JPH10235376A - Caustic soda injection controlling apparatus - Google Patents

Caustic soda injection controlling apparatus

Info

Publication number
JPH10235376A
JPH10235376A JP4019997A JP4019997A JPH10235376A JP H10235376 A JPH10235376 A JP H10235376A JP 4019997 A JP4019997 A JP 4019997A JP 4019997 A JP4019997 A JP 4019997A JP H10235376 A JPH10235376 A JP H10235376A
Authority
JP
Japan
Prior art keywords
injection amount
caustic soda
water
filtration
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4019997A
Other languages
Japanese (ja)
Inventor
Toshisada Numashita
敏貞 沼下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP4019997A priority Critical patent/JPH10235376A/en
Publication of JPH10235376A publication Critical patent/JPH10235376A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

PROBLEM TO BE SOLVED: To properly carry out pH-control in water purification treatment. SOLUTION: The pH1 of water treated by precipitation treatment and the pH2 of the filtered water are measured. After the pH1 is corrected by a correcting part 23, the difference from the pH2 is detected by a difference detecting part 24 and the difference value is supplied to an injection amount correction coefficient part 25 to add the correction coefficient K1 . The filtration resistances R1 -Rn of filtration ponds 121 -12n are measured, the average filtration resistance is computed by an average value detecting part 26, and the obtained average value is supplied to a filtration pond passing time computing part 27 to obtain the filtration pond passing time corresponding to the average filtration resistance (m). The filtration pond passing time is supplied to an injection amount interpolation part 28 to compute injection amount interpolation data. On the other hand, a prescribed pH set value is stored in a pHC 16, feedback of the pH2 is carried out, and a caustic soda injection amount is computed based on a computation control expression. The caustic soda injection amount is supplied to an injection amount correcting part 29 and the injection amount is corrected based on the injection amount correcting coefficient K1 and the injection amount interpolation data in the correcting part 29.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、浄水処理における
苛性ソーダ注入制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a caustic soda injection control device in water purification treatment.

【0002】[0002]

【従来の技術】近年における都市部での水環境の悪化に
伴って、河川や湖沼の水質汚濁が進んでいる。我国の水
道水として利用される水源の約70%は、地表水と呼ば
れる湖沼水、ダム水及び河川水に依存している。これら
湖沼水やダムには富栄養化に伴う生物活動が活発化する
ことによるカビ臭や藻臭の発生があり、他方の河川水に
は各種排水に含まれている有機物やアンモニア性窒素が
流入され、河川の自然浄化作用によってこれらの流入物
を完全に浄化することは期待できない状況にある。そこ
で、浄水場を設置してそれら湖沼水や河川水を浄化する
ことにより、安全でおいしい水を確保している。
2. Description of the Related Art Water pollution in rivers and lakes is increasing with the recent deterioration of the water environment in urban areas. About 70% of the water sources used as tap water in Japan depend on lake water, dam water and river water called surface water. These lakes and dams generate mold and algae odors due to the increased biological activity associated with eutrophication, while the other river water receives organic matter and ammonia nitrogen contained in various wastewater. Therefore, it is impossible to completely purify these inflows by the natural purification action of rivers. Therefore, safe and delicious water is secured by installing a water purification plant and purifying the lake water and river water.

【0003】浄水場では、濾過水のpH値を規定値に維
持するためと、配管保護のために苛性ソーダ(NaOH)
注入が行われている。図5は、従来例における浄水場の
苛性ソーダ注入制御装置を説明するためのシステム概要
図を示すものである。図5において、図中の符号1は混
和池を示すものであり、湖沼水や河川水から得られた原
水に凝集剤を注入して、その原水に含有する微細な粘土
質、微生物、藻類等を凝集して微小なフロックを形成す
る。前記混和池1で処理された処理水はフロック形成池
10に送られ、その処理水に含有する微小なフロックを
大きく成長させる。
In a water purification plant, caustic soda (NaOH) is used to maintain the pH value of filtered water at a specified value and to protect piping.
An injection has been made. FIG. 5 is a system schematic diagram for explaining a caustic soda injection control device of a water purification plant in a conventional example. In FIG. 5, reference numeral 1 in the figure denotes a mixing pond, in which a coagulant is injected into raw water obtained from lake water or river water, and fine clay, microorganisms, algae, etc. contained in the raw water. Aggregate to form minute flocs. The treated water treated in the mixing pond 1 is sent to the floc forming pond 10, and the minute flocs contained in the treated water grow greatly.

