JPH10237856A - Construction mehtod for soil improvement using both pile and sand compaction pile - Google Patents

Construction mehtod for soil improvement using both pile and sand compaction pile

Info

Publication number
JPH10237856A
JPH10237856A JP5988497A JP5988497A JPH10237856A JP H10237856 A JPH10237856 A JP H10237856A JP 5988497 A JP5988497 A JP 5988497A JP 5988497 A JP5988497 A JP 5988497A JP H10237856 A JPH10237856 A JP H10237856A
Authority
JP
Japan
Prior art keywords
pile
ground
scp
effect
construction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5988497A
Other languages
Japanese (ja)
Inventor
Katsue Katsusawa
勝栄 勝沢
Yasuo Suzuki
康夫 鈴木
Yasuhiro Shamoto
康広 社本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP5988497A priority Critical patent/JPH10237856A/en
Publication of JPH10237856A publication Critical patent/JPH10237856A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the construction quantity of SCP and reduce the construction cost of a foundation by confirming a compaction effect on a ground by a file by ground test in the soil improvement of a target ground having a possibility of liquefaction, and taking it into consideration as substitution ratio. SOLUTION: A steel pipe pile 10 is test-constructed to confirm the clocking effect of the steel pipe pile 10 in a target ground and the compaction effect on the peripheral ground by the drive of the pile 10. The substitution ratio by the drive of the pile 10 us determined from a confirmation test and existing data, and a composed substitution ratio on the target ground is calculated to determine the substitution ratio by a sand compaction pile 20. The pile diameter and the pile pitch P1 are then set. When the end of the pile 10 is opened, the SCP 20 is partially constructed to confirm the improvement effect as foundation ground. The compaction effect is evaluated, and the design as countermeasure to liquefaction and test construction of the driven pile 10 and the SCP are performed to confirm the improvement effect. The construction quantity of SPC which is a natural countermeasure to liquefaction can be surely reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は杭及びサンドコンパ
クションパイルを併用した地盤改良工法に係り、特に液
状化発生のおそれのある地盤において、打込み杭打設に
よる周辺地盤の締固め効果を考慮してサンドコンパクシ
ョンパイルの設計を行うようにした杭及びサンドコンパ
クションパイルを併用した地盤改良工法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a soil improvement method using a pile and a sand compaction pile in combination, and particularly in a soil where liquefaction may occur, taking into account the effect of compaction of the surrounding ground by driving a driving pile. The present invention relates to a ground improvement method using a pile and a sand compaction pile for designing a sand compaction pile.

【0002】[0002]

【従来の技術】鋼管杭等の既製の打込み杭を砂質地盤等
に施工すると、杭周辺の地盤が締固められることが経験
上、知られている。緩い砂質地盤において、構造物の周
辺部から中央方向に向かって比較的密な間隔で順に杭を
打設すると、中央の領域で杭の高止まりが生じるのはそ
の一例である。このような杭打設に伴う周辺地盤の締固
め効果は、杭が打設された位置で打設された杭の体積分
だけ周囲へ地盤が押し退けられるように移動し、締固め
領域が拡大されることにより発揮されると考えられる。
したがって、周辺地盤に対しては原理的にサンドコンパ
クションパイル(以下、SCPと略記する。)と同様に
液状化が生じるおそれのある地盤において地盤改良効果
が期待できる。
2. Description of the Related Art It has been known from experience that when a ready-made driving pile such as a steel pipe pile is constructed on a sandy ground or the like, the ground around the pile is compacted. In a loose sandy ground, when piles are sequentially driven at relatively dense intervals from the periphery of the structure toward the center, one example is that the piles stop at a high height in the central region. The effect of compaction of the surrounding ground due to such pile driving is such that the ground is displaced to the periphery by the volume of the driven pile at the position where the pile was driven, and the compaction area is enlarged. It is thought that it is exhibited by doing.
Therefore, the ground improvement effect can be expected on the surrounding ground in the same way as the sand compaction pile (hereinafter abbreviated as SCP) in principle on the ground where liquefaction may occur.

【0003】出願人はすでにSCPの締固め効果を評価
する手法として、周辺地盤の密度変化分布が砂の種類や
細粒分含有率に依存しないという事実に基づいた評価方
法として以下の式を提案している。
[0003] The applicant has already proposed the following formula as a method for evaluating the compaction effect of the SCP as an evaluation method based on the fact that the density change distribution of the surrounding ground does not depend on the type of sand and the content of fine particles. doing.

