JPH10239520A - Polarized beam splitter - Google Patents

Polarized beam splitter

Info

Publication number
JPH10239520A
JPH10239520A JP4679797A JP4679797A JPH10239520A JP H10239520 A JPH10239520 A JP H10239520A JP 4679797 A JP4679797 A JP 4679797A JP 4679797 A JP4679797 A JP 4679797A JP H10239520 A JPH10239520 A JP H10239520A
Authority
JP
Japan
Prior art keywords
light
beam splitter
optical
reflected light
splitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4679797A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kinoshita
博之 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP4679797A priority Critical patent/JPH10239520A/en
Publication of JPH10239520A publication Critical patent/JPH10239520A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the number of part items of a polarized beam splitter so as to miniaturize the whole structure and to reduce the cost, by joining a double refracting member integrally into the reflected light passing position of a light transmissible member provided with a splitter face for splitting a beam into transmitted light and reflected light. SOLUTION: The light transmissible member 3 formed of a triangle prismatic body of glass or the like, and a double refracting member 1 formed of a triangle prismatic body of crystal material with a double refracting characteristic such as sapphire are jointed by bringing the slant faces into contact with each other, and the slant face is made a splitter face 2. The members 1, 3 are arranged so that the optical axis of the double refracting member 1 is extended in the transmitted direction of an optical signal 21. The optical signal 21 entering from the double refracting member 1 side passes as it is along the optical axis of the crystal material and is split into transmitted light and reflected light at the splitter face 2. When the reflected light passes again in the double refracting member 1, the reflected light is split into normal light and abnormal light, and the normal light and abnormal light are respectively propagated at different refractive indexes so as to be split into two polarized light 21a, 21b orthogonal to each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光信号等のビーム
光を分離するとともに、この分離したビーム光をさらに
偏波面によって分離する機能をもった偏光ビームスプリ
ッタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarizing beam splitter having a function of separating a light beam such as an optical signal and separating the separated light beam by a plane of polarization.

【0002】[0002]

【従来の技術】近年、光信号を用いた情報伝達は、光デ
ィスク、光カード、レーザーを使った光学センサ、光通
信等の分野で広く使用されている。これらの装置におい
て、光信号を偏波面によって分離する機能をもった偏光
分離素子が用いられている。
2. Description of the Related Art In recent years, information transmission using optical signals has been widely used in fields such as optical disks, optical cards, optical sensors using lasers, and optical communications. In these apparatuses, a polarization separation element having a function of separating an optical signal by a plane of polarization is used.

【0003】例えば、物質の表面での光の反射では、偏
波面を回転させる旋光現象(カー効果)があり、光を透
過する物質では透過時に旋光現象が生じるものがある。
そして、光ディスクや光学センサは、この現象を利用し
て情報を読み取るため、偏光分離素子が使用されるので
ある。
[0003] For example, in the reflection of light on the surface of a substance, there is an optical rotation phenomenon (Kerr effect) that rotates the plane of polarization, and in a substance that transmits light, an optical rotation phenomenon occurs when transmitted.
An optical disc or an optical sensor uses a polarization separation element to read information using this phenomenon.

【0004】また、光通信の分野でも、光の偏波面によ
って信号光を使い分けたり、偏波面によって信号光の通
過特性を制御したりするため、偏光を分離したり合成し
たりする必要があり、偏光分離素子が使用されている。
Also, in the field of optical communication, it is necessary to separate or combine polarizations in order to properly use signal light depending on the plane of polarization of light and to control the transmission characteristics of signal light according to the plane of polarization. A polarization splitting element is used.

