JPH10237660A - Plasma cvd device - Google Patents

Plasma cvd device

Info

Publication number
JPH10237660A
JPH10237660A JP3649097A JP3649097A JPH10237660A JP H10237660 A JPH10237660 A JP H10237660A JP 3649097 A JP3649097 A JP 3649097A JP 3649097 A JP3649097 A JP 3649097A JP H10237660 A JPH10237660 A JP H10237660A
Authority
JP
Japan
Prior art keywords
electrode
film
primary
voltage
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3649097A
Other languages
Japanese (ja)
Inventor
Ryoichi Hiratsuka
亮一 平塚
Takahiro Kawana
隆宏 川名
Seiichi Onodera
誠一 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP3649097A priority Critical patent/JPH10237660A/en
Publication of JPH10237660A publication Critical patent/JPH10237660A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a plasma CVD device capable of forming coating small in damage to a film even if plasma density is increased by applying a primary electrode and a secondary electrode applying DC discharge voltage in a reaction tube in many stages and primary and secondary power sources applying voltage in such a manner that the secondary voltage is lower than th primary one. SOLUTION: While a rotating drum-shaped counter electrode 3 is brought into contact with a continuous film (the body to be treated) 5, it is coiled round a take-up roll 4b. The inside of a reaction tube 6 is provided with a primary electrode 7, and the space between the primary electrode 7 and a counter electrode 3 is provided with a secondary electrode 9. The secondary electrode voltage E2 applied to the primary electrode 7 is made lower than the primary electrode voltage E1 . By the primary electrode 7, the cracking and bonding of gaseous hydrocarbon are promoted, and next, by the secondary electrode 9, plasma electric power is fed while the damage of the film 5 is suppressed. At the inside of the reaction tube 6, gaseous hydrocarbon is converted into plasma at the time of passing the primary electrode 7 and the secondary electrode 9, and carbon coating is formed on the film 5 on the counter electrode 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は磁気テープ等のフィ
ルム上に被膜を形成するためのプラズマCVD装置に関
する。
The present invention relates to a plasma CVD apparatus for forming a film on a film such as a magnetic tape.

【0002】[0002]

【従来の技術】従来より、磁気記録媒体としては、非磁
性支持体上に酸化物磁性粉末あるいは合金磁性粉末等の
粉末磁性材料を塩化ビニル−酢酸ビニル系共重合体、ポ
リエステル樹脂、ウレタン樹脂、ポリウレタン樹脂等の
有機バインダー中に分散せしめた磁性塗料を塗布、乾燥
することにより作成される塗布型の磁気記録媒体が広く
使用されている。
2. Description of the Related Art Conventionally, as a magnetic recording medium, a powder magnetic material such as an oxide magnetic powder or an alloy magnetic powder is coated on a non-magnetic support by a vinyl chloride-vinyl acetate copolymer, a polyester resin, a urethane resin, or the like. 2. Description of the Related Art A coating type magnetic recording medium prepared by applying and drying a magnetic paint dispersed in an organic binder such as a polyurethane resin is widely used.

【0003】これに対して、高密度磁気記録への要求の
高まりと共に、Co−Ni合金、Co−Cr合金、Co
−O等の金属磁性材料を、メッキや真空薄膜形成手段
(真空蒸着法やスパッリング法、イオンプレーティング
法等)によってポリエステルフィルムやポリアミド、ポ
リイミドフィルム等の非磁性支持体上に直接被着した、
いわゆる金属磁性薄膜型の磁気記録媒体が提案され注目
を集めている。
On the other hand, with the growing demand for high-density magnetic recording, Co-Ni alloys, Co-Cr alloys,
-Metallic material such as -O was directly applied on a non-magnetic support such as a polyester film, polyamide, or polyimide film by plating or vacuum thin film forming means (vacuum vapor deposition method, sputtering method, ion plating method, etc.). ,
A so-called metal magnetic thin film type magnetic recording medium has been proposed and attracted attention.