【0004】[0004]

【数1】 (Equation 1)

【0005】以上に示したように、(式1)で示した一
連の式によって、置換率asを考慮した地盤改良後の補
正N値を精度よく算出することができる。ところで、S
CPも既製の打込み杭も対象地盤に柱状の改良体を打設
するという共通点を有する。このため、打込み杭打設に
伴う周辺地盤の改良効果の評価手法についても上述のS
CPの評価手法が適用できることが予想された。そこ
で、原位置杭打設試験を行い、その評価手法の適用性に
ついての検討を行った。この結果、打込み杭打設に伴う
地盤の締固め効果は前述のSCPに用いた評価手法とほ
ぼ同様の手法が適用できることを確認できた。(第31
回地盤工学研究発表会(1996年):「杭打設に伴う
埋め立て地盤の液状化対策効果」(1)〜(4)参
照)。
[0005] As described above, the corrected N value after the ground improvement in consideration of the replacement ratio as can be accurately calculated by a series of equations expressed by (Equation 1). By the way, S
Both the CP and the ready-made driving pile have the common feature that a columnar improved body is driven into the target ground. For this reason, the evaluation method of the improvement effect of the surrounding ground due to the driving of the driving pile is also described in the aforementioned S.
It was expected that the CP evaluation method could be applied. Therefore, an in-situ pile driving test was performed and the applicability of the evaluation method was examined. As a result, it was confirmed that almost the same method as the above-described evaluation method used for the SCP can be applied to the compaction effect of the ground accompanying the driving pile driving. (No. 31
Japan Geotechnical Engineering Research Presentation (1996): "Effects of countermeasures against liquefaction of landfill ground due to pile driving" (1) to (4)).

【0006】[0006]

【発明が解決しようとする課題】通常の基礎構造の設計
では、杭打設による周辺地盤の改良効果はまったく考慮
されていない。液状化対策工としてのSCPと基礎工と
しての杭とを独立して設計して施工しているのが現状で
ある。一方、臨海部の埋立地等での大型の構造物の建設
工事では埋立された砂質地盤で液状化が生じないように
SCP等によって対象地盤に地盤改良工が施されてい
る。引き続いてその改良範囲に杭基礎を設けてSCPと
杭基礎とを併用した堅固な複合基礎を構築している。こ
のような複合基礎地盤において杭打設による地盤改良効
果を定量的に評価できれば、本来、基礎地盤全体の地盤
改良を目的としたSCPの施工数量を低減することがで
きる。これにより基礎の建設費のコストダウンが期待で
きる。
In the design of a normal foundation structure, the effect of improving the surrounding ground by driving a pile is not considered at all. At present, the SCP as a liquefaction countermeasure and the pile as a foundation are independently designed and constructed. On the other hand, in the construction work of a large-scale structure at a seaside landfill site or the like, a ground improvement work is performed on a target ground by using an SCP or the like so that liquefaction does not occur in the buried sandy ground. Subsequently, a pile foundation is provided in the improved range, and a solid composite foundation using both the SCP and the pile foundation is being constructed. If the ground improvement effect of pile driving can be quantitatively evaluated in such a composite foundation ground, the number of SCPs originally intended for ground improvement of the entire foundation ground can be reduced. This can reduce the cost of foundation construction.