【0005】ここで、光ディスクの読み取り装置の概略
構造を図5に示すように、レーザーダイオード14から
出射された光信号20は、ビームスプリッタ11を通過
して光ディスク17で反射し、反射した光信号21は再
度ビームスプリッタ11にて反射し、この反射光が偏光
分離素子12で二つの偏光21a、21bに分離され、
それぞれフォトディテクター15、16で検知するよう
になっている。つまり、光ディスク17で反射した光信
号21の旋光現象をフォトディテクター15、16で検
知することによって、光ディスク17の情報を読み取る
ようになっている。
[0005] Here, as shown in FIG. 5, the schematic structure of an optical disk reading device, an optical signal 20 emitted from a laser diode 14 passes through a beam splitter 11, is reflected by an optical disk 17, and is reflected by the optical signal. 21 is reflected again by the beam splitter 11, and the reflected light is split into two polarized lights 21 a and 21 b by the polarization splitting element 12.
Photodetectors 15 and 16 respectively detect the light. That is, the information on the optical disk 17 is read by detecting the optical rotation phenomenon of the optical signal 21 reflected by the optical disk 17 by the photodetectors 15 and 16.

【0006】上記ビームスプリッタ11と偏光分離素子
12部分の詳細構造を図4(a)に示す。ビームスプリ
ッタ11は、ガラスの三角柱状体からなる二つの透光性
部材3、3を互いの斜面で接合して、この斜面をスプリ
ッタ面2となしたものであり、一方偏光分離素子12
は、二つのガラス製の透光性部材3’、3’の間にSi
2 、TiO2 等の誘電体多層膜からなる偏光分離膜4
を介在させて接合したものである。そして、上記ビーム
スプリッタ11の反射光が通過する位置に上記偏光分離
素子12を接合して偏光ビームスプリッタが構成され
る。
FIG. 4A shows a detailed structure of the beam splitter 11 and the polarization splitting element 12. The beam splitter 11 is formed by joining two translucent members 3, 3 each formed of a triangular prism body made of glass to each other at an inclined surface to form the inclined surface 2 as a splitter surface 2.
Is Si between two glass translucent members 3 ', 3'.
Polarization separation film 4 made of a dielectric multilayer film such as O 2 and TiO 2
Are bonded together. Then, the polarization splitting element 12 is joined to a position where the reflected light of the beam splitter 11 passes, thereby forming a polarization beam splitter.

【0007】そのため、光ディスク17にて反射した光
信号21がビームスプリッタ11に入射すると、一部は
透過するが、残部がスプリッタ面2で反射する。この反
射した光信号21は偏光分離素子12の偏光分離膜4で
互いに直交する二つの偏光21a、21bに分離される
ことになる。
For this reason, when the optical signal 21 reflected by the optical disk 17 enters the beam splitter 11, a part of the signal is transmitted, but the rest is reflected by the splitter surface 2. The reflected optical signal 21 is split by the polarization splitting film 4 of the polarization splitting element 12 into two orthogonal polarizations 21a and 21b.

【0008】また、同様の作用をなすために、図4
(b)に示すように、上記偏光分離素子12の代わり
に、結晶材料を用いたウォラストンプリズム13を配置
することもできる。このウォラストンプリズム13は、
複屈折特性を持った結晶材料からなるものであり、入射
した光信号21は、結晶の光軸と平行な方向に振動する
正常光と、光軸と垂直な方向に振動する異常光に分離
し、それぞれ異なる屈折率にしたがって伝搬するため、
互いに直交する二つの偏光21a、21bに分離される
ことになる。
In order to achieve the same effect, FIG.
As shown in (b), a Wollaston prism 13 using a crystal material can be arranged instead of the polarization separation element 12. This Wollaston prism 13
It is made of a crystal material having birefringence characteristics. The incident optical signal 21 is separated into normal light oscillating in a direction parallel to the optical axis of the crystal and extraordinary light oscillating in a direction perpendicular to the optical axis. , Each propagate according to a different refractive index,
The light is separated into two polarized lights 21a and 21b orthogonal to each other.

【0009】[0009]

【発明が解決しようとする課題】ところで、近年、これ
らの光学素子は小型化、低コスト化が求められている。
これに対し、図4に示すような偏光ビームスプリッタで
は、ビームスプリッタ11と、偏光分離素子12又はウ
ォラストンプリズム13の二つの素子が必要であるた
め、全体の寸法が大きくなり、小型化が困難となるだけ
でなく、コストが高くなり、上記要求特性を満足できな
かった。
In recent years, these optical elements have been required to be reduced in size and cost.
On the other hand, the polarization beam splitter as shown in FIG. 4 requires two elements, the beam splitter 11, the polarization splitting element 12, and the Wollaston prism 13, so that the overall size becomes large and miniaturization is difficult. In addition, the cost was increased, and the above required characteristics could not be satisfied.