【0004】前記フロック形成池10で処理された処理
水は沈殿池11に送られ、その処理水に含有する大きく
成長したフロックを沈殿させる。その沈殿処理水は砂層
が設けられた濾過池12に送られ、沈殿処理水中の残留
フロックを捕捉する。なお、前記濾過池12は所望によ
り複数の濾過池から構成される場合がある。前記濾過池
12を通過した濾過水は塩素混和池13に送られ塩素が
注入される。
[0004] The treated water treated in the floc forming pond 10 is sent to a sedimentation pond 11, where large grown flocs contained in the treated water are precipitated. The sedimentation water is sent to a filtration pond 12 provided with a sand layer, and traps residual flocs in the sedimentation water. In addition, the said filtration pond 12 may be comprised from several filtration ponds as needed. The filtered water that has passed through the filtration pond 12 is sent to a chlorine mixing pond 13 where chlorine is injected.

【0005】一般的に、苛性ソーダは沈殿処理水に注入
される。その注入量を求めるために、濾過池12と塩素
混和池13との間の検出部22(後述する第2検出部)に
pH計14bを設置する。そのpH計14bで得られた
pH値と、あらかじめ設定したpH設定値とをpHコン
トロール部(以下pHCと略する)16に入力し、演算制
御(フィードフォワード)式により苛性ソーダ注入量を算
出する。その算出された苛性ソーダ注入量をFIC(FLO
W INJECTION CONTROL)17に入力し、そのFIC17に
より注入機18を動作させることにより、適量の苛性ソ
ーダを沈殿処理水に注入することができる。また、注入
機18から注入される苛性ソーダの注入量は流量計19
により測定され、その測定値をFIC17にフィードバ
ックさせることにより、苛性ソーダ注入量をさらに適量
にすることができる。
[0005] Generally, caustic soda is injected into settling water. In order to obtain the injection amount, a pH meter 14b is installed in a detection unit 22 (a second detection unit described later) between the filtration pond 12 and the chlorine mixing pond 13. The pH value obtained by the pH meter 14b and a preset pH value are input to a pH control unit (hereinafter abbreviated as pHC) 16, and the amount of caustic soda injection is calculated by an arithmetic control (feedforward) formula. The calculated caustic soda injection amount is calculated by FIC (FLO
W INJECTION CONTROL) 17, and by operating the injector 18 by the FIC 17, an appropriate amount of caustic soda can be injected into the settling water. The amount of caustic soda injected from the injector 18 is controlled by a flow meter 19.
By feeding back the measured value to the FIC 17, the caustic soda injection amount can be further adjusted to an appropriate amount.

【0006】[0006]

【発明が解決しようとする課題】図5に示すような苛性
ソーダ注入制御装置において、沈殿処理水に苛性ソーダ
を注入してから、その沈殿処理水が濾過池を通過し濾過
水となるまでに2時間程度の時間を要する。そのため、
濾過池を通過した後におけるpHのフィードバック値を
得るために、ある程度の時間を費やしてしまい、苛性ソ
ーダ注入量の過多および過小のハンチングが起こりやす
くなる。ゆえに、浄水処理におけるpH適性管理が困難
となる。
In the caustic soda injection control device as shown in FIG. 5, it takes 2 hours from the time when caustic soda is injected into the sedimentation water to the time when the sedimentation water passes through the filtration pond and becomes the filtered water. It takes some time. for that reason,
It takes a certain amount of time to obtain a feedback value of the pH after passing through the filtration pond, and hunting with too much or too little caustic soda injection is likely to occur. Therefore, it is difficult to manage pH suitability in the water purification treatment.

【0007】本発明は、前記課題に基づいて成されたも
のであり、苛性ソーダ注入量の補正を短時間で行い、苛
性ソーダ注入量の過多および過少を防ぐことが可能な浄
水処理における苛性ソーダ注入制御装置を提供すること
にある。
The present invention has been made on the basis of the above-mentioned problems, and a caustic soda injection control apparatus in a water purification treatment capable of correcting a caustic soda injection amount in a short period of time and preventing an excessive or insufficient caustic soda injection amount. Is to provide.