【0004】この金属磁性薄膜型の磁気記録媒体は抗磁
力や角形比等に優れ、磁性層の厚みを極めて薄く出来る
ため、記録減磁や再生時の厚み損失が著しく小さく短波
長での電磁変換特性に優れるばかりでなく、磁性層中に
非磁性材であるバインダーを混入する必要が無いため磁
性材料の充填密度を高めることが出来ることなど、数々
の利点を有している。即ち、金属薄膜媒体は、磁気特性
的な優位さ故に高密度磁気記録の主流になると考えられ
る。
The magnetic recording medium of this metal magnetic thin film type is excellent in coercive force, squareness ratio, etc., and the thickness of the magnetic layer can be made extremely thin. In addition to excellent properties, the magnetic layer has a number of advantages, such as the ability to increase the packing density of the magnetic material because there is no need to mix a binder that is a nonmagnetic material into the magnetic layer. That is, it is considered that the metal thin film medium becomes the mainstream of high-density magnetic recording due to its superior magnetic properties.

【0005】更に、この種の磁気記録媒体の電磁変換特
性を向上させ、より大きな出力を得ることが出来るよう
にするために、該磁気記録媒体の磁性層を形成する場
合、磁性層を斜めに蒸着するいわゆる斜方蒸着が提案さ
れ実用化されている。今後更なる高密度化の流れからス
ペーシング損失を少なくするため媒体は平滑化される傾
向にある。媒体の平滑化に伴うヘッド一媒体間の摩擦力
は増大し、媒体に生ずるせん断応力は大きくなる。この
ような摺動耐久性として厳しくなる状況のなかで耐久性
を向上させる目的で磁性層表面に保護膜層を形成する技
術の検討がなされてきた。
[0005] Further, in order to improve the electromagnetic conversion characteristics of this type of magnetic recording medium and to obtain a larger output, when forming the magnetic layer of the magnetic recording medium, the magnetic layer is inclined. So-called oblique deposition for vapor deposition has been proposed and put to practical use. In the future, the medium tends to be smoothed in order to reduce the spacing loss from the flow of further densification. The frictional force between the head and the medium accompanying the smoothing of the medium increases, and the shear stress generated in the medium increases. In such a situation where the sliding durability becomes severe, a technique of forming a protective film layer on the surface of the magnetic layer has been studied for the purpose of improving the durability.

【0006】このような保護膜としてはカーボン膜、石
英(SiO2)膜、ジルコニア(ZrO2)膜等が検討さ
れ、ハードディスクにおいては実用化され生産されてい
るものもある。特に最近はカーボン膜においてもより硬
度な膜であるダイヤモンドライクカーボン(DLC)膜
等の膜形成の検討も行なわれており、今後、主流になる
と思われる保護膜である。
[0006] As such a protective film, a carbon film, a quartz (SiO 2 ) film, a zirconia (ZrO 2 ) film and the like have been studied, and some of the hard disks have been put to practical use and produced. Particularly recently, the formation of a film such as a diamond-like carbon (DLC) film, which is a harder film among carbon films, has also been studied, and is a protective film that is expected to become mainstream in the future.

【0007】DLC膜の膜形成方法はスパッタリング
法、CVD法が用いられている。スパッタリング法と
は、まず、電場や磁場を利用してArガス等の不活性ガ
スの電離(プラズマ化)を行なう。更に電離されたアル
ゴンイオンを加速することにより、その運動エネルギー
によりターゲットの原子をはじき出す。そして、そのは
じき出された原子が対向する基板上に堆積し目的とする
膜を形成する物理的プロセスである。このプロセスによ
るDLC膜の形成速度は一般に遅く、工業的見地からは
生産性に劣る膜形成手段である。
As a method of forming the DLC film, a sputtering method and a CVD method are used. In the sputtering method, first, an inert gas such as an Ar gas is ionized (plasmaized) using an electric field or a magnetic field. Further, by accelerating the ionized argon ions, the target atoms are repelled by their kinetic energy. This is a physical process in which the ejected atoms are deposited on the opposing substrate to form a target film. The rate of forming a DLC film by this process is generally slow, and this is a film forming means having low productivity from an industrial viewpoint.

【0008】それに対し、CVD(Chemical
Vaper Deposition)法は電場や磁場を
用いて発生させたプラズマのエネルギーを利用して原料
となる気体の分解、合成等の化学反応を起こさせ、膜を
形成する化学的プロセスである。また、このCVD法に
おけるプラズマの発生源として一般的なものは、DC放
電やRF放電が一般的であるが、ECRなどを利用した
CVDの検討もなされている。これらの放電方式はそれ
ぞれ利点、欠点を有しており、工業的見地から述べると
DC放電を用いるものが、生産装置も簡便でかつ温度上
昇等も低く制御しやすい。
On the other hand, CVD (Chemical)
The Vapor Deposition method is a chemical process of forming a film by causing a chemical reaction such as decomposition or synthesis of a gas as a raw material using energy of plasma generated using an electric field or a magnetic field. In general, DC discharge and RF discharge are common sources of plasma in the CVD method. However, CVD using ECR or the like has been studied. Each of these discharge methods has advantages and disadvantages. From an industrial point of view, a method using DC discharge has a simpler production apparatus and has a lower temperature rise and the like and is easier to control.