【0007】そこで、本発明の目的は上述した従来の技
術が有する問題点を解消し、杭打設に伴う液状化発生の
おそれのある地盤での地盤改良効果を定量的に評価して
SCPの施工数量を低減するようにした杭及びSCPを
併用した地盤改良工法を提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art, and to quantitatively evaluate the ground improvement effect on the ground where liquefaction may occur due to pile driving, and evaluate the SCP. It is an object of the present invention to provide a ground improvement method using a pile and an SCP together with a reduced construction quantity.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明は液状化発生のおそれのある対象地盤にサン
ドコンパクションパイルで地盤改良を行う際に、前記対
象地盤に基礎杭として打ち込まれた杭による周辺地盤へ
の締固め効果を地盤試験により確認し、該締固め効果を
杭打設による置換率として前記サンドコンパクションパ
イルの設計置換率の一部に充当して前記サンドコンパク
ションパイルが負担すべき置換率を考慮した設計を行
い、前記杭先端が完全に閉塞されていると見なせる場合
には前記設計に基づく前記サンドコンパクションパイル
の全面施工を行い、前記杭先端が完全には閉塞していな
い場合には前記設計に基づく前記サンドコンパクション
パイルの部分施工を行ってサンドコンパクションパイル
と杭との部分施工後の改良効果を試験により確認し、そ
の後前記サンドコンパクションパイルの全面施工を行う
ようにしたことを特徴とする。
In order to achieve the above-mentioned object, the present invention relates to a method for improving a ground with a sand compaction pile on a ground at which liquefaction may occur. The compaction effect on the surrounding ground due to the pile was confirmed by a ground test, and the compaction effect was applied to a part of the design replacement rate of the sand compaction pile as a replacement rate due to pile driving, and the sand compaction pile bears the burden. A design taking into account the replacement rate to be performed is performed, and if the pile tip can be considered to be completely closed, the entire surface of the sand compaction pile based on the design is performed, and the pile tip is completely closed. If not, partially construct the sand compaction pile based on the design and after partial construction of the sand compaction pile and pile The improvement effect was confirmed by a test, characterized in that so as to subsequently perform entire construction of the sand compaction pile.

【0009】前記杭打設による置換率を、前記杭先端の
閉塞状態を考慮して低減させることが好ましい。
It is preferable that the replacement ratio due to the pile driving is reduced in consideration of the closed state of the tip of the pile.

【0010】[0010]

【発明の実施の形態】以下、本発明の杭及びSCPを併
用した地盤改良工法の一実施の形態について、添付図面
を参照して説明する。本発明では、液状化が生じるおそ
れのある地盤において、SCPによる地盤改良が行われ
た基礎地盤に基礎杭を打設し、構造物を構築するような
設計を行うに当たり、 (1) 杭打設による地盤締固め効果を盛り込んだ合成置換
率の設定 (2) 改良効果確認試験の結果による設計へのフィードバ
ック の手法を提案するものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a ground improvement method using a pile and SCP according to the present invention will be described below with reference to the accompanying drawings. In the present invention, in the case where liquefaction is likely to occur, a foundation pile is placed on the foundation ground on which the ground has been improved by SCP, and a design for constructing a structure is performed. (2) To propose a method of feedback to the design based on the results of the improvement effect confirmation test.

【0011】杭打設による締固めメカニズムおよび効果
は、SCPのそれと同様であることから、杭打設による
改良効果も置換率asからなるパラメータとして考慮す
ることとした。すなわち、下式で示したように、
Since the compaction mechanism and effect of the pile driving are the same as those of the SCP, the improvement effect of the pile driving was also considered as a parameter consisting of the replacement ratio as. That is, as shown in the following equation,

【0012】[0012]

【数2】 (Equation 2)

【0013】打込み杭とSCPとによる締固め効果を評
価する合成置換率asをSCPによる置換率と打込み杭
による置換率の累加式によって表現した。このとき、打
込み杭の置換率を示す第2項に杭の閉塞効果を考慮した
低減係数ηを導入している。本来、鋼管杭のような先端
開放杭を打設した場合、杭の閉塞効果が早く得られた場
合には杭周辺地盤に対する改良効果は早期に発揮され
る。しかし、杭打設位置の地盤状態によっては杭閉塞が
進まない場合も予想される。そこで、その施工状況を考
慮した低減係数ηを設定している。液状化が生じるおそ
れのある地盤(N<10程度)において0.5≦η≦
1.0の間で地盤状態に応じて適宜設定する。また、合
成置換率に対する打込み杭及びSCPによる寄与率は、
杭打設による締固め効果を試験施工等により確認し、設
定することが好ましい。なお、先端が完全に閉塞してい
るとみなせる杭を用いる場合にはη=1.0とすること
ができ、さらに打込み杭の試験施工及び締固め改良効果
の確認試験を省略することができる。
The synthetic replacement rate as for evaluating the compaction effect of the driven pile and the SCP was expressed by the cumulative expression of the replacement rate by the SCP and the replacement rate by the driven pile. At this time, a reduction coefficient η that takes into account the blocking effect of the pile is introduced into the second term indicating the replacement rate of the driven pile. Originally, when an open-ended pile such as a steel pipe pile is placed, if the pile closing effect is obtained early, the improvement effect on the ground around the pile is exhibited early. However, depending on the state of the ground at the pile driving position, it is expected that the pile blockage will not progress. Therefore, the reduction coefficient η is set in consideration of the construction state. 0.5 ≦ η ≦ on the ground where liquefaction may occur (N <10)
It is set appropriately between 1.0 and depending on the ground condition. The contribution ratio of the driven pile and the SCP to the synthetic replacement rate is
It is preferable to confirm and set the compaction effect by pile driving by test construction or the like. In addition, when using the pile which can be considered that the front-end | tip is completely obstruct | occluded, (eta) can be set to 1.0, Furthermore, the test execution of a driving pile and the confirmation test of the compaction improvement effect can be omitted.