【0008】[0008]

【課題を解決するための手段】本発明は、前記課題の解
決を図るために、第1発明は原水に含有する懸濁物を沈
殿池にて凝集、沈殿、分離して沈殿処理水を得、フィー
ドフォワード演算制御部により苛性ソーダ注入量を変化
させながら前記沈殿処理水に苛性ソーダを注入してから
濾過池にて濾過し、その濾過水を塩素混和池にて塩素等
を注入する浄水処理において、前記沈殿処理水のpH値
と前記濾過水のpH値との差を求めて苛性ソーダ注入量
補正係数を算出し、前記沈殿処理水が濾過池を通過する
時間から苛性ソーダ注入量補間データを算出し、苛性ソ
ーダ注入量補正部にて前記注入量補正係数および前記注
入量補間データにより前記苛性ソーダ注入量を補正する
ことを特徴とする。
According to the present invention, in order to solve the above-mentioned problems, the first invention is to coagulate, sediment and separate a suspension contained in raw water in a sedimentation tank to obtain a sedimentation treated water. In the water purification treatment, the caustic soda is injected into the settling water while changing the amount of caustic soda injected by the feedforward arithmetic control unit, and then filtered through a filtration pond, and the filtered water is injected with chlorine or the like in a chlorine mixing pond. Calculating a difference between the pH value of the settling water and the pH value of the filtered water to calculate a caustic soda injection amount correction coefficient, and calculating caustic soda injection amount interpolation data from the time when the settling water passes through the filtration pond; The caustic soda injection amount is corrected by a caustic soda injection amount correction unit using the injection amount correction coefficient and the injection amount interpolation data.

【0009】第2発明は、前記第1発明において、前記
沈殿処理水に注入される苛性ソーダ注入量を測定し、そ
の測定値を前記苛性ソーダ注入量補間部にフィードバッ
クさせることを特徴とする。
A second invention is characterized in that, in the first invention, a caustic soda injection amount to be injected into the settling water is measured, and the measured value is fed back to the caustic soda injection amount interpolating section.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。なお、図5と同一なものには同一
符号を付してその詳細な説明を省略する。図1は、本発
明の実施の形態における浄水場の苛性ソーダ注入制御装
置を説明するためのシステム概要図を示すものである。
図1において、混和池1で処理された処理水はフロック
形成池10に送られ、その処理水に含有する微小なフロ
ックを大きく成長させる。
Embodiments of the present invention will be described below with reference to the drawings. Note that the same components as those in FIG. 5 are denoted by the same reference numerals, and detailed description thereof is omitted. FIG. 1 is a system schematic diagram for explaining a caustic soda injection control device of a water purification plant according to an embodiment of the present invention.
In FIG. 1, the treated water treated in the mixing pond 1 is sent to a floc forming pond 10, and the minute flocs contained in the treated water grow largely.

【0011】前記フロック形成池10で処理された処理
水は沈殿池11に送られ、その処理水に含有する大きく
成長したフロックを沈殿させる。次に、フロックを沈殿
させられた沈殿処理水は複数個の濾過池121〜12n
送られ、沈殿処理水中の残留フロックを捕捉する。その
後、前記濾過池121〜12nを通過した濾過水は塩素混
和池13に送られ、塩素が注入される。
The treated water treated in the floc forming pond 10 is sent to a sedimentation pond 11 where large grown flocs contained in the treated water are precipitated. Next, precipitation treatment water which is precipitated floc is sent to a plurality of filtration reservoir 12 1 to 12 n, capturing the residual floc precipitation treatment water. Then, the filtered water that has passed through the filtration reservoir 12 1 to 12 n is sent to a chlorine mixing basin 13, chlorine is injected.

【0012】まず、pH計14aを用いて沈殿処理水の
pH1を第1検出部21で測定し、またpH計14bを
用いて濾過水のpH2を第2検出部22で測定する。前
記pH1を手分析による補正部23で補正した後、前記
pH2との差分(差分値)を差分検出部24で求める。そ
の後、前記差分検出部24で検出した差分値を注入量補
正係数部25に供給して、その差分値に補正(減算)係数
1を加える。図2は、差分値に対する注入量補正係数
1特性図を示すものである。
First, the pH 1 of the settling water is measured by the first detecting section 21 using the pH meter 14a, and the pH 2 of the filtered water is measured by the second detecting section 22 using the pH meter 14b. After the pH 1 is corrected by the correction unit 23 by manual analysis, a difference (difference value) from the pH 2 is obtained by the difference detection unit 24. Then, by supplying a difference value detected by the difference detecting unit 24 to the injection amount correction coefficient unit 25, adding the correction (subtraction) coefficient K 1 to the difference value. Figure 2 shows the injection amount correction coefficient K 1 characteristic diagram for the difference value.