【0009】しかし、このDC放電は他方式に比べプラ
ズマ密度が低いこともあり、良好な膜を作成することが
困難である。そのため、DC放電電圧を増加させるなど
の手段を取るが、この場合、プラズマの電流密度が増加
し、フィルム基板に対して損傷を与え、皺などの発生に
つながる。この結果、歩留まりの低下となり生産上好ま
しくない。
However, this DC discharge has a lower plasma density than other methods, and it is difficult to form a good film. Therefore, measures such as increasing the DC discharge voltage are taken, but in this case, the current density of the plasma increases, causing damage to the film substrate and leading to generation of wrinkles and the like. As a result, the yield decreases, which is not preferable in production.

【0010】[0010]

【発明が解決しようとする課題】本発明はプラズマ密度
を増加させつつ、フィルムに対し損傷の少ない膜形成を
可能としたプラズマCVD装置を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a plasma CVD apparatus capable of forming a film with little damage to a film while increasing the plasma density.

【0011】[0011]

【課題を解決するための手段】本発明は、プラズマ放電
を用いたCVD成膜において、反応管中の直流放電電圧
を多段階に印加する手段(第1電極、第2電極)を具備
したことを特徴とするプラズマCVD装置の構成とし、
プラズマ密度を増加させつつ、かつフィルムに対し損傷
の少ない良好な被膜を形成し得る。
According to the present invention, means (first electrode, second electrode) for applying a DC discharge voltage in a reaction tube in multiple stages in CVD film formation using plasma discharge is provided. The configuration of a plasma CVD apparatus characterized by the following,
A good coating with less damage to the film can be formed while increasing the plasma density.

【0012】[0012]

【発明の実施の形態】以下、本発明の好適な実施の形態
について図1を参照しつつ説明する。図1は本発明の実
施の形態のDLC膜形成に用いたプラズマCVD連続膜
形成装置の構成図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a preferred embodiment of the present invention will be described with reference to FIG. FIG. 1 is a configuration diagram of a plasma CVD continuous film forming apparatus used for forming a DLC film according to an embodiment of the present invention.

【0013】プラズマCVD装置1は真空槽2内の上部
に回転するドラム状の対向電極3、回転支持ローラ3
a,3b、巻出しロール4a,巻取りロール4bが配置
され、そこに連続したフィルム(被処理体)5が、巻出
しロール4a、回転支持ローラ3a、対向電極3、回転
支持ローラ3b、巻取りロール4bの順に走行する。そ
して、対向電極3の下部には、DC放電によりプラズマ
を生成するための反応管6が配置されている。
The plasma CVD apparatus 1 includes a drum-shaped counter electrode 3 rotating above a vacuum chamber 2, and a rotation supporting roller 3.
a, 3b, an unwinding roll 4a, and a take-up roll 4b are arranged, and a continuous film (object to be processed) 5 is formed thereon. It runs in the order of the take-up roll 4b. A reaction tube 6 for generating plasma by DC discharge is disposed below the counter electrode 3.

【0014】この反応管6の内部には第1電極7が組み
込まれている。この第1電極7は第1直流電源8により
+500V〜2000Vの電位が加えられる。電極の材
料としては、ガスを通しやすく、かつ、電界を均一に掛
けられ、柔軟性に富んだ金網のような金属メッシュがよ
い。この金属は銅などが代表的であるが、導電性から言
えば金なども挙げられる。
A first electrode 7 is incorporated inside the reaction tube 6. A potential of +500 V to 2000 V is applied to the first electrode 7 by the first DC power supply 8. As a material of the electrode, a metal mesh such as a wire mesh which is easy to pass a gas and which can be uniformly applied with an electric field and has high flexibility is preferable. The metal is typically copper or the like, but gold is also used in terms of conductivity.

