JPH10231446A - Powder coating material and powder coating method - Google Patents

Powder coating material and powder coating method

Info

Publication number
JPH10231446A
JPH10231446A JP25277397A JP25277397A JPH10231446A JP H10231446 A JPH10231446 A JP H10231446A JP 25277397 A JP25277397 A JP 25277397A JP 25277397 A JP25277397 A JP 25277397A JP H10231446 A JPH10231446 A JP H10231446A
Authority
JP
Japan
Prior art keywords
powder
powder coating
particle diameter
coating
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25277397A
Other languages
Japanese (ja)
Inventor
Shinji Senoo
親治 妹尾
Keiichi Hiromoto
敬一 広本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Original Assignee
Nippon Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd filed Critical Nippon Paint Co Ltd
Priority to JP25277397A priority Critical patent/JPH10231446A/en
Publication of JPH10231446A publication Critical patent/JPH10231446A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable a uniform coating film to be formed on an object having a nonplane surface by spraying a powder coating material contg. a specific film-forming resin powder and an antistatic agent to an object having a nonplane surface with a power spray gun. SOLUTION: A film-forming resin comprising a thermosetting resin (e.g. an epoxy resin, an epoxy-polyester resin, or a polyester resin), having a vol. average particle size of 3-30μm, and contg. 5wt.% or lower powder having particle size of 1/5 of the vol. average particle size or lower is subjected to corona discharge treatment to give a powder which has a permittivity of 2.0-6.0 and exhibits, under a voltage of 100V, a vol. resistivity of 1×10<14> Ω.cm and a static charge of -0.5 to -3.0μC/g. This powder is compounded with a curative and 0.03-1.0wt.% antistatic agent to give a power coating material. The coating material is spray applied to an object having a nonplane surface placed 100-300mm apart from the gun tip of a powder spray gun at a delivery rate of 50-300g/min.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、塗料および塗装方
法、特に、粉体塗料および粉体塗装方法に関する。
The present invention relates to a paint and a coating method, and more particularly to a powder paint and a powder coating method.

【0002】[0002]

【従来の技術とその課題】粉体塗料は、有機溶剤を用い
ることなく塗膜を形成することができることから、近年
の無公害・省資源指向に適合した塗料として注目されて
おり、使用量が著しく増加の傾向にあるとともに、利用
分野も拡大の傾向にある。
2. Description of the Related Art Powder coatings have been attracting attention as coatings suitable for pollution-free and resource-saving in recent years because they can form coating films without using organic solvents. In addition to the remarkable increase, the application field is also expanding.

【0003】このような粉体塗料は、一般に膜形成性樹
脂を主要成分とする粉体からなり、通常、静電粉体塗装
法により被塗装物に対して塗布されている。静電粉体塗
装法では、コロナ荷電法または摩擦荷電法により粉体塗
料を帯電させ、当該粉体塗料を接地された被塗装物に対
して吹き付けて静電的に付着させた後に加熱・溶融して
塗膜を形成する。
[0003] Such a powder coating generally comprises a powder containing a film-forming resin as a main component, and is usually applied to an object to be coated by an electrostatic powder coating method. In the electrostatic powder coating method, a powder coating is charged by a corona charging method or a friction charging method, and the powder coating is sprayed onto a grounded object to be electrostatically attached, and then heated and melted. To form a coating film.