【0013】前記沈殿処理水には、pH調整のために苛
性ソーダ(NaOH)が注入されるが、苛性ソーダ注入量
を求めるために沈殿処理水のpH値(pH1)と濾過水の
pH値(pH2)とを測定し、それらpH値の差を算出す
る。沈殿処理水のpH1において、苛性ソーダ注入点に
おけるpH値と、その苛性ソーダ注入点から離れた点に
おけるpH値とには差が生じる。そこで、苛性ソーダ注
入点から、例えば4点程度の異なる位置のpH値を同時
測定し(図1中では省略して1点のみ記載)、その測定値
の平均値をpH1とする。
Caustic soda (NaOH) is injected into the precipitating water to adjust the pH. To determine the amount of caustic soda to be injected, the pH value of the precipitating water (pH 1 ) and the pH value of the filtered water (pH 1 ) are determined. 2 ) and calculate the difference between the pH values. At pH 1 of the settling water, there is a difference between the pH value at the caustic soda injection point and the pH value at a point away from the caustic soda injection point. Therefore, the caustic soda injection point, for example pH values of different positions about 4 points measured simultaneously (described only one point is omitted in FIG. 1), the average value of the measured values and pH 1.

【0014】前記濾過池121〜12nには濾抗計151
〜15nを接続してそれぞれの濾抗R1〜Rnを測定した
後、前記R1〜Rnの平均値(平均濾抗)を平均値検出部2
6で求める。その求めた平均値を濾過池通過時間算出部
27に供給して、沈殿処理水が濾過池を通過するのに要
する時間を算出し、平均濾抗(m)に対する濾過池通過時
間(HOUR)を得る。図3は、平均濾抗に対する濾過池
通過時間特性図を示すものである。このように設定され
た前記濾過池通過時間は、注入量補間部28に供給さ
れ、ここで沈殿処理水に対する苛性ソーダ注入補正量が
「0」になるようにするための注入量補間データを算出
する。図4は、時間変化(沈殿処理水が濾過池を通過し
始めた時刻から通過し終えた時刻:濾過池通過時間)に
対する苛性ソーダ注入補正量特性図を示すものであり、
0は現在時刻(濾過池を通過し始めた時刻)、t1は濾過
池通過時間、Q0は現在時刻における注入補正量を示
す。
The filtration ponds 12 1 to 12 n are provided with a filtration counter 15 1
15 after measuring the respective濾抗R 1 to R n by connecting n, the average value of the R 1 to R n (mean濾抗) the mean value detecting section 2
Find in 6. The obtained average value is supplied to the filtration tank passage time calculation unit 27 to calculate the time required for the sedimentation treated water to pass through the filtration tank, and to calculate the filtration tank passage time (HOUR) for the average filtration resistance (m). obtain. FIG. 3 shows a characteristic diagram of the passage time of the filtration pond with respect to the average filtration resistance. The filtration tank passage time set in this way is supplied to the injection amount interpolation unit 28, where the injection amount interpolation data for calculating the caustic soda injection correction amount for the settling water to be “0” is calculated. . FIG. 4 shows a caustic soda injection correction amount characteristic diagram with respect to a change with time (time from when the sedimentation treatment water starts to pass through the filtration pond to time when the sedimentation treatment water has passed: the filtration pond passing time).
t 0 is the current time (the time when it has begun to pass through the filtration tank), t 1 is the filtration tank passage time, and Q 0 is the injection correction amount at the current time.

【0015】一方、pHC16にはあらかじめ設定され
たpH設定値(SV)が入力され、前記pH計14bによ
り得られたpH2がプロセス値(PV)としてフィードバ
ックされ、演算制御式により苛性ソーダ注入量を算出す
る。このようにして算出された苛性ソーダ注入量は、注
入量補正部29に供給され、ここで注入量補正係数K1
および注入量補間データにより注入量は補正される。そ
の補正された補正出力値は設定値(SV)としてFIC1
7に入力され、そのFIC17から注入機18の操作出
力値(MV)を得、注入機18を動作させて苛性ソーダを
沈殿処理水に注入する。なお、沈殿処理水に注入される
苛性ソーダは流量計19により測定され、その測定値は
前記注入量補間部28と前記FIC17にプロセス値と
してフィードバックされる。
On the other hand, a preset pH set value (SV) is input to the pHC 16, pH 2 obtained by the pH meter 14b is fed back as a process value (PV), and a caustic soda injection amount is calculated by an arithmetic control formula. calculate. The caustic soda injection amount thus calculated is supplied to the injection amount correction unit 29, where the injection amount correction coefficient K 1
The injection amount is corrected by the injection amount interpolation data. The corrected output value is used as the set value (SV) as FIC1.
7, the operation output value (MV) of the injector 18 is obtained from the FIC 17, and the injector 18 is operated to inject caustic soda into the settling water. The caustic soda injected into the settling water is measured by the flow meter 19, and the measured value is fed back to the injection amount interpolation unit 28 and the FIC 17 as a process value.