【0010】特に図4(b)に示すウォラストンプリズ
ム13を用いたものでは、全体を小型化するために、ウ
ォラストンプリズム13を小さくすると、偏光21a、
21bの分離角が小さくなって偏光分離機能が低下する
という問題があった。
In particular, in the case of using the Wollaston prism 13 shown in FIG. 4B, if the Wollaston prism 13 is made smaller in order to reduce the size of the whole, the polarization 21a,
There has been a problem that the separation angle of 21b is reduced and the polarization separation function is reduced.

【0011】また、図4(a)に示すように、偏光分離
膜4を用いて偏光分離を行った場合、高い偏光分離機能
を得られないという問題もあった。
Further, as shown in FIG. 4A, when polarization separation is performed using the polarization separation film 4, there is a problem that a high polarization separation function cannot be obtained.

【0012】[0012]

【課題を解決するための手段】そこで本発明は、ビーム
光を透過光と反射光に分離するスプリッタ面を有する透
光性部材の、上記反射光が通過する位置に、複屈折部材
を接合一体化して偏光ビームスプリッタを構成したこと
を特徴とする。
SUMMARY OF THE INVENTION Accordingly, the present invention provides a birefringent member integrally joined to a translucent member having a splitter surface for separating beam light into transmitted light and reflected light, at a position where the reflected light passes. To form a polarization beam splitter.

【0013】また、本発明は、上記透光性部材と複屈折
率部材とをほぼ同等の屈折率を持った材質で形成し、こ
れらの間をほぼ同等の屈折率を有する透光性接着剤で接
合したことを特徴とする。
Further, according to the present invention, the translucent member and the birefringent member are formed of a material having substantially the same refractive index, and a translucent adhesive having substantially the same refractive index is provided therebetween. It is characterized by being joined by.

【0014】[0014]

【作用】本発明によれば、透光性部材と複屈折率部材と
を接合し、ビームスプリッタとウォラストンプリズムを
一体化したため、部品点数を小さくして全体を小型化
し、低コスト化できる。また、結晶材料を比較的大きく
形成できるため、偏光分離機能を向上できる。
According to the present invention, the translucent member and the birefringent member are joined, and the beam splitter and the Wollaston prism are integrated, so that the number of parts can be reduced, the whole can be reduced in size, and the cost can be reduced. In addition, since the crystal material can be formed relatively large, the polarization separation function can be improved.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施形態を図によ
って説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0016】図1は、偏光ビームスプリッタ10を、光
信号21の透過方向側面から見た図である。この偏光ビ
ームスプリッタ10は、ガラス等の三角柱状体からなる
透光性部材3と、結晶材料の三角柱状体からなる複屈折
率部材1とを、それぞれ斜面同士を当接して接合し、こ
の斜面をスプリッタ面2としたものである。
FIG. 1 is a diagram of the polarization beam splitter 10 as viewed from the side in the transmission direction of the optical signal 21. The polarizing beam splitter 10 is formed by joining a translucent member 3 made of a triangular prism made of glass or the like and a birefringent member 1 made of a triangular prism made of a crystalline material by contacting their slopes with each other. Is the splitter surface 2.

【0017】また、複屈折部材1は、サファイア、4ホ
ウ酸リチウム等の複屈折特性を有する結晶材料からな
る。ここで複屈折特性を有する結晶材料とは、結晶の光
軸に平行な方向に振動する正常光と、光軸に垂直な方向
に振動する異常光によって、異なる屈折率を有する材質
のことである。そして、この偏光ビームスプリッタ10
では、光信号21が透過する方向(図面の上下方向)に
複屈折部材1の光軸が向くように配置されている。
The birefringent member 1 is made of a crystalline material having birefringent characteristics such as sapphire and lithium borate. Here, the crystal material having birefringence characteristics is a material having different refractive indexes depending on normal light vibrating in a direction parallel to the optical axis of the crystal and extraordinary light vibrating in a direction perpendicular to the optical axis. . Then, the polarization beam splitter 10
In the example, the birefringent member 1 is arranged such that the optical axis of the birefringent member 1 is oriented in a direction in which the optical signal 21 is transmitted (vertical direction in the drawing).