【0004】上述のような静電粉体塗装法では、被塗装
物に対して均一な塗膜を形成するために、帯電した粉体
塗料を被塗装物全体に均一に付着させる必要がある。と
ころが、被塗装物が複雑な非平面部を有する場合、特
に、箱型の被塗装物や折り曲げ部を有する被塗装物のよ
うに凹形状部や凸形状部などの非平面部を有する被塗装
物の場合は、非平面部に粉体塗料が入り込みにくく、非
平面部に付着する粉体塗料の量が他の部分に付着する粉
体塗料の量に比べて少なくなる場合が多い。したがっ
て、この場合は、非平面部に形成される塗膜の膜厚が他
の部分に形成される塗膜の膜厚に比べて小さくなるの
で、被塗装物の全体に均一な厚みの塗膜を形成するのが
困難である。特に、粉体塗料をコロナ荷電法により帯電
させた場合には、ファラデー・ゲージ効果のために非平
面部に粉体塗料が付着しにくく、被塗装物に形成される
塗膜の膜厚が不均一になりやすい。一方、摩擦荷電法に
より帯電させた場合は、網状や複雑な形状の小型部品な
どの被塗装物に対してはコロナ荷電法による場合に比べ
て粉体塗料の塗着効率や付回り性を高めることができる
が、被塗装物が波板状や箱状などのように平面部を多く
有する立体構造物の場合は、非平面部において粉体塗料
が付着しにくく、コロナ荷電法による場合と同様に塗膜
の膜厚が不均一になりやすい。
[0004] In the above-mentioned electrostatic powder coating method, it is necessary to uniformly apply a charged powder coating material to the whole object to be coated in order to form a uniform coating film on the object to be coated. However, when the object to be coated has a complicated non-planar part, especially when the object to be coated has a non-planar part such as a concave part or a convex part such as a box-shaped object to be coated or an object having a bent part. In the case of an object, the powder paint hardly enters the non-planar part, and the amount of the powder paint adhering to the non-planar part is often smaller than the amount of the powder paint adhering to other parts. Therefore, in this case, since the film thickness of the coating film formed on the non-planar portion is smaller than the film thickness of the coating film formed on the other portions, the coating film having a uniform thickness over the entire object to be coated. Is difficult to form. In particular, when the powder coating is charged by the corona charging method, the powder coating hardly adheres to the non-planar part due to the Faraday gauge effect, and the film thickness of the coating film formed on the object to be coated is uneven. It is easy to be uniform. On the other hand, when charged by the triboelectric charging method, the coating efficiency and turnability of the powder coating are improved for objects to be coated such as net-shaped or complex-shaped small parts as compared with the case of the corona charging method. However, when the object to be coated is a three-dimensional structure having many flat parts such as a corrugated plate or a box, the powder coating hardly adheres to the non-planar parts, similar to the case of the corona charging method. In addition, the thickness of the coating film tends to be uneven.

【0005】本発明の目的は、非平面部を有する複雑な
形状の被塗装物に対し、粉体塗料による均一な塗膜を形
成することにある。
An object of the present invention is to form a uniform coating film of a powder coating on an object having a complicated shape having a non-planar portion.

【0006】[0006]

【課題を解決するための手段】本発明に係る粉体塗料
は、体積平均粒子径が3〜30μmに設定されかつ膜形
成性樹脂を主要成分とする粉体からなる。この粉体は、
体積平均粒子径の1/5以下の粒子径の粉体を5重量%
以下の割合で含んでいる。
The powder coating composition according to the present invention comprises a powder having a volume average particle size of 3 to 30 μm and a film-forming resin as a main component. This powder is
5% by weight of powder having a particle diameter of 1/5 or less of the volume average particle diameter
It is included in the following ratio.

【0007】ここで、粉体は、例えば、体積平均粒子径
の3倍以上の粒子径の粉体を8重量%以下の割合で含ん
でいる。また、粉体は、例えば、誘電率が2.0〜6.
0に設定されている。さらに、粉体は、例えば、100
Vの電圧を印加した際の体積固有抵抗値が1×1014Ω
・cm以上である。さらに、粉体は、例えば、粉体に対
して摩擦帯電性を付与するための帯電制御材を含んでい
る。
Here, the powder contains, for example, a powder having a particle diameter of three times or more the volume average particle diameter at a ratio of 8% by weight or less. The powder has, for example, a dielectric constant of 2.0-6.
It is set to 0. Further, the powder is, for example, 100
Volume specific resistance value when a voltage of V is applied is 1 × 10 14 Ω
・ Cm or more. Further, the powder contains, for example, a charge control material for imparting triboelectricity to the powder.

【0008】なお、粉体は、例えば、コロナ放電処理さ
れかつ帯電量が−0.5〜−3.0μC/gに設定され
ている。或いは、粉体は、例えば内部発生電流値が1.
0〜8.0μAになるよう摩擦帯電処理されている。
The powder is, for example, subjected to a corona discharge treatment and has a charge amount of -0.5 to -3.0 μC / g. Alternatively, the powder has, for example, an internally generated current value of 1.
It has been subjected to a triboelectric charging treatment so as to be 0 to 8.0 μA.