【0016】[0016]

【発明の効果】以上示したように本発明によれば、沈殿
処理水が濾過池を通過する時間を推定することにより、
沈殿処理水に注入する苛性ソーダ注入量を補正すること
が可能となる。
As described above, according to the present invention, by estimating the time required for the treated water to pass through the filtration pond,
It is possible to correct the amount of caustic soda to be injected into the settling water.

【0017】また、沈殿処理水のpH値と濾過水のpH
値との差を求めることにより、濾過池を通過中の沈殿処
理水(苛性ソーダ注入済み)のpH値を推定することがで
きるため、苛性ソーダ注入済みの濾過水のpH値を測定
される以前、すなわち苛性ソーダ注入済みの沈殿処理水
が濾過された時点で、苛性ソーダ注入量を補正すること
が可能となる。
Further, the pH value of the treated water and the pH value of the filtered water
By determining the difference from the value, the pH value of the sedimentation treatment water (caustic soda injected) passing through the filtration pond can be estimated. At the time point when the precipitation treatment water into which caustic soda has been injected is filtered, the caustic soda injection amount can be corrected.

【0018】ゆえに、苛性ソーダの注入過多および過少
を防止して浄水処理におけるpH管理を適性に行うこと
ができ、原水の処理を良好に行うことができる。
Therefore, it is possible to appropriately control the pH in the water purification treatment by preventing the injection of too much or too little caustic soda, and it is possible to satisfactorily treat the raw water.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態における浄水場の苛性ソー
ダ注入制御装置を説明するためのシステム概要図。
FIG. 1 is a system schematic diagram for explaining a caustic soda injection control device of a water purification plant according to an embodiment of the present invention.

【図2】差分値に対する注入量補正係数K1特性図。[Figure 2] injection amount correction coefficient K 1 characteristic diagram for the difference value.

【図3】平均濾抗に対する濾過池通過時間特性図。FIG. 3 is a characteristic diagram of the passage time of a filtration pond with respect to the average filtration resistance.

【図4】時間変化に対する苛性ソーダ注入補正量特性
図。
FIG. 4 is a characteristic diagram of a caustic soda injection correction amount with respect to a time change.

【図5】従来例における浄水場の苛性ソーダ注入制御装
置を説明するためのシステム概要図。
FIG. 5 is a system schematic diagram for explaining a caustic soda injection control device of a water purification plant in a conventional example.

【符号の説明】[Explanation of symbols]

1…混和池 10…フロック形成池 11…沈殿池 12、121〜12n…濾過池 13…塩素混和池 14a、14b…pH計 151〜15n…濾抗計 16…pHコントロール部 17…FLOW INJECTION CONTROL部 18…注入機 19…流量計 21、22…検出部 23…補正部 24…差分検出部 25…注入量補正係数部 26…平均値検出部 27…濾過池通過時間算出部 28…注入量補間部 29…注入量補正部1 ... mixing basin 10 ... flocculation basin 11 ... settling basin 12, 12 1 to 12 n ... filtration reservoir 13 ... chlorine mixing basin 14a, 14b ... pH meter 15 1 to 15 n ...濾抗meter 16 ... pH controller 17 ... FLOW INJECTION CONTROL part 18 ... Injector 19 ... Flow meter 21,22 ... Detector 23 ... Correction part 24 ... Difference detector 25 ... Injection amount correction coefficient part 26 ... Average value detector 27 ... Filter pond passage time calculator 28 ... Injection amount interpolator 29: Injection amount corrector