【0014】次に、打込み杭とSCPとによる液状化対
策工を行う場合の打込み杭の試験施工、SCPと打込み
杭の施工の設計および試験施工による設計へのフィード
バックの手順について図1を参照して説明する。本実施
の形態では、既製の打込み杭の一例として鋼管杭を示し
て説明する。まず、構造物を構築する対象地盤において
鋼管杭の試験施工を行う(ステップ100)。この試験
施工では、対象地盤における鋼管杭の閉塞効果及び杭打
設による周辺地盤の締め固めによる改良効果を確認する
(ステップ110)。本実施の形態の試験施工では鋼管
杭を図2に示したように打設し、隣接する杭10間の中
間位置Cにおける改良効果を確認するものとした。確認
試験としては公知の標準貫入試験、凍結サンプリング試
料による液状化試験、密度サンプリング等を行う。ま
た、先端開放鋼管杭の閉塞効果の確認には打設された杭
内のコア採取を行い、周辺地盤の土質状況との比較を行
う方法をとればよい。なお、試験施工を行う場所は同一
地盤内の別なエリアでも実際の基礎となる一部でもよ
い。
Next, referring to FIG. 1, a procedure for test execution of the driven pile, a design of the execution of the SCP and the driven pile, and a feedback procedure to the design by the test execution when the liquefaction countermeasure is performed by the driven pile and the SCP will be described. Will be explained. In this embodiment, a steel pipe pile will be described as an example of a ready-made driving pile. First, test construction of a steel pipe pile is performed on the target ground for constructing a structure (step 100). In this test construction, the effect of blockage of the steel pipe pile on the target ground and the improvement effect of compaction of the surrounding ground by driving the pile are confirmed (step 110). In the test construction of this embodiment, steel pipe piles were cast as shown in FIG. 2 and the improvement effect at the intermediate position C between the adjacent piles 10 was confirmed. As a confirmation test, a known standard penetration test, a liquefaction test using a frozen sampling sample, a density sampling, and the like are performed. Further, in order to confirm the blockage effect of the open-ended steel pipe pile, a method may be adopted in which a core is collected from the cast pile and compared with the soil condition of the surrounding ground. The place where the test construction is performed may be another area in the same ground or a part which is an actual foundation.

【0015】打込み杭打設による置換率apileを試験施
工確認試験及び既往データから算定し、併せて閉塞効果
を考慮して設定した低減係数ηとにより(式2)におけ
る第2項を設定する。これと並行して必要とする対象地
盤の改良後補正N値から当該対象地盤における合成置換
率asを算定し、SCP20による置換率ascpを求め、
図3に示したようにSCP20の設計として置換率asc
pからパイル径φ、パイルピッチP1を設定する(ステッ
プ120,130)。このSCP20のパイル径φ、パ
イルピッチP1は基礎杭として設計されている鋼管杭1
0の間隔P2を考慮して杭中間位置に配置するよう設計
するのが好ましい。また、先端が完全に閉塞していると
みなせる杭を用いる場合には打込み杭の部分施工及び締
固め改良効果の確認試験を省略し、引き続きSCP2
0、鋼管杭10の全面施工を行うことができる(ステッ
プ135)。
The replacement rate apile by the driving pile driving is calculated from the test execution confirmation test and the existing data, and the second term in (Equation 2) is set by the reduction coefficient η set in consideration of the blocking effect. In parallel with this, the combined replacement ratio as in the target ground is calculated from the corrected N value after the improvement of the target ground required, and the replacement ratio ascp by the SCP 20 is obtained.
As shown in FIG. 3, the replacement rate asc
The pile diameter φ and the pile pitch P1 are set from p (steps 120 and 130). The pile diameter φ and the pile pitch P1 of this SCP 20 are the steel pipe pile 1 designed as the foundation pile.
It is preferable to design so as to be arranged at the middle position of the pile in consideration of the interval P2 of 0. In the case of using a pile whose tip is considered to be completely closed, the partial construction of the driven pile and the confirmation test of the improvement effect of compaction are omitted, and the SCP2 is continued.
0, the entire construction of the steel pipe pile 10 can be performed (step 135).

