and 5 grams of LiCoO 2 powder were mixed and pulverized in a ball mill. And dried. The dried product was crushed, and 0.3 g of polyvinylidene fluoride as a binder and N-methylpyrrolidone as a solvent were added and mixed to form a slurry, which was coated on an aluminum foil and dried to obtain a positive electrode. For the negative electrode, a coke layer was applied on a copper foil and dried. This was wound through a porous polypropylene separator, a 1 M solution of LiPF 6 in ethyl methyl carbonate-ethylene carbonate (mixing ratio 3: 1) was added as an electrolyte, and the battery was sealed in a battery container. A charge end voltage of 4.2 V, a discharge end voltage of 3.0 V,
A charge / discharge cycle test was performed at a charge of 0.25C and a discharge of 0.5C. As a result, 2 grams of conventional graphite was added to the positive electrode,
As shown in Table 1, a charge / discharge cycle life twice or more was obtained as compared with the case where 3.3 g of LiCoO 2 powder was used.
Also, the electric capacity was increased by about 50%. FIG. 3 shows the result of measuring the particle size distribution of the suspension used in this test using a laser diffraction / scattering type particle size distribution analyzer LA-910W manufactured by Horiba, Ltd. The median diameter of the suspension was about 140 nm (0.14 nm).
μm) and the distribution range of the particles is approximately 70 to 300
In the nanometer range, and 90% or more of the
It is concentrated in a narrow range of ~ 250 nanometers.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【実施例2】粒子径20マイクロメートルの電解二酸化
マンガンの粒子と、メジアン径100ナノメートルのカ
ーボンブラック6重量%、膠3重量%、残部が水よりな
る懸濁液とを混合し、二酸化マンガンの粒子の表面に炭
素の微粒子層を形成した。この混合物を濾過・乾燥・解
砕した。この粉末を絶縁体の容器中に詰め両端に電極を
配置して50kg/cmで加圧し、被覆量と電気抵抗
との関係を求めた。その結果、表2に示す様に、表面に
炭素の微粒子層を形成した試験番号2〜4は良好な電導
性を示した。
EXAMPLE 2 Electrolytic manganese dioxide particles having a particle diameter of 20 micrometers were mixed with a suspension consisting of 6% by weight of carbon black having a median diameter of 100 nanometers, 3% by weight of glue, and the balance water. A fine particle layer of carbon was formed on the surface of the particles. This mixture was filtered, dried and crushed. This powder was packed in an insulating container, electrodes were placed at both ends, and the pressure was applied at 50 kg / cm 2 to determine the relationship between the coating amount and the electric resistance. As a result, as shown in Table 2, Test Nos. 2 to 4 in which a carbon fine particle layer was formed on the surface showed good electrical conductivity.

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【発明の効果】以上の説明から明らかな通り、本発明の
二次電池では、充放電の繰り返しによる電池容量の低下
が少なく、且つ長寿命であり、微量の添加により二次電
池の寿命を著しく延長することが出来、更にその原料と
して自動車タイヤ用等に大量に生産されているカーボン
ブラック、アセチレンブラック等を使用することができ
るので極めて安価に製造することができ、例えば電気自
動車、無停電電源装置等の電池として好適な電極構造お
よびその製造法を提供できるものである。
As is evident from the above description, the secondary battery of the present invention has a small decrease in battery capacity due to repeated charging and discharging, has a long service life, and has a remarkable increase in the life of the secondary battery by adding a small amount. It can be extended, and carbon black, acetylene black, etc., which are produced in large quantities for automobile tires and the like can be used as raw materials, so that they can be produced at extremely low cost. For example, electric vehicles, uninterruptible power supplies An electrode structure suitable for a battery of a device or the like and a method for manufacturing the same can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電池の電極表面における反応の模式図
である。
FIG. 1 is a schematic view of a reaction on an electrode surface of a battery of the present invention.

【図2】本発明に用いられるカーボン添加剤の粒度分布
図である。
FIG. 2 is a particle size distribution diagram of a carbon additive used in the present invention.

【図3】本発明に用いられる煤の粒子の微構造を示す模
式図であり、Aは粉砕前、Bは粉砕後を示す。
FIG. 3 is a schematic diagram showing the microstructure of soot particles used in the present invention, wherein A shows before pulverization and B shows after pulverization.

【図4】本発明に用いられる炭素微粒子が表面に吸着し
た二酸化マンガン粒子の微構造を示す模式図である。
FIG. 4 is a schematic diagram showing a microstructure of manganese dioxide particles having carbon fine particles adsorbed on the surface used in the present invention.

【図5】従来の電極活物質とグラファイトとの混合状態
を示す模式図である。
FIG. 5 is a schematic view showing a conventional mixed state of an electrode active material and graphite.