【0018】いま、複屈折部材1側から入射した光信号
21は、結晶材料の光軸にそった方向であるため、その
まま通過し、スプリッタ面2で透過光と反射光に分離さ
れる。そして、反射光は、再度、複屈折部材1内を通過
するが、この時は光軸とある角度で交差する方向に通過
するため、正常光と異常光に分離し、それぞれ異なる屈
折率で伝搬することから、二つの互いに直交する偏光2
1aと21bに分離することができるのである。
Since the optical signal 21 incident from the birefringent member 1 is in the direction along the optical axis of the crystal material, it passes through as it is, and is separated into transmitted light and reflected light by the splitter surface 2. Then, the reflected light passes through the birefringent member 1 again, but at this time, because it passes in a direction crossing the optical axis at a certain angle, it is separated into normal light and extraordinary light, and propagates with different refractive indexes. The two mutually orthogonal polarizations 2
It can be separated into 1a and 21b.

【0019】次に、この偏光ビームスプリッタ10を光
ディスクの読み取り装置に応用した例を説明する。図2
に示すように、レーザーダイオード14から出射された
光信号20は、偏光ビームスプリッタ10を通過して光
ディスク17で反射し、反射した光信号21は再度偏光
ビームスプリッタ10に入射し、この反射光が上述した
ように二つの偏光21a、21bに分離され、それぞれ
フォトディテクター15、16で検知するようになって
いる。
Next, an example in which the polarization beam splitter 10 is applied to an optical disk reader will be described. FIG.
As shown in (2), the optical signal 20 emitted from the laser diode 14 passes through the polarizing beam splitter 10 and is reflected by the optical disk 17, and the reflected optical signal 21 is again incident on the polarizing beam splitter 10, and the reflected light is As described above, the light is separated into two polarized lights 21a and 21b, and is detected by the photodetectors 15 and 16, respectively.

【0020】この時、上述したように、偏光ビームスプ
リッタ10のうち複屈折部材1は、光軸が光信号20、
21の透過方向と一致するように配置しているため、透
過する光信号20、21はそのまま透過させ、反射光の
みを二つの偏光21a、21bに分離できるのである。
At this time, as described above, the birefringent member 1 of the polarizing beam splitter 10 has an optical axis whose optical axis is
Since they are arranged so as to match the transmission direction of 21, the transmitted optical signals 20, 21 can be transmitted as they are, and only the reflected light can be separated into two polarized lights 21a, 21b.

【0021】このように、本発明の偏光ビームスプリッ
タ10は、光信号21を透過光と反射光に分離するとと
もに、反射光をさらに二つの偏光21a、21bに分離
することができる。しかも、この偏光ビームスプリッタ
10は、図4に示す従来構造のように二つの素子を必要
とせず、従来のビームスプリッタ11と同じ寸法のみで
良いことから、大幅に小型化することができ、低コスト
とできる。しかも、結晶材料からなる複屈折部材1は比
較的大きく形成できるため、偏光分離機能を向上するこ
とができる。
As described above, the polarization beam splitter 10 of the present invention can separate the optical signal 21 into the transmitted light and the reflected light, and can further separate the reflected light into two polarized lights 21a and 21b. In addition, the polarization beam splitter 10 does not require two elements as in the conventional structure shown in FIG. 4 and only needs to have the same dimensions as the conventional beam splitter 11, so that the size can be significantly reduced, and Can be cost. In addition, since the birefringent member 1 made of a crystalline material can be formed relatively large, the polarization separation function can be improved.

【0022】次に、本発明の他の実施形態を説明する。Next, another embodiment of the present invention will be described.