【0016】杭先端が完全に閉塞していない場合には、
基礎地盤として改良効果を確認するためにSCP20の
部分施工を行い(ステップ140)、さらにSCP20
が縦横に施工された地盤に基礎杭としての鋼管杭10を
部分的に打設する(ステップ150)。このようにして
部分的に鋼管杭10とSCP20とを複合的に施工して
地盤改良を行った部分の改良効果の確認試験を行う(ス
テップ160)。この試験の確認位置は図示したように
鋼管杭10とSCP20間の中央位置Cが好ましい。確
認調査の結果が当初の設定を満足するものであれば、そ
のままの設計仕様でSCP20の全面施工、鋼管杭10
の全面施工を行う(ステップ180,190)。改良効
果十分得られないような場合は、SCP20の設計変更
を行い、変更後の仕様によりSCP20の施工を再度実
施する(ステップ170)。
If the pile tip is not completely closed,
Partial construction of the SCP 20 is performed to confirm the improvement effect as the foundation ground (step 140).
The steel pipe pile 10 as a foundation pile is partially cast on the ground constructed vertically and horizontally (step 150). In this way, a confirmation test of the improvement effect of the portion where the steel pipe pile 10 and the SCP 20 are partially combined and ground improvement is performed is performed (step 160). As shown in the figure, the confirmation position of this test is preferably the center position C between the steel pipe pile 10 and the SCP 20. If the result of the confirmation survey satisfies the initial setting, the entire construction of the SCP 20 and the steel pipe pile 10
(Steps 180 and 190). If the improvement effect is not sufficiently obtained, the design of the SCP 20 is changed, and the SCP 20 is re-installed according to the changed specifications (step 170).

【0017】なお、SCP20と鋼管杭10の全面施工
を行った後に、基礎地盤としての改良効果の最終確認を
行う(ステップ200)が、部分的に期待した試験結果
が得られないようなエリアが確認された場合には、当該
地盤に対するSCP20の増打ち設計を行うことが好ま
しい。また、必要に応じて各種の補助工法を用いて対応
することも可能である。なお、打込み杭としては鋼管杭
の他、プレストレスト鉄筋コンクリート杭(PC杭)等
を適用することができる。
After the entire construction of the SCP 20 and the steel pipe pile 10, the final confirmation of the improvement effect as the foundation ground is performed (Step 200). However, an area where a partially expected test result cannot be obtained is obtained. When it is confirmed, it is preferable to perform additional design of the SCP 20 on the ground. Moreover, it is also possible to respond by using various auxiliary construction methods as needed. In addition, a prestressed reinforced concrete pile (PC pile) etc. other than a steel pipe pile can be applied as a driving pile.

【0018】図4各図は実施例として上述の設計フロー
に基づいて行ったSCP20の配置図の一部を示したも
のである。図4(a)はSCP20で単独設計した場合
のSCP配置図である。この場合、パイル径(φ=70
0mm)を1.7m間隔で縦横に施工して置換率as=
13.3%を確保することができる。一方、図4(b)
に示したように、鋼管杭(φ=600mm)10を2.
0m間隔で縦横に打設した杭基礎の場合、(式2)にお
いて杭打設による置換率としての第2項を設計段階でη
・apile=3.7%程度確保でき、SCP20による置
換率をascp=9.6%程度まで低減することができ
る。これによりSCP20の施工数量は75%程度減少
する。なお、当該検討地盤での低減係数η=0.5とし
ている。
FIGS. 4A and 4B show a part of an arrangement diagram of the SCP 20 performed as an embodiment based on the above-described design flow. FIG. 4A is an SCP arrangement diagram when the SCP 20 is designed independently. In this case, the pile diameter (φ = 70
0 mm) at 1.7 m intervals vertically and horizontally and the replacement rate as =
13.3% can be secured. On the other hand, FIG.
As shown in 1., the steel pipe pile (φ = 600 mm) 10
In the case of a pile foundation which is driven vertically and horizontally at intervals of 0 m, the second term as a replacement rate by pile driving in (Equation 2) is η at the design stage.
Apile = approximately 3.7% can be secured, and the replacement rate by the SCP 20 can be reduced to ascp = approximately 9.6%. As a result, the construction quantity of the SCP 20 is reduced by about 75%. Note that the reduction coefficient η on the considered ground is set to 0.5.