【符号の説明】[Explanation of symbols]

1、11…導電性の微粒子 2、12…電極活物質の粒子 3…電極活物質が変化した粒子 4…導電性の網目 5、13…集電体 1, 11: Conductive fine particles 2, 12: Electrode active material particles 3: Particles in which the electrode active material has changed 4: Conductive network 5, 13: Current collector

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01M 10/40 H01M 10/40 Z ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H01M 10/40 H01M 10/40 Z

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 メジアン径が600ナノメートル以下の
炭素の微粒子が付着することにより、表面に導電路が形
成された電極活物質粒子を用いたことを特徴とする二次
電池。
1. A secondary battery using electrode active material particles having a conductive path formed on the surface by attaching carbon fine particles having a median diameter of 600 nm or less.
【請求項2】 請求項1において、炭素の微粒子のメジ
アン径が300ナノメートル以下であることを特徴とす
る二次電池。
2. The secondary battery according to claim 1, wherein the median diameter of the carbon fine particles is 300 nanometers or less.
【請求項3】 請求項1または請求項2において、炭素
の微粒子が更に細かい粒子がチエーン状に繋がった微構
造を有するものであることを特徴とする二次電池。
3. The secondary battery according to claim 1, wherein the fine carbon particles have a fine structure in which finer particles are connected in a chain shape.
【請求項4】 請求項1ないし請求項3のいずれかにお
いて、炭素の微粒子が煤の粉砕物であることを特徴とす
る二次電池。
4. The secondary battery according to claim 1, wherein the fine carbon particles are pulverized soot.
【請求項5】 請求項1ないし請求項4のいずれかにお
いて、炭素の微粒子と有機高分子が共存していることを
特徴とする二次電池。
5. The secondary battery according to claim 1, wherein carbon fine particles and an organic polymer coexist.
【請求項6】 請求項5において、有機高分子が同一分
子中に親水基と疎水基とを含むものであることを特徴と
する二次電池。
6. The secondary battery according to claim 5, wherein the organic polymer contains a hydrophilic group and a hydrophobic group in the same molecule.
【請求項7】 請求項6において、有機高分子が膠、ア
ラビアゴム、ポリビニルアルコール、ポリビニルピロリ
ドン、カーボキシメチルセルロース、カゼインの少なく
とも一つを含むことを特徴とする二次電池。
7. The secondary battery according to claim 6, wherein the organic polymer contains at least one of glue, gum arabic, polyvinyl alcohol, polyvinylpyrrolidone, carboxymethylcellulose, and casein.
【請求項8】 請求項5において、炭素の微粒子と有機
高分子が墨汁の成分であることを特徴とする二次電池。
8. The secondary battery according to claim 5, wherein the carbon fine particles and the organic polymer are components of ink.
【請求項9】 請求項1ないし請求項8のいずれかにお
いて、二次電池がリチウムイオン電池、ニッケルカドミ
ウム電池、ニッケル水素電池、アルカリマンガン電池、
鉛電池のいずれかであることを特徴とする二次電池。
9. The secondary battery according to claim 1, wherein the secondary battery is a lithium ion battery, a nickel cadmium battery, a nickel hydride battery, an alkaline manganese battery,
A secondary battery, which is one of lead batteries.
【請求項10】 メジアン径が600ナノメートル以下
の炭素の微粒子が付着することにより、表面に導電路が
形成された電極活物質粒子を用い、さらに電解液中およ
び/または電極活物質粒子に有機ゲルマニウムを含むこ
とを特徴とする二次電池。
10. An electrode active material particle having a conductive path formed on its surface by attaching carbon fine particles having a median diameter of 600 nanometers or less, and further comprising an organic solvent in the electrolytic solution and / or the electrode active material particle. A secondary battery comprising germanium.
【請求項11】 メジアン径が600ナノメートル以下
の炭素の微粒子を、電極活物質粒子と混合し、該電極活
物質粒子の表面に前記炭素の微粒子を付着せしめること
により導電路を形成した複合粒子となし、この複合粒子
を電極集電体上に付着せしめることを特徴とする二次電
池の製造法。
11. Composite particles having a conductive path formed by mixing carbon fine particles having a median diameter of 600 nm or less with electrode active material particles, and adhering the carbon fine particles to the surface of the electrode active material particles. A method for producing a secondary battery, wherein the composite particles are adhered onto an electrode current collector.
【請求項12】 請求項11において、炭素の微粒子の
メジアン径が300ナノメートル以下であることを特徴
とする二次電池の製造法。
12. The method for manufacturing a secondary battery according to claim 11, wherein the median diameter of the carbon fine particles is 300 nanometers or less.
【請求項13】 請求項11または請求項12におい
て、炭素の微粒子が更に細かい粒子がチエーン状に繋が
った微構造を有するものであることを特徴とする二次電
池の製造法。
13. The method for manufacturing a secondary battery according to claim 11, wherein the fine carbon particles have a fine structure in which finer particles are connected in a chain shape.
【請求項14】 請求項11ないし請求項13のいずれ
かにおいて、炭素の微粒子と電極活物質との混合に際
し、有機高分子を加えることを特徴とする二次電池の製
造法。
14. The method for manufacturing a secondary battery according to claim 11, wherein an organic polymer is added when mixing the carbon fine particles and the electrode active material.
【請求項15】 メジアン径が600ナノメートル以下
の炭素の微粒子を含む懸濁液を、集電体上に塗布された
電極活物質粒子層に塗布または接触せしめることによ
り、該電極活物質粒子の表面に前記炭素の微粒子を付着
せしめ導電路を形成することを特徴とする二次電池の製
造法。
15. A method for applying or contacting a suspension containing carbon fine particles having a median diameter of 600 nm or less to an electrode active material particle layer applied on a current collector, whereby the electrode active material particles A method for manufacturing a secondary battery, comprising forming a conductive path by adhering the carbon fine particles on a surface.
【請求項16】 カーボンブラックと液体との混合物に
剪断力を作用せしめることにより、メジアン径を600
ナノメートル以下に粉砕したことを特徴とする電池用炭
素微粒子。
16. A median diameter of 600% by applying a shearing force to a mixture of carbon black and a liquid.
Carbon fine particles for batteries, which are pulverized to nanometers or less.
JP05824397A 1996-12-13 1997-02-04 Secondary battery and manufacturing method thereof Expired - Lifetime JP3373751B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP05824397A JP3373751B2 (en) 1996-12-28 1997-02-04 Secondary battery and manufacturing method thereof
US08/826,681 US5958623A (en) 1996-12-13 1997-04-07 Electrochemical cell employing a fine carbon additive
DE69710434T DE69710434T2 (en) 1996-12-13 1997-11-21 Electrochemical cell with fine carbon material as additive
EP97120470A EP0848441B1 (en) 1996-12-13 1997-11-21 An electrochemical cell employing a fine carbon material additive
CNB971218978A CN1135643C (en) 1996-12-13 1997-12-12 Electrochemical cell employing fine carbon material additive