【0009】本発明に係る他の粉体塗料は、非平面部を
有する被塗装物に対して塗膜を形成するためのものであ
る。この粉体塗料は、体積平均粒子径が3〜30μmに
設定されかつ膜形成性樹脂を主要成分とする粉体からな
る。この粉体は、体積平均粒子径の1/5以下の粒子径
の粉体を5重量%以下の割合で含んでいる。
Another powder coating according to the present invention is for forming a coating film on an object having a non-planar portion. The powder coating has a volume average particle diameter of 3 to 30 μm and is composed of a powder containing a film-forming resin as a main component. This powder contains powder having a particle diameter of 1/5 or less of the volume average particle diameter at a ratio of 5% by weight or less.

【0010】なお、粉体は、例えば、体積平均粒子径の
3倍以上の粒子径の粉体を8重量%以下の割合で含んで
いる。
[0010] The powder contains, for example, a powder having a particle diameter three times or more the volume average particle diameter at a ratio of 8% by weight or less.

【0011】本発明に係る粉体塗装方法は、非平面部を
有する被塗装物に対し、粉体塗装ガンを用いて塗膜を形
成するための方法である。この塗装方法は、体積平均粒
子径が3〜30μmに設定されかつ膜形成性樹脂を主要
成分とし、体積平均粒子径の1/5以下の粒子径の粉体
の含有量が5重量%以下の粉体からなる粉体塗料を用意
するための工程と、粉体塗装ガンを用いて粉体塗料を被
塗装物に対して吹き付けるための工程とを含んでいる。
ここでは、粉体塗装ガンと被塗装物との距離を例えば1
00〜300mmに設定する。
The powder coating method according to the present invention is a method for forming a coating film on an object having a non-planar portion by using a powder coating gun. In this coating method, the volume average particle diameter is set to 3 to 30 μm, the film-forming resin is a main component, and the content of powder having a particle diameter of 1/5 or less of the volume average particle diameter is 5% by weight or less. The method includes a step of preparing a powder coating composed of a powder, and a step of spraying the powder coating on an object to be coated using a powder coating gun.
Here, the distance between the powder coating gun and the object to be coated is, for example, 1
It is set to 00 to 300 mm.

【0012】また、粉体塗装ガンは、例えば、粉体塗料
をコロナ放電処理可能なコロナ帯電型塗装ガンである。
この場合、コロナ放電処理により粉体塗料の帯電量を例
えば−0.5〜−3.0μC/gに設定する。
The powder coating gun is, for example, a corona charging type coating gun capable of performing a corona discharge treatment on a powder coating.
In this case, the charge amount of the powder coating is set to, for example, −0.5 to −3.0 μC / g by corona discharge treatment.

【0013】また、粉体塗装ガンは、例えば、粉体塗料
を摩擦帯電処理可能な摩擦帯電型塗装ガンである。この
場合、摩擦帯電処理により粉体塗料の内部発生電流値を
例えば1.0〜8.0μAに設定する。
The powder coating gun is, for example, a triboelectric coating gun capable of performing triboelectric treatment on powder coating. In this case, the internally generated current value of the powder coating is set to, for example, 1.0 to 8.0 μA by the triboelectric charging process.

【0014】[0014]

【発明の実施の形態】粉体塗料 本発明の粉体塗料は、膜形成性樹脂を主要成分とする粉
体からなる。ここで、膜形成性樹脂としては、静電塗装
法に適した樹脂、即ち熱硬化性樹脂が一般に用いられ
る。熱硬化性樹脂としては、室温で固体のものが好まし
く用いられ、具体的には、エポキシ系樹脂、エポキシ−
ポリエステル系樹脂、ポリエステル系樹脂、アクリル系
樹脂、アクリル−ポリエステル系樹脂、フッ素系樹脂な
どを例示することができる。このうち、本発明の粉体塗
料により耐候性の良好な塗膜を形成する必要がある場合
にはアクリル系樹脂が、耐衝撃性などの塗膜物性が良好
な塗膜を形成する必要がある場合にはポリエステル系樹
脂が、さらに、耐食性の良好な塗膜を形成する必要があ
る場合にはエポキシ系樹脂がそれぞれ好ましく用いられ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Powder Coating The powder coating of the present invention comprises a powder containing a film-forming resin as a main component. Here, as the film-forming resin, a resin suitable for an electrostatic coating method, that is, a thermosetting resin is generally used. As the thermosetting resin, those which are solid at room temperature are preferably used. Specifically, epoxy resins, epoxy-
Examples thereof include polyester resins, polyester resins, acrylic resins, acrylic-polyester resins, and fluorine resins. Among these, when it is necessary to form a coating film having good weather resistance with the powder coating of the present invention, the acrylic resin needs to form a coating film having good coating properties such as impact resistance. In this case, a polyester resin is preferably used, and when it is necessary to form a coating film having good corrosion resistance, an epoxy resin is preferably used.