【0019】[0019]

【発明の効果】以上の説明から明らかなように、本発明
によれば、液状化対策工としてのSCPで地盤改良を行
い、さらに杭基礎とするような構造物基礎に対して打込
み杭の締固め効果を定量的に評価し、打込み杭とSCP
とを併用した液状化対策工としての設計、試験施工を行
い、その改良効果確認を行うことでその結果を再び設計
にフィードバックさせることができ、これにより杭打設
による改良効果を確実に設計に考慮することができ、本
来の液状化対策工であるSCPの施工数量を確実に減ら
すことができる。
As is apparent from the above description, according to the present invention, the ground improvement is carried out by the SCP as a liquefaction countermeasure, and the driving pile is fastened to a structural foundation such as a pile foundation. Quantitatively evaluate the effect of compaction, driving pile and SCP
Design and test construction as liquefaction countermeasures combined with the above, and by confirming the improvement effect, the results can be fed back to the design again, thereby ensuring the improvement effect by pile driving This can be taken into account, and the number of SCPs that are the original liquefaction countermeasures can be reduced reliably.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による杭及びSCPを併用した地盤改良
工法の設計手順の一実施の態様を示したフローチャー
ト。
FIG. 1 is a flowchart showing one embodiment of a design procedure of a ground improvement method using both a pile and an SCP according to the present invention.

【図2】本発明における杭の試験施工時の杭配置図。FIG. 2 is a layout diagram of piles during test construction of the piles according to the present invention.

【図3】本発明における杭とSCPの部分施工時の配置
図。
FIG. 3 is a layout view of the pile and SCP in the present invention at the time of partial construction.

【図4】従来の地盤改良効果と本発明による地盤改良効
果との比較を行ったSCP配置図。
FIG. 4 is a SCP layout diagram comparing the conventional ground improvement effect with the ground improvement effect according to the present invention.

【符号の説明】[Explanation of symbols]

10 打込み杭(鋼管杭) 20 SCP C 杭間中央位置(確認試験位置) 10 Driving pile (steel pipe pile) 20 SCP C Center position between piles (confirmation test position)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】液状化発生のおそれのある対象地盤にサン
ドコンパクションパイルで地盤改良を行う際に、前記対
象地盤に基礎杭として打ち込まれた杭による周辺地盤へ
の締固め効果を地盤試験により確認し、該締固め効果を
杭打設による置換率として前記サンドコンパクションパ
イルの設計置換率の一部に充当して前記サンドコンパク
ションパイルが負担すべき置換率を考慮した設計を行
い、前記杭先端が完全に閉塞されていると見なせる場合
には前記設計に基づく前記サンドコンパクションパイル
の全面施工を行い、前記杭先端が完全には閉塞していな
い場合には前記設計に基づく前記サンドコンパクション
パイルの部分施工を行ってサンドコンパクションパイル
と杭との部分施工後の改良効果を試験により確認し、そ
の後前記サンドコンパクションパイルの全面施工を行う
ようにしたことを特徴とする杭及びサンドコンパクショ
ンパイルを併用した地盤改良工法。
1. When soil improvement is carried out on a target ground where liquefaction may occur with a sand compaction pile, the effect of compaction on the surrounding ground by a pile driven into the target ground as a foundation pile is confirmed by a ground test. Then, the compaction effect is applied to a part of the design replacement rate of the sand compaction pile as a replacement rate by pile driving, and a design is performed in consideration of a replacement rate to be borne by the sand compaction pile. When it can be considered that the pile is completely closed, the entire construction of the sand compaction pile based on the design is performed, and when the pile tip is not completely closed, partial construction of the sand compaction pile based on the design is performed. To confirm the improvement effect of the sand compaction pile and pile after partial construction by testing, and then Ground improvement method in which a combination of piles and sand compaction pile, characterized in that to perform the entire construction of the action pile.
【請求項2】前記杭打設による置換率を、前記杭先端の
閉塞状態を考慮して低減させるようにしたことを特徴と
する請求項1記載の杭及びサンドコンパクションパイル
を併用した地盤改良工法。
2. A soil improvement method using a pile and a sand compaction pile together according to claim 1, wherein a replacement rate by said pile driving is reduced in consideration of a closed state of said pile tip. .
JP5988497A 1997-02-27 1997-02-27 Construction mehtod for soil improvement using both pile and sand compaction pile Pending JPH10237856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5988497A JPH10237856A (en) 1997-02-27 1997-02-27 Construction mehtod for soil improvement using both pile and sand compaction pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5988497A JPH10237856A (en) 1997-02-27 1997-02-27 Construction mehtod for soil improvement using both pile and sand compaction pile