【0023】図3に示す偏光ビームスプリッタ10は、
ガラス等からなる透光性部材3と結晶材料からなる複屈
折部材1を共に四角柱状体として接合したものである
が、図1の実施形態と異なり、スプリッタ面2は透光性
部材3側のみに形成してある。そして、光信号21は、
透過する場合は透光性部材3のみを透過し、スプリッタ
面2で反射した光信号だけが、結晶材料からなる複屈折
部材1を通過して、二つの偏光21a、21bに分離す
るようになっている。この場合は、結晶材料からなる複
屈折部材1中を光信号21の透過光が通過しないため、
結晶材料の光軸の向きを定めておく必要がない。
The polarization beam splitter 10 shown in FIG.
The translucent member 3 made of glass or the like and the birefringent member 1 made of a crystal material are both joined as a quadrangular prism. However, unlike the embodiment of FIG. It is formed in. Then, the optical signal 21 is
When transmitting, only the optical signal transmitted through the light transmitting member 3 and reflected by the splitter surface 2 passes through the birefringent member 1 made of a crystalline material and is separated into two polarized lights 21a and 21b. ing. In this case, since the transmitted light of the optical signal 21 does not pass through the birefringent member 1 made of a crystalline material,
It is not necessary to determine the direction of the optical axis of the crystal material.

【0024】以上の本発明の偏光ビームスプリッタ10
において、複屈折部材1を成す結晶材料としては、複屈
折特性を持ったものであれば良く、ほとんどの単結晶体
を使用できるが、特に、屈折率、透過率、コスト尚の点
から、水晶、サファイア、ルチル、方解石、ニオブ酸リ
チウム、タンタル酸リチウム、4ホウ酸リチウム(LB
O)、KTP、ADP等が好適である。これらの結晶材
料を製造する場合は、EFG法等により、それぞれの溶
融原料中に種子結晶を浸漬して引き上げることによっ
て、所定の形状、結晶方位を有する単結晶体を得ること
ができる。
The polarization beam splitter 10 of the present invention described above.
In the above, the crystal material forming the birefringent member 1 may be any material having birefringence characteristics, and most single crystal bodies can be used. In particular, from the viewpoints of refractive index, transmittance, and cost, quartz , Sapphire, rutile, calcite, lithium niobate, lithium tantalate, lithium tetraborate (LB
O), KTP, ADP and the like are suitable. In the case of producing these crystal materials, a single crystal having a predetermined shape and crystal orientation can be obtained by immersing and pulling up seed crystals in each molten raw material by EFG method or the like.

【0025】また、透光性部材3としては、クラウンガ
ラス(BK7)又はフリントガラス等の硼珪酸ガラスや
その他のガラスを用いる。そして、スプリッタ面2は、
この透光性部材3の一部に、透過する光信号21に対し
て所定の角度となるような斜面を形成することによって
得られる。
As the translucent member 3, borosilicate glass such as crown glass (BK7) or flint glass or other glass is used. And the splitter surface 2
It is obtained by forming a slope at a predetermined angle with respect to the transmitted optical signal 21 in a part of the light transmitting member 3.

【0026】さらに、複屈折部材1と透光性部材3との
接合には、透光性の熱硬化性接着剤又は紫外線硬化性接
着剤等の接着剤を用いることが好ましい。また、複屈折
部材1と透光性部材3を接合する場合は、両者の接合面
を表面粗さ(Ra)0.001μm以下の滑らかな面と
しておいて、上記接着剤を厚み0.5mm以下となるよ
うに介在させて接合する。
Further, for bonding the birefringent member 1 and the light-transmitting member 3, it is preferable to use an adhesive such as a light-transmitting thermosetting adhesive or an ultraviolet-setting adhesive. When the birefringent member 1 and the translucent member 3 are joined, the joining surface of both is a smooth surface having a surface roughness (Ra) of 0.001 μm or less, and the adhesive is applied to a thickness of 0.5 mm or less. And joined so that

【0027】そして、本発明においては、偏光ビームス
プリッタ10を構成する複屈折部材1、透光性部材3、
接着剤のそれぞれの屈折率をほぼ一致させることが好ま
しく、このようにすれば、接合面を通過する光信号に対
して、光学干渉や表面反射を防ぐことができる。
In the present invention, the birefringent member 1, the translucent member 3, and the
It is preferable that the refractive indices of the adhesives be substantially equal to each other, so that optical interference and surface reflection can be prevented with respect to an optical signal passing through the bonding surface.