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP35998696 1996-12-28
JP8-359986 1996-12-28
JP05824397A JP3373751B2 (en) 1996-12-28 1997-02-04 Secondary battery and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002093173A Division JP2002334700A (en) 1996-12-28 2002-03-28 Secondary battery and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH10241677A true JPH10241677A (en) 1998-09-11
JP3373751B2 JP3373751B2 (en) 2003-02-04

Family

ID=26399296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05824397A Expired - Lifetime JP3373751B2 (en) 1996-12-13 1997-02-04 Secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3373751B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001216970A (en) * 2000-02-04 2001-08-10 Sony Corp Nonaqueous electrolyte battery
JP2001328813A (en) * 2000-05-16 2001-11-27 Toyota Central Res & Dev Lab Inc Lithium-manganese composite oxide for active material of positive electrode for lithium secondary battery, and method for producing the same
WO2002027822A1 (en) * 2000-06-06 2002-04-04 Institute Of Physics, Chinese Academy Of Sciences Nanometer metal or nanometer alloy/carbon composite material, producing method thereof and the application thereof in a secondary lithium battery
JP2002289174A (en) * 2001-01-17 2002-10-04 Nisshinbo Ind Inc Active material mix powder for battery, electrode composition, carbon material mix powder for secondary- battery electrode, secondary battery, and electric double layer capacitor, polarizable electrode composition, polarizable electrode, and electric double layer capacitor
KR100451846B1 (en) * 2000-12-27 2004-10-08 가부시끼가이샤 도시바 Positive electrode activated material and non-aqueous electrolyte secondary battery using it
JP2005116327A (en) * 2003-10-07 2005-04-28 Mitsubishi Chemicals Corp Lithium secondary battery
JP2006515457A (en) * 2002-12-12 2006-05-25 ユニヴァーシティ・オブ・サウザンプトン Electrochemical cell suitable for use in electronic devices
KR100826074B1 (en) 2005-11-17 2008-04-29 주식회사 엘지화학 Electrode additives for enhancement of overdischarge performance and method for preparing the same
WO2008146751A1 (en) * 2007-05-25 2008-12-04 Ntt Data Ex Techno Corporation Positive electrode composition for rechargeable battery
JP2010251221A (en) * 2009-04-20 2010-11-04 Tosoh Corp Electrolytic manganese dioxide composition having superior high rate property
WO2011090113A1 (en) 2010-01-21 2011-07-28 株式会社Gsユアサ Negative electrode plate for lead storage battery, process for producing same, and lead storage battery
WO2011099503A1 (en) * 2010-02-09 2011-08-18 三菱重工業株式会社 Apparatus for production of electrode material
JP2016042461A (en) * 2014-08-13 2016-03-31 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Positive electrode material, positive electrode including the same and lithium battery including the positive electrode
CN112117486A (en) * 2019-06-21 2020-12-22 太阳诱电株式会社 All-solid-state battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001216970A (en) * 2000-02-04 2001-08-10 Sony Corp Nonaqueous electrolyte battery
JP2001328813A (en) * 2000-05-16 2001-11-27 Toyota Central Res & Dev Lab Inc Lithium-manganese composite oxide for active material of positive electrode for lithium secondary battery, and method for producing the same
WO2002027822A1 (en) * 2000-06-06 2002-04-04 Institute Of Physics, Chinese Academy Of Sciences Nanometer metal or nanometer alloy/carbon composite material, producing method thereof and the application thereof in a secondary lithium battery
KR100451846B1 (en) * 2000-12-27 2004-10-08 가부시끼가이샤 도시바 Positive electrode activated material and non-aqueous electrolyte secondary battery using it