【0015】ここで、アクリル系樹脂としては、例え
ば、スチレン、アクリル酸、アクリル酸メチル、アクリ
ル酸エチル、アクリル酸n−ブチル、アクリル酸iso
−ブチル、アクリル酸tert−ブチル、グリシジルア
クリレート、グリシジルメタクリレート、2−メチルグ
リシジルメタクリレートなどのモノマーを常法に従って
重合させたものが用いられる。
Here, examples of the acrylic resin include styrene, acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate and iso acrylate.
A polymer obtained by polymerizing monomers such as -butyl, tert-butyl acrylate, glycidyl acrylate, glycidyl methacrylate, and 2-methylglycidyl methacrylate according to a conventional method is used.

【0016】また、ポリエステル系樹脂としては、例え
ば、エチレングリコール,プロパンジオール,ペンタン
ジオール,ヘキサンジオール,ネオペンチルグリコー
ル,トリメチロールプロパン,ペンタエリスリトールな
どの多価アルコールと、マレイン酸、テレフタル酸,イ
ソフタル酸,フタル酸,コハク酸,グルタル酸,アジピ
ン酸,セバチン酸,β−オキシプロピオン酸などのカル
ボン酸とを常法に従って重合させたものが用いられる。
Examples of the polyester resin include polyhydric alcohols such as ethylene glycol, propanediol, pentanediol, hexanediol, neopentyl glycol, trimethylolpropane, and pentaerythritol, and maleic acid, terephthalic acid, and isophthalic acid. A polymer obtained by polymerizing a carboxylic acid such as phthalic acid, phthalic acid, succinic acid, glutaric acid, adipic acid, sebacic acid and β-oxypropionic acid in a conventional manner is used.

【0017】さらに、エポキシ系樹脂としては、例え
ば、分子内に2個以上のオキシラン基を有する化合物が
好ましく用いられ、具体的には、グリシジルエステル樹
脂、ビスフェノールAとエピクロロヒドリンとの縮合反
応物やビスフェノールFとエピクロロヒドリンとの縮合
反応物などのグリシジルエーテル型樹脂、脂環式エポキ
シ樹脂、綿状脂肪族エポキシ樹脂、含ブロムエポキシ樹
脂、フェノールノボラック型エポキシ樹脂、クレゾール
ノボラック型エポキシ樹脂などが用いられる。
Further, as the epoxy resin, for example, a compound having two or more oxirane groups in the molecule is preferably used, and specifically, a glycidyl ester resin, a condensation reaction of bisphenol A with epichlorohydrin, and the like. Ether resins such as products and condensation products of bisphenol F and epichlorohydrin, alicyclic epoxy resins, flocculent aliphatic epoxy resins, brominated epoxy resins, phenol novolak epoxy resins, cresol novolac epoxy resins Are used.

【0018】上述の膜形成性樹脂として熱硬化性樹脂を
用いる場合は、硬化剤が併用される。硬化剤としては、
利用する熱硬化性樹脂が有する官能基に応じて公知の種
々のものを用いることができ、具他的には、ブロックイ
ソシアネート、セバチン酸などの脂肪族多価カルボン
酸、脂肪族酸無水物、アミノプラスト樹脂、エポキシ樹
脂、トリグリシジルイソシアネート、ポリアミド系硬化
剤、ヒドロキシアルキルアミド(例えば、ロームアンド
ハース社製の商品名”プリミドXL552”)、グリコ
ウリル硬化剤(例えば、サイテック社製の商品名”パウ
ダーリンク1174”)、アミン系硬化剤、トリグリシ
ジルイソシアヌレート、ジシアンジアミド、フェノール
樹脂、イミダゾール類およびイミダゾリン類などを例示
することができる。
When a thermosetting resin is used as the above-mentioned film-forming resin, a curing agent is used in combination. As a curing agent,
Various known ones can be used depending on the functional group of the thermosetting resin to be used, specifically, blocked isocyanates, aliphatic polycarboxylic acids such as sebacic acid, aliphatic acid anhydrides, Aminoplast resin, epoxy resin, triglycidyl isocyanate, polyamide-based curing agent, hydroxyalkylamide (for example, product name “Primid XL552” manufactured by Rohm and Haas), glycouril hardening agent (for example, product name manufactured by Scitech) “powder” Link 1174 ″), amine-based curing agents, triglycidyl isocyanurate, dicyandiamide, phenolic resins, imidazoles, imidazolines, and the like.