【0028】なお、複屈折部材1を成す結晶材料は二つ
の屈折率を有しているが、その差は小さいため、いずれ
かの屈折率とほぼ一致させれば良い。また、ほぼ一致さ
せるとは、三種類の屈折率の最大値と最小値の差が0.
05以下であることを言う。
Although the crystal material forming the birefringent member 1 has two refractive indices, the difference between them is small, so that the refractive index may be substantially equal to either one. In addition, “substantially match” means that the difference between the maximum value and the minimum value of the three types of refractive index is 0.
05 or less.

【0029】また、本発明の偏光ビームスプリッタ10
は、図2に示す光ディスクの読み取り装置に限らず、光
カードの信号分離、レーザーを使った光学センサ、光通
信の光信号の処理(アイソレータ、分波器、合波器)等
に好適に使用することができる。
Further, the polarization beam splitter 10 of the present invention
Is suitably used not only for the optical disk reader shown in FIG. 2 but also for signal separation of optical cards, optical sensors using lasers, processing of optical signals for optical communication (isolators, demultiplexers, multiplexers), etc. can do.

【0030】[0030]

【実施例】本発明の実施例として、図1に示す偏光ビー
ムスプリッタ10を作製した。透光性部材3として屈折
率1.55のクラウンガラスを用い、複屈折部材1とし
て屈折率1.56の4ホウ酸リチウム結晶を用い、接着
剤として屈折率1.55の紫外線硬化性接着剤を用いて
接合し、全体の寸法が3×3×3mmの偏光ビームスプ
リッタ10を得た。
EXAMPLE As an example of the present invention, a polarizing beam splitter 10 shown in FIG. 1 was manufactured. A crown glass having a refractive index of 1.55 is used as the translucent member 3, a lithium tetraborate crystal having a refractive index of 1.56 is used as the birefringent member 1, and an ultraviolet curable adhesive having a refractive index of 1.55 is used as an adhesive. To obtain a polarizing beam splitter 10 having an overall size of 3 × 3 × 3 mm.

【0031】なお、図4(a)に示す従来の構造で、こ
れと同じ機能をもつ素子を構成したところ、全体の寸法
が3×3×4mmとなり、本発明の偏光ビームスプリッ
タ10は小型化できることがわかる。
When an element having the same function as that of the conventional structure shown in FIG. 4A is formed, the overall size becomes 3 × 3 × 4 mm, and the polarizing beam splitter 10 of the present invention is miniaturized. We can see that we can do it.

【0032】また、本発明の偏光ビームスプリッタ10
に対し、波長780nmの光信号21を入射し、スプリ
ッタ面2での反射光を二つの偏光21a、21bに分離
し、それぞれをフォトディテクタで検知したところ、偏
光分離機能が高く、良好に偏光21a、21bを検知で
きることがわかった。
Further, the polarization beam splitter 10 of the present invention
In response, an optical signal 21 having a wavelength of 780 nm is incident, the reflected light on the splitter surface 2 is separated into two polarized lights 21a and 21b, and each is detected by a photodetector. 21b was found to be detectable.

【0033】しかも、上記のように、複屈折部材1と透
光性部材3と接着剤の屈折率をほぼ一致させたため、偏
光ビームスプリッタ10の上記接合面や他の光学部品と
の接合面に反射防止コートを施す必要なく、光学干渉や
表面反射を防止することができた。
Further, as described above, since the refractive indices of the birefringent member 1, the translucent member 3 and the adhesive are made substantially the same, the bonding surface of the polarizing beam splitter 10 and the bonding surface with other optical components are formed. Optical interference and surface reflection could be prevented without the need for an antireflection coating.