JP2002289174A (en) * 2001-01-17 2002-10-04 Nisshinbo Ind Inc Active material mix powder for battery, electrode composition, carbon material mix powder for secondary- battery electrode, secondary battery, and electric double layer capacitor, polarizable electrode composition, polarizable electrode, and electric double layer capacitor
JP2006515457A (en) * 2002-12-12 2006-05-25 ユニヴァーシティ・オブ・サウザンプトン Electrochemical cell suitable for use in electronic devices
JP2005116327A (en) * 2003-10-07 2005-04-28 Mitsubishi Chemicals Corp Lithium secondary battery
KR100826074B1 (en) 2005-11-17 2008-04-29 주식회사 엘지화학 Electrode additives for enhancement of overdischarge performance and method for preparing the same
WO2008146751A1 (en) * 2007-05-25 2008-12-04 Ntt Data Ex Techno Corporation Positive electrode composition for rechargeable battery
JP2010251221A (en) * 2009-04-20 2010-11-04 Tosoh Corp Electrolytic manganese dioxide composition having superior high rate property
WO2011090113A1 (en) 2010-01-21 2011-07-28 株式会社Gsユアサ Negative electrode plate for lead storage battery, process for producing same, and lead storage battery
WO2011099503A1 (en) * 2010-02-09 2011-08-18 三菱重工業株式会社 Apparatus for production of electrode material
JP2016042461A (en) * 2014-08-13 2016-03-31 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Positive electrode material, positive electrode including the same and lithium battery including the positive electrode
CN112117486A (en) * 2019-06-21 2020-12-22 太阳诱电株式会社 All-solid-state battery

Also Published As

Publication number Publication date
JP3373751B2 (en) 2003-02-04

Similar Documents

Publication Publication Date Title
US8574759B2 (en) Positive electrode forming material, component thereof, method for producing the same and rechargeable lithium-ion battery
CA2684869C (en) Electrode for secondary battery comprising fibrous conductive materials
US9531033B2 (en) Lithium secondary battery and manufacturing method therefor
KR101627013B1 (en) Lithium secondary battery, method for producing the same, and vehicle including the same
JP5229598B2 (en) Lithium secondary battery and manufacturing method thereof
JP5945753B2 (en) Lithium secondary battery
JP2001110418A (en) Positive electrode for lithium secondary battery and the lithium secondary battery
KR20110081286A (en) Lithium secondary battery and use thereof
US20070212611A1 (en) Lithium secondary battery
KR20120093953A (en) Nonaqueous electrolyte solution type lithium ion secondary battery
WO2003047014A1 (en) Active electrode composition with graphite additive
JP4900695B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP3373751B2 (en) Secondary battery and manufacturing method thereof
CN103208646A (en) Lithium manganate and nickel cobalt lithium manganate nanometer battery and manufacturing method thereof
US5958623A (en) Electrochemical cell employing a fine carbon additive
WO2010134156A1 (en) Cathode active substance powder material for a lithium ion secondary cell
JPH10144298A (en) Lithium secondary battery
JP2009158239A (en) Lithium secondary battery
JP2013062089A (en) Lithium ion secondary battery
CN103208632A (en) Nano-battery composed of carbon nanotube and lithium nickel manganese oxide and preparation method thereof
JP6037472B2 (en) Lithium storage battery
JP3139390B2 (en) Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2015502626A5 (en)
JPH10270019A (en) Nonaqueous electrolyte secondary battery
JP2002334700A (en) Secondary battery and its manufacturing method

Legal Events

Date Code Title Description
S211 Written request for registration of transfer of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314213

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R314531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term