Publications (1)

Publication Number Publication Date
JPH10237856A true JPH10237856A (en) 1998-09-08

Family

ID=13126016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5988497A Pending JPH10237856A (en) 1997-02-27 1997-02-27 Construction mehtod for soil improvement using both pile and sand compaction pile

Country Status (1)

Country Link
JP (1) JPH10237856A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009002007A (en) * 2007-06-20 2009-01-08 Shimizu Corp Soil improving method
CN103966997A (en) * 2014-04-25 2014-08-06 上海岩土工程勘察设计研究院有限公司 Construction method for conducting foundation treatment through grouting engineering pile foundations with steel sleeves
JP2017066843A (en) * 2015-10-02 2017-04-06 ハイアス・アンド・カンパニー株式会社 Ground design system, ground design program, ground design method, ground improvement method and ground improvement reinforcement body group
CN106906816A (en) * 2017-03-17 2017-06-30 东北大学 A kind of method for improving soft soil foundation prefabricated pile effect of driving pile
JP2018059310A (en) * 2016-10-04 2018-04-12 株式会社大林組 Design method of press-in pile in liquefied ground
CN108265693A (en) * 2018-01-09 2018-07-10 河海大学 A kind of soft soil foundation reinforcing method
JP2018199985A (en) * 2017-05-30 2018-12-20 株式会社不動テトラ Specification setting method of sandy ground compaction method
CN109853608A (en) * 2018-12-25 2019-06-07 长江勘测规划设计研究有限责任公司 A kind of offshore wind turbine gravity type foundation composite foundation and its processing method
CN110820789A (en) * 2019-11-21 2020-02-21 太原理工大学 Synchronous water injection humidifying device for lime-soil compaction pile
CN110820790A (en) * 2019-11-21 2020-02-21 太原理工大学 Synchronous water injection humidifying construction process for lime-soil compaction pile
JP2020507695A (en) * 2017-09-29 2020-03-12 ジョイント ストック カンパニー“ロスエネルゴアトム” Compaction method for foundations composed of soft mineral soil
JP2021143559A (en) * 2020-03-13 2021-09-24 清水建設株式会社 Ground evaluation method and ground evaluation device
CN115288162B (en) * 2022-07-25 2023-09-22 中冶集团武汉勘察研究院有限公司 Reinforcing method for soft soil foundation filling side slope