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 原水に含有する懸濁物を沈殿池にて凝
集、沈殿、分離して沈殿処理水を得、フィードフォワー
ド演算制御部により苛性ソーダ注入量を変化させながら
前記沈殿処理水に苛性ソーダを注入してから濾過池にて
濾過し、その濾過水を塩素混和池にて塩素等を注入する
浄水処理において、 前記沈殿処理水のpH値と前記濾過水のpH値との差を
求めて苛性ソーダ注入量補正係数を算出し、前記沈殿処
理水が濾過池を通過する時間から苛性ソーダ注入量補間
データを算出し、苛性ソーダ注入量補正部にて前記注入
量補正係数および前記注入量補間データにより前記苛性
ソーダ注入量を補正することを特徴とする苛性ソーダ注
入制御装置。
1. A suspension containing raw water is coagulated, sedimented and separated in a sedimentation basin to obtain a sedimentation treated water, and a caustic soda is added to the sedimentation treated water while changing a caustic soda injection amount by a feedforward arithmetic control unit. Injection, filtration in a filtration pond, and filtration of the filtered water in a chlorine mixing pond. In a water purification treatment, the difference between the pH value of the sedimentation treatment water and the pH value of the filtration water is determined. The injection amount correction coefficient is calculated, the caustic soda injection amount interpolation data is calculated from the time when the settling water passes through the filtration pond, and the caustic soda injection amount correction unit uses the injection amount correction coefficient and the injection amount interpolation data to calculate the caustic soda. A caustic soda injection control device, wherein the injection amount is corrected.
【請求項2】 前記沈殿処理水に注入される苛性ソーダ
注入量を測定し、その測定値を前記苛性ソーダ注入量補
間部にフィードバックさせることを特徴とする請求項1
記載の苛性ソーダ注入制御装置。
2. The method according to claim 1, further comprising measuring an amount of caustic soda injected into the settling water and feeding back the measured value to the caustic soda injection interpolator.
A caustic soda injection control device as described.
JP4019997A 1997-02-25 1997-02-25 Caustic soda injection controlling apparatus Pending JPH10235376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4019997A JPH10235376A (en) 1997-02-25 1997-02-25 Caustic soda injection controlling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4019997A JPH10235376A (en) 1997-02-25 1997-02-25 Caustic soda injection controlling apparatus

Publications (1)

Publication Number Publication Date
JPH10235376A true JPH10235376A (en) 1998-09-08

Family

ID=12574124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4019997A Pending JPH10235376A (en) 1997-02-25 1997-02-25 Caustic soda injection controlling apparatus

Country Status (1)

Country Link
JP (1) JPH10235376A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061453A (en) * 2008-12-08 2009-03-26 Toshiba Corp pH CONTROL DEVICE IN WATER PURIFICATION PLANT

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061453A (en) * 2008-12-08 2009-03-26 Toshiba Corp pH CONTROL DEVICE IN WATER PURIFICATION PLANT

Similar Documents

Publication Publication Date Title
JP2008161809A (en) Coagulant injection control system
JP4334317B2 (en) Sewage treatment system
JP4492473B2 (en) Flocculant injection control device and method
JP3961835B2 (en) Sewage treatment plant water quality controller
JP4229999B2 (en) Biological nitrogen removal equipment
JP5072382B2 (en) Flocculant injection control device
JP4008694B2 (en) Sewage treatment plant water quality controller
KR20100012535A (en) Chlorine automatic system
JP2007098287A (en) Method for controlling operation of water purifying process
KR20110097405A (en) The phosphorus removal system regarding the automatic determination of coagulant dosing rate using artificial intelligence
JP2006315004A (en) Water quality control unit for sewage disposal plant
JPH10235376A (en) Caustic soda injection controlling apparatus
JP5259365B2 (en) PH controller in water treatment plant
JP3707305B2 (en) Water treatment monitoring control method and apparatus
JP4248043B2 (en) Biological phosphorus removal equipment
WO2022009481A1 (en) Apparatus and method for controlling injection of coagulant in water treatment plant
JP6599704B2 (en) Flocculant injection rate determination method and flocculant injection rate determination device
JP5769300B2 (en) Flocculant injection amount determination device and flocculant injection amount control system
JP3522650B2 (en) Automatic coagulant injection device for water purification
NL2020210B1 (en) Method and system for water purification
TW202140387A (en) Water treatment device and water treatment method
JP3999869B2 (en) Biological water treatment equipment
JP2007007601A (en) Purified water treatment method and system
JP2000146947A (en) Water quality control system
JPH06343979A (en) Corrosion control device for water supply and distribution pipe