【0019】なお、膜形成性樹脂としては、必要に応じ
て、通常は流動浸漬法において主として用いられる熱可
塑性樹脂が用いられてもよい。このような熱可塑性樹脂
としては、例えば、ポリ塩化ビニル系樹脂、ポリエチレ
ン系樹脂、ポリアミド系樹脂、フッ素系樹脂、変性ポリ
オレフィン系樹脂を挙げることができる。
As the film-forming resin, a thermoplastic resin which is usually mainly used in a fluid immersion method may be used, if necessary. Examples of such a thermoplastic resin include a polyvinyl chloride resin, a polyethylene resin, a polyamide resin, a fluorine resin, and a modified polyolefin resin.

【0020】上述の各種膜形成性樹脂は、2種以上のも
のが併用されてもよい。
The above-mentioned various film-forming resins may be used in combination of two or more.

【0021】本発明の粉体塗料を構成する粉体は、上述
の膜形成性樹脂以外に、必要に応じて二酸化チタン,ベ
ンガラ,酸化鉄,カーボンブラック,フタロシアニンブ
ルー,フタロシアニングリーン,キナクリドン系顔料,
アゾ系顔料などの着色顔料、タルク,シリカ,炭酸カル
シウム,沈降性硫酸バリウムなどの体質顔料、ジメチル
シリコーンやメチルシリコーンなどのシリコーン類およ
びアクリルオリゴマーなどの表面調整剤、ベンゾインや
ベンゾインに1〜3種の官能基が付加したベンゾイン誘
導体などのベンゾイン類に代表される発泡防止剤、硬化
促進剤(または硬化触媒)、可塑剤、帯電防止剤、紫外
線吸収剤、酸化防止剤、顔料分散剤、難燃剤、流動性付
与剤などの各種添加剤を含んでいてもよい。
The powder constituting the powder coating of the present invention may contain, if necessary, titanium dioxide, red iron oxide, carbon black, phthalocyanine blue, phthalocyanine green, quinacridone pigment, in addition to the above-mentioned film-forming resin.
Color pigments such as azo pigments, extender pigments such as talc, silica, calcium carbonate, and precipitated barium sulfate; silicones such as dimethyl silicone and methyl silicone; surface modifiers such as acrylic oligomers; and 1 to 3 types of benzoin and benzoin Antifoaming agents represented by benzoins such as benzoin derivatives to which functional groups are added, curing accelerators (or curing catalysts), plasticizers, antistatic agents, ultraviolet absorbers, antioxidants, pigment dispersants, flame retardants And various additives such as a fluidity-imparting agent.

【0022】ここで、流動性付与剤としては、例えば、
日本アエロジル株式会社製の商品名”AEROSIL
130”、同”AEROSIL 200”、同”AER
OSIL 300”、同”AEROSIL R−97
2”、同”AEROSIL R−812”、同”AER
OSIL R−812S”、同”二酸化チタンT−80
5”、同”二酸化チタンP−25”、同”Almini
um Oxide C”、塩野義製薬株式会社製の商品
名”カープレックスFPS−1”などを挙げることがで
きる。
Here, as the fluidity-imparting agent, for example,
AEROSIL (trade name) manufactured by Nippon Aerosil Co., Ltd.
130 ”,“ AEROSIL 200 ”,“ AER ”
OSIL 300 ”and“ AEROSIL R-97 ”
2 ”,“ AEROSIL R-812 ”,“ AEROSIL R-812 ”
OSIL R-812S "and" IL "titanium dioxide T-80
5 "," Titanium dioxide P-25 "," Almini "
um Oxide C "and" Carplex FPS-1 "(trade name, manufactured by Shionogi & Co., Ltd.).