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009002007A (en) * 2007-06-20 2009-01-08 Shimizu Corp Soil improving method
CN103966997A (en) * 2014-04-25 2014-08-06 上海岩土工程勘察设计研究院有限公司 Construction method for conducting foundation treatment through grouting engineering pile foundations with steel sleeves
CN103966997B (en) * 2014-04-25 2016-05-25 上海岩土工程勘察设计研究院有限公司 The construction method of ground processing is carried out in utilization with the perfusion engineering pile of steel bushing
JP2017066843A (en) * 2015-10-02 2017-04-06 ハイアス・アンド・カンパニー株式会社 Ground design system, ground design program, ground design method, ground improvement method and ground improvement reinforcement body group
JP2018059310A (en) * 2016-10-04 2018-04-12 株式会社大林組 Design method of press-in pile in liquefied ground
CN106906816B (en) * 2017-03-17 2019-05-03 东北大学 A method of improving soft soil foundation prefabricated pile effect of driving pile
CN106906816A (en) * 2017-03-17 2017-06-30 东北大学 A kind of method for improving soft soil foundation prefabricated pile effect of driving pile
JP2018199985A (en) * 2017-05-30 2018-12-20 株式会社不動テトラ Specification setting method of sandy ground compaction method
JP2020507695A (en) * 2017-09-29 2020-03-12 ジョイント ストック カンパニー“ロスエネルゴアトム” Compaction method for foundations composed of soft mineral soil
EP3690144A4 (en) * 2017-09-29 2021-11-10 Joint Stock Company "Rosenergoatom" Method for compacting bases laid using weak mineral soils
CN108265693A (en) * 2018-01-09 2018-07-10 河海大学 A kind of soft soil foundation reinforcing method
CN109853608A (en) * 2018-12-25 2019-06-07 长江勘测规划设计研究有限责任公司 A kind of offshore wind turbine gravity type foundation composite foundation and its processing method
CN110820789A (en) * 2019-11-21 2020-02-21 太原理工大学 Synchronous water injection humidifying device for lime-soil compaction pile
CN110820790A (en) * 2019-11-21 2020-02-21 太原理工大学 Synchronous water injection humidifying construction process for lime-soil compaction pile
CN110820790B (en) * 2019-11-21 2022-07-05 太原理工大学 Synchronous water injection humidifying construction process for lime-soil compaction pile
JP2021143559A (en) * 2020-03-13 2021-09-24 清水建設株式会社 Ground evaluation method and ground evaluation device
CN115288162B (en) * 2022-07-25 2023-09-22 中冶集团武汉勘察研究院有限公司 Reinforcing method for soft soil foundation filling side slope

Similar Documents

Publication Publication Date Title
JPH10237856A (en) Construction mehtod for soil improvement using both pile and sand compaction pile
JP6061938B2 (en) Undercut excavation method with continuous concrete floor
Clough et al. Stabilizing berm design for temporary walls in clay
CN108487286A (en) A kind of construction method of the continuous supporting course of beading karst region super long pile
CN109915167A (en) Shield tunnel backfill loopful section of jurisdiction Demolition Construction method
Locat et al. Study of a lateral spread failure in an eastern Canada clay deposit in relation with progressive failure: the Saint Barnabé-Nord slide
Ng et al. Challenges and recommendations for steel H-piles driven in soft rock
Soltani-Jigheh et al. Numerical investigation of jacking method for asymmetric settlement rectification in tilted concrete buildings
JP2014109179A (en) Sand compaction pile construction method
D'Appolonia Monitored decisions
CN109754188A (en) A kind of methods of risk assessment of the foundation pit that exceeds the time limit of pair of piled anchor formula supporting
JP2003129462A (en) Method for evaluating coefficient of earth pressure at rest of ground into which pile or sand compaction pile is driven, and method for evaluating coefficient of earth pressure at rest of sand compaction pile itself in ground into which sand compaction pile is driven
JP2003082666A (en) Reclaiming method for steeply sloped filling
Ludemann et al. A contingency solution using jet grouting barrier for a dam under risk of piping in Brazil
Moosavi et al. Investigation of the surface fault rupture hazard mitigation by geosynthetics
Ng et al. Recent development of load and resistance factor design (LRFD) for driven piles on soft rock
JPH09209371A (en) Method for constructing foundation
Bathurst et al. Review of three instrumented geogrid reinforced soil retaining walls
JP3865057B2 (en) Construction method of sloped anchor anchor reinforced soil walls
Baker et al. Challenges associated with geotechnical design of Te Kaha–Canterbury’s Multi-Use Arena
DE102017129705A1 (en) Method for producing an attachment of a terrain jump by means of a support body, supporting body and its use
JPH0874281A (en) Ground consolidation process for vibration control and liquefaction prevention
Du et al. Field miniature prototype development and pilot project design of subsurface compacted Rubble Raft (SCRR)
CN109403336B (en) Dangerous house protection structure near foundation pit and construction method thereof
Vucetic et al. Analysis of soil-nailed excavations stability during the 1989 Loma Prieta earthquake