【0015】さらにこの第1電極7と、対向電極3との
間に第2電極9が設けられている。この第2電極9に
は、第2直流電源10が接続されており、+500V〜
1500Vの電位が加えられる。そして、第2電極電圧
E2は第1電極電圧E1より小さくする。このようにす
ることにより、第1電極7により、炭化水素ガスの分
解、結合を促進し、次に第2電極9によりフィルム5へ
の損傷を抑えつつプラズマ電力を供給する。
Further, a second electrode 9 is provided between the first electrode 7 and the counter electrode 3. A second DC power supply 10 is connected to the second electrode 9 and has a voltage of +500 V or higher.
A potential of 1500 V is applied. Then, the second electrode voltage E2 is set lower than the first electrode voltage E1. In this manner, the first electrode 7 promotes the decomposition and bonding of the hydrocarbon gas, and the second electrode 9 supplies plasma power while suppressing damage to the film 5.

【0016】そして反応管6の底部にはガス導入口6a
が設けられており、炭化水素ガスが反応管6に供給され
る。反応管6の内部では、この炭化水素ガスが第1電極
7、第2電極9を通過する際にプラズマ化され、対向電
極3上に配置されたフィルム5上にカーボン膜を形成す
る。そして炭化水素ガスは真空槽2の上部に設けた排気
系11に抜けていくようになされている。
A gas inlet 6a is provided at the bottom of the reaction tube 6.
Is provided, and the hydrocarbon gas is supplied to the reaction tube 6. Inside the reaction tube 6, the hydrocarbon gas is converted into plasma when passing through the first electrode 7 and the second electrode 9, and forms a carbon film on the film 5 disposed on the counter electrode 3. Then, the hydrocarbon gas passes through an exhaust system 11 provided above the vacuum chamber 2.

【0017】次に本発明の反応管を使用した実施結果に
ついて説明を行なう。本実施例に用いた蒸着テープは以
下の表に示す条件の下に製造されたものである。 ベースフィルム :10μmPET 磁性層 :厚さ 200μm組成Co80Ni20単層 入射角 :45〜90度 導入ガス :酸素ガス 蒸着時真空度 :2×10-2Pa
Next, a description will be given of the results of the implementation using the reaction tube of the present invention. The vapor deposition tape used in this example was manufactured under the conditions shown in the following table. Base film: 10 μm PET Magnetic layer: thickness 200 μm composition Co80Ni20 single layer Incident angle: 45 to 90 degrees Introduced gas: oxygen gas Vacuum degree during vapor deposition: 2 × 10 −2 Pa

【0018】また、本装置を用い前述蒸着テープ上にD
LC膜を形成したときの条件は次のようであり、形成さ
れたDLC膜の膜厚は、いずれも10nmとしている。
Also, using this apparatus, D
The conditions when the LC film was formed are as follows, and the thickness of each of the formed DLC films was 10 nm.

【0019】評価としては、40℃、30%RH環境下
で10分間1回記録した後99回再生するシャトル試験
と、スチル耐久試験を行なった。両試験とも8mmVT
RデッキEVO9500(ソニー(株)社製)を使用し
た。スチル耐久試験の結果は、初期出力に対して−3d
Bになる時間で表示した。また、フィルム基板への損傷
を示す、皺の発生の有無も調べた。表1に評価結果を示
す。
For evaluation, a shuttle test in which recording was performed once for 10 minutes in a 40 ° C., 30% RH environment and then reproduced 99 times, and a still durability test were performed. 8mm VT for both tests
R deck EVO9500 (manufactured by Sony Corporation) was used. The result of the still endurance test is -3d with respect to the initial output.
The time was displayed as B. In addition, the presence or absence of wrinkles, which indicates damage to the film substrate, was also examined. Table 1 shows the evaluation results.

【0020】[0020]

【表1】 [Table 1]

【0021】この表1に示されるように、本発明のCV
D装置を用いて製造した磁気テープは、フィルム基板へ
の損傷が抑制され、かつ、良好な特性が得られる。
As shown in Table 1, the CV of the present invention
In the magnetic tape manufactured by using the D apparatus, damage to the film substrate is suppressed, and good characteristics are obtained.