【0034】[0034]

【発明の効果】以上のように本発明によれば、光信号を
透過光と反射光に分離するスプリッタ面を有する透光性
部材と、上記反射光が通過する位置に配置した結晶材料
からなる複屈折部材とを、接合一体化して偏光ビームス
プリッタを構成したことによって、ビームスプリッタと
ウォラストンプリズムを一体化したため、部品点数を小
さくして全体を小型化し、低コスト化でき、また複屈折
部材を比較的大きく形成できるため、偏光分離機能を向
上できる。
As described above, according to the present invention, a light-transmitting member having a splitter surface for separating an optical signal into transmitted light and reflected light, and a crystal material arranged at a position through which the reflected light passes. A birefringent member is joined and integrated to form a polarizing beam splitter, so that the beam splitter and the Wollaston prism are integrated, so the number of parts can be reduced and the whole can be reduced in size and cost can be reduced. Can be formed relatively large, so that the polarization separation function can be improved.

【0035】さらに、本発明によれば、上記透光性部材
と複屈折部材とを透光性接着剤で接合するとともに、こ
れら透光性部材、複屈折部材、透光性接着剤の屈折率を
ほぼ一致させたことによって、表面反射や光学干渉を防
止することができる。
Further, according to the present invention, the translucent member and the birefringent member are joined with a translucent adhesive, and the refractive indexes of the translucent member, the birefringent member, and the translucent adhesive are determined. Are substantially matched, surface reflection and optical interference can be prevented.

【0036】したがって、小型、低コストで高性能の偏
光ビームスプリッタを構成することができる。
Accordingly, a small-sized, low-cost, high-performance polarizing beam splitter can be constructed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の偏光ビームスプリッタを示す側面図で
ある。
FIG. 1 is a side view showing a polarizing beam splitter of the present invention.

【図2】本発明の偏光ビームスプリッタを用いた光ディ
スクの読み出し装置を示す概略図である。
FIG. 2 is a schematic view showing an optical disk reading device using the polarization beam splitter of the present invention.

【図3】本発明の偏光ビームスプリッタの他の実施形態
を示す側面図である。
FIG. 3 is a side view showing another embodiment of the polarizing beam splitter of the present invention.

【図4】(a)(b)は従来の偏光ビームスプリッタを
示す側面図である。
FIGS. 4A and 4B are side views showing a conventional polarizing beam splitter.

【図5】従来の光ディスクの読み出し装置を示す概略図
である。
FIG. 5 is a schematic diagram showing a conventional optical disk reading device.

【符号の説明】[Explanation of symbols]

1:複屈折部材 2:スプリッタ面 3:透光性部材 10:偏光ビームスプリッタ 11:ビームスプリッタ 12:偏光分離素子 13:ウォラストンプリズム 14:レーザーダイオード 15:フォトディテクタ 16:フォトディテクタ 17:光ディスク 20:光信号 21:光信号 21a:偏光 21b:偏光 1: Birefringent member 2: Splitter surface 3: Translucent member 10: Polarizing beam splitter 11: Beam splitter 12: Polarization splitting element 13: Wollaston prism 14: Laser diode 15: Photodetector 16: Photodetector 17: Optical disk 20: Light Signal 21: Optical signal 21a: Polarized 21b: Polarized

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ビーム光を透過光と反射光に分離するスプ
リッタ面を有する透光性部材の、上記反射光が通過する
位置に、複屈折部材を接合一体化して成る偏光ビームス
プリッタ。
A polarizing beam splitter comprising a light transmitting member having a splitter surface for separating a light beam into transmitted light and reflected light, and a birefringent member joined and integrated at a position where the reflected light passes.
【請求項2】上記透光性部材と複屈折率部材をほぼ同等
の屈折率を持った材質で形成し、これらの間をほぼ同等
の屈折率を有する透光性接着剤で接合したことを特徴と
する請求項1記載の偏光ビームスプリッタ。
2. The method according to claim 1, wherein the light-transmitting member and the birefringent member are formed of a material having substantially the same refractive index, and are joined with a light-transmitting adhesive having substantially the same refractive index. The polarizing beam splitter according to claim 1, wherein:
JP4679797A 1997-02-28 1997-02-28 Polarized beam splitter Pending JPH10239520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4679797A JPH10239520A (en) 1997-02-28 1997-02-28 Polarized beam splitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4679797A JPH10239520A (en) 1997-02-28 1997-02-28 Polarized beam splitter