【0022】本発明において対象となる磁気記録媒体と
しては非磁性支持体上に真空成膜法によって金属磁性薄
膜を形成する磁気テープであり、かつその表面にCVD
法によってDLC保護膜が形成された媒体である。上記
非磁性支持体上には強磁性金属材料を直接被着すること
により金属磁性薄膜が磁性層として形成されているがこ
の金属磁性材料としては、通常の蒸着テープに使用され
るものであれば如何なるものであってもよい。
The magnetic recording medium to be used in the present invention is a magnetic tape in which a metal magnetic thin film is formed on a non-magnetic support by a vacuum film forming method, and the surface thereof is formed by CVD.
This is a medium on which a DLC protective film is formed by a method. A metal magnetic thin film is formed as a magnetic layer by directly applying a ferromagnetic metal material on the non-magnetic support. However, if the metal magnetic material is one that is used for a normal vapor deposition tape, Any one may be used.

【0023】例示すれば、Fe,Co,Niなどの強磁
性金属、Fe−Co,Co−O,Fe−Co−Ni,F
e−Cu,Co−Cu,Co−Au,Co−Pt,Mn
−Bi,Mn−Al,Fe−Cr,Co−Cr,Ni−
Cr,Fe−Co−Cr,Co−Ni−Cr,Fe−C
o−Ni−Cr等の強磁性合金が挙げられる。
For example, ferromagnetic metals such as Fe, Co and Ni, Fe-Co, Co-O, Fe-Co-Ni, F
e-Cu, Co-Cu, Co-Au, Co-Pt, Mn
-Bi, Mn-Al, Fe-Cr, Co-Cr, Ni-
Cr, Fe-Co-Cr, Co-Ni-Cr, Fe-C
Ferromagnetic alloys such as o-Ni-Cr are exemplified.

【0024】これらの単層膜であってもよいし多層膜で
あってもよい。さらには、非磁性支持体と金属磁性薄膜
間、あるいは多層膜の場合には、各層間の付着力向上、
並びに抗磁力の制御等のため、下地層または、中間層を
設けてもよい。また、例えば磁性層表面近傍が耐蝕性改
善等のために酸化物となっていてもよい。
The film may be a single-layer film or a multilayer film. Furthermore, between the non-magnetic support and the metal magnetic thin film, or in the case of a multilayer film, the adhesion between the layers is improved,
An underlayer or an intermediate layer may be provided for controlling coercive force and the like. Further, for example, the vicinity of the surface of the magnetic layer may be made of an oxide for improving corrosion resistance and the like.

【0025】金属磁性薄膜形成の手段としては、真空下
で強磁性材料を加熱蒸発させ非磁性支持体上に沈着させ
る真空蒸着法や、強磁性金属材料の蒸発を放電中で行な
うイオンプレーティング法、アルゴンを主成分とする雰
囲気中でグロー放電を起こし、生じたアルゴンイオンで
ターゲット表面の原子をたたき出すスパッタ法等の、い
わゆるPVD技術によればよい。
As means for forming the metal magnetic thin film, a vacuum evaporation method in which a ferromagnetic material is heated and evaporated under vacuum and deposited on a non-magnetic support, or an ion plating method in which the ferromagnetic metal material is evaporated during discharge A so-called PVD technique such as a sputtering method in which glow discharge is caused in an atmosphere containing argon as a main component, and the generated argon ions strike atoms on the target surface.

【0026】もちろん、本発明にかかる磁気テープの構
成はこれに限定されるものではなく、本発明の要旨を逸
脱しない範囲での変更、例えば必要に応じてバックコー
ト層を形成したり、非磁性支持体上に下塗層を形成した
り、潤滑剤などの層を形成することは何等差し支えな
い。この場合、バックコート層に含まれる非磁性顔料、
樹脂結合剤あるいは潤滑剤に含まれる材料としては従来
公知のものがいずれも使用できる。
Of course, the configuration of the magnetic tape according to the present invention is not limited to this, and may be changed without departing from the scope of the present invention, for example, by forming a back coat layer as necessary, The formation of an undercoat layer or the formation of a layer of a lubricant or the like on the support may be performed without any problem. In this case, the non-magnetic pigment contained in the back coat layer,
As the material contained in the resin binder or the lubricant, any conventionally known materials can be used.

【0027】[0027]

【発明の効果】本発明のプラズマCVD装置によれば、
直流電圧を多段階に印加する手段を具備した反応管を用
いることにより、フィルムへの損傷を抑え、かつ良好な
磁気特性で、かつ良好な耐久性を有した磁気テープが得
られる。
According to the plasma CVD apparatus of the present invention,
By using a reaction tube provided with a means for applying a DC voltage in multiple stages, a magnetic tape which suppresses damage to the film, has good magnetic properties, and has good durability can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係るプラズマCVD装置の構成概念
図。
FIG. 1 is a conceptual diagram of the configuration of a plasma CVD apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1…プラズマCVD装置、2…真空槽、3…対向電極、
3a,3b…回転支持ローラ、4a…巻出しロール、4
b…巻取りロール、5…フィルム(被処理体)、6…反
応管、6a…ガス導入口、7…第1電極、8…第1直流
電源、9…第2電極、10…第2直流電極、11…排気
DESCRIPTION OF SYMBOLS 1 ... Plasma CVD apparatus, 2 ... Vacuum tank, 3 ... Counter electrode,
3a, 3b: rotation support roller, 4a: unwind roll, 4
b: take-up roll, 5: film (object to be processed), 6: reaction tube, 6a: gas inlet, 7: first electrode, 8: first DC power supply, 9: second electrode, 10: second DC Electrode, 11 ... exhaust system

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 プラズマ放電を用いたCVD成膜におい
て、 反応管中の直流放電電圧を多段階に印加する手段を具備
したことを特徴とするプラズマCVD装置。
1. A plasma CVD apparatus comprising: means for applying a DC discharge voltage in a reaction tube in multiple stages in CVD film formation using plasma discharge.
【請求項2】 前記反応管内に対向電極と近接した第2
の電極と、 該第2の電極より離隔した位置に設けた第1の電極と、 前記第1の電極に電圧を印加する第1の直流電源と、 前記第2の電極に電圧を印加する第2の直流電源と、 を具備し、前記第2の直流電源電圧が前記第1の直流電
源電圧より小としたことを特徴とする請求項1に記載の
プラズマCVD装置。
2. A second electrode close to a counter electrode in the reaction tube.
An electrode, a first electrode provided at a position separated from the second electrode, a first DC power supply for applying a voltage to the first electrode, and a first DC power supply for applying a voltage to the second electrode. 2. The plasma CVD apparatus according to claim 1, further comprising: a second DC power supply; and wherein the second DC power supply voltage is lower than the first DC power supply voltage.
【請求項3】 前記対向電極上にフィルムを走行させ
て、該フィルム上に被膜を形成することを特徴とする請
求項2に記載のプラズマCVD装置。
3. The plasma CVD apparatus according to claim 2, wherein a film is run on the counter electrode to form a film on the film.
JP3649097A 1997-02-20 1997-02-20 Plasma cvd device Pending JPH10237660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3649097A JPH10237660A (en) 1997-02-20 1997-02-20 Plasma cvd device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3649097A JPH10237660A (en) 1997-02-20 1997-02-20 Plasma cvd device

Publications (1)

Publication Number Publication Date
JPH10237660A true JPH10237660A (en) 1998-09-08

Family

ID=12471274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3649097A Pending JPH10237660A (en) 1997-02-20 1997-02-20 Plasma cvd device

Country Status (1)

Country Link
JP (1) JPH10237660A (en)

Similar Documents

Publication Publication Date Title
JPH10251851A (en) Film deposition method and film deposition device
JPH10237660A (en) Plasma cvd device
JP3358352B2 (en) Film forming equipment
JP3627284B2 (en) Plasma CVD equipment
JPH103650A (en) Magnetic recording medium
JP3733878B2 (en) Metal thin film type magnetic recording medium and manufacturing method thereof
JPH10255263A (en) Magnetic recording medium
JPH08129750A (en) Method of forming protective film and producing device for protective film
JP3687117B2 (en) Magnetic recording medium and method for manufacturing the same
JP2597685B2 (en) Magnetic recording media
JPH10310867A (en) Thin coating forming device and formation of thin coating using this
JPH10308019A (en) Metallic thin-film type magnetic recording medium
JPH10149540A (en) Production of magnetic recording medium
JP2003085742A (en) Method of manufacturing magnetic recording medium
JPH10237659A (en) Formation of coating and device therefor
JPH09217174A (en) Formation of carbon film
JPH09128744A (en) Apparatus for producing magnetic recording medium
JPH0636272A (en) Magnetic recording medium and manufacture thereof
JPH10317149A (en) Thin film forming device, and thin film forming method using the device
JPH09293238A (en) Production of magnetic recording medium
JPH0636281A (en) Manufacture of magnetic recording medium
JPH08325718A (en) Film formation
JPH08319567A (en) Film forming device and production of magnetic recording medium using the same
JPH11350146A (en) Device for film forming by plasma cvd and its method
JP2000123360A (en) Production of magnetic recording medium