Publications (1)

Publication Number Publication Date
JPH10239520A true JPH10239520A (en) 1998-09-11

Family

ID=12757335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4679797A Pending JPH10239520A (en) 1997-02-28 1997-02-28 Polarized beam splitter

Country Status (1)

Country Link
JP (1) JPH10239520A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9154678B2 (en) 2013-12-11 2015-10-06 Apple Inc. Cover glass arrangement for an electronic device
US9225056B2 (en) 2014-02-12 2015-12-29 Apple Inc. Antenna on sapphire structure
US9221289B2 (en) 2012-07-27 2015-12-29 Apple Inc. Sapphire window
US9232672B2 (en) 2013-01-10 2016-01-05 Apple Inc. Ceramic insert control mechanism
US9632537B2 (en) 2013-09-23 2017-04-25 Apple Inc. Electronic component embedded in ceramic material
US9678540B2 (en) 2013-09-23 2017-06-13 Apple Inc. Electronic component embedded in ceramic material
US10052848B2 (en) 2012-03-06 2018-08-21 Apple Inc. Sapphire laminates
US10406634B2 (en) 2015-07-01 2019-09-10 Apple Inc. Enhancing strength in laser cutting of ceramic components

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10052848B2 (en) 2012-03-06 2018-08-21 Apple Inc. Sapphire laminates
US9221289B2 (en) 2012-07-27 2015-12-29 Apple Inc. Sapphire window
US9232672B2 (en) 2013-01-10 2016-01-05 Apple Inc. Ceramic insert control mechanism
US9632537B2 (en) 2013-09-23 2017-04-25 Apple Inc. Electronic component embedded in ceramic material
US9678540B2 (en) 2013-09-23 2017-06-13 Apple Inc. Electronic component embedded in ceramic material
US9154678B2 (en) 2013-12-11 2015-10-06 Apple Inc. Cover glass arrangement for an electronic device
US10324496B2 (en) 2013-12-11 2019-06-18 Apple Inc. Cover glass arrangement for an electronic device
US10386889B2 (en) 2013-12-11 2019-08-20 Apple Inc. Cover glass for an electronic device
US9225056B2 (en) 2014-02-12 2015-12-29 Apple Inc. Antenna on sapphire structure
US9461357B2 (en) 2014-02-12 2016-10-04 Apple Inc. Antenna on sapphire structure
US9692113B2 (en) 2014-02-12 2017-06-27 Apple Inc. Antenna on sapphire structure
US10406634B2 (en) 2015-07-01 2019-09-10 Apple Inc. Enhancing strength in laser cutting of ceramic components

Similar Documents

Publication Publication Date Title
JPH03132603A (en) Polarizer
JPS63191327A (en) Solid-state optical pickup
US5011248A (en) Thin-film optical function element, and optical head using the same
JP3029541B2 (en) Optical pickup device
JPH10239520A (en) Polarized beam splitter
JP2002031716A (en) Polarizing element and method for manufacturing the same
US5377040A (en) Polarization independent optical device
EP0474237B1 (en) Prism optical device and polarizer using it
JPS62141653A (en) Light pickup
JP4789541B2 (en) Polarization separation element
JP2541014B2 (en) Polarizing prism
KR100449612B1 (en) Optical pickup and opto-magnetic signal reproducing apparatus
JPH0933878A (en) Variable wavelength optical filter
JP3339524B2 (en) Polarizing optical element and polarizing optical device
JP2658818B2 (en) Birefringent diffraction grating polarizer and optical head device
JPS6365419A (en) Semiconductor laser device with optical isolator
JPS63262602A (en) Diffraction grating type optical polarizing plat
JP2000231080A (en) Optical circulator
JPS59228610A (en) Polarizing prism
JP2725324B2 (en) Optical head for optical recording media
JP2793706B2 (en) Optical head for magneto-optical disk
JPS62124416A (en) Light applied sensor
JP2006091865A (en) Optical component module
JPH03287104A (en) Polarizing prism
JP2797659B2 (en) Magneto-optical head for reading magneto-optical recording