【0023】なお、本発明の粉体塗料を摩擦荷電法によ
り帯電させて塗装する場合、本発明の粉体塗料を構成す
る粉体は、摩擦帯電性を付与するための帯電制御材を含
んでいるのが好ましい。帯電制御材としては、例えば、
酸化アルミニウムなどの無機微粒子、または窒素化合物
系の有機微粒子などを用いることができるが、帯電性お
よび粉体流動性をより効率的に高めることができる点で
酸化アルミニウムの微粒子を用いるのが好ましい。
When the powder coating of the present invention is applied by being charged by a triboelectric charging method, the powder constituting the powder coating of the present invention contains a charge control material for imparting triboelectric charging. Is preferred. As the charge control material, for example,
Inorganic fine particles such as aluminum oxide or organic fine particles of a nitrogen compound can be used. However, it is preferable to use fine particles of aluminum oxide from the viewpoint that the chargeability and powder fluidity can be more efficiently improved.

【0024】このような帯電制御材の添加量は、通常、
粉体の0.03〜1.0重量%に設定するのが好まし
く、0.1〜0.5重量%に設定するのがより好まし
い。帯電制御材の添加量が0.03重量%未満の場合
は、粉体塗料に対して摩擦荷電法により帯電処理を施し
た際に、粉体塗料が十分に帯電しにくくなり、結果的に
粉体塗料の塗着効率が低下する場合がある。逆に、添加
量が1.0重量%を超える場合は、粉体塗料に対して摩
擦荷電法により帯電処理を施した際に粉体塗料が帯電し
過ぎて被塗装物上での電荷が飽和状態になり易く、結果
的に粉体塗料の塗着効率が低下する場合がある。
The amount of the charge control material to be added is usually
It is preferably set to 0.03 to 1.0% by weight of the powder, and more preferably set to 0.1 to 0.5% by weight. When the amount of the charge control material is less than 0.03% by weight, the powder coating is not sufficiently charged when the powder coating is subjected to a charging treatment by a triboelectric charging method. The coating efficiency of the body paint may decrease. On the other hand, when the addition amount exceeds 1.0% by weight, when the charging treatment is performed on the powder coating by a triboelectric charging method, the powder coating is excessively charged and the charge on the object to be coated is saturated. It is likely to be in a state, and as a result, the coating efficiency of the powder coating may decrease.

【0025】本発明の粉体塗料を構成する粉体は、体積
平均粒子径が3〜30μm、好ましくは5〜25μm、
より好ましくは8〜25μmに設定されている。体積平
均粒子径が3μm未満の場合は、製造工程が複雑化する
場合が多く、また、被塗装物に対する粉体塗料の塗着効
率が低下するおそれがある。逆に、体積平均粒子径が3
0μmを超える場合は、被塗装物の非平面部、例えば凹
形状部内への粉体塗料の入り込み易さ(以下、貫入性と
いう)が低下し、被塗装物全体に均一な膜厚の塗膜を付
与するのが困難になったり、塗膜の外観が低下する場合
がある。
The powder constituting the powder coating of the present invention has a volume average particle diameter of 3 to 30 μm, preferably 5 to 25 μm,
More preferably, it is set to 8 to 25 μm. When the volume average particle diameter is less than 3 μm, the production process is often complicated, and the efficiency of applying the powder coating to the object to be coated may be reduced. Conversely, when the volume average particle diameter is 3
When the thickness exceeds 0 μm, the ease of entry of the powder coating material into a non-planar part of the object to be coated, for example, a concave portion (hereinafter referred to as “penetration”) is reduced, and a coating film having a uniform film thickness is applied to the entire object to be coated. In some cases, or the appearance of the coating film may be degraded.

【0026】また、上述の粉体は、上述の体積平均粒子
径の1/5以下の粒子径の粉体の割合が5重量%以下
(好ましくは3重量%以下)に規制されている。体積平
均粒子径の1/5以下の粒子径の粉体の割合が5重量%
を超える場合は、粉体塗料の貫入性が低下し、被塗装物
全体に均一な膜厚の塗膜を付与するのが困難になる場合
がある。
In the above-mentioned powder, the proportion of the powder having a particle diameter of 1/5 or less of the above-mentioned volume average particle diameter is regulated to 5% by weight or less (preferably 3% by weight or less). 5% by weight of powder having a particle diameter of 1/5 or less of the volume average particle diameter
If the ratio exceeds the above range, the penetration of the powder coating material may be reduced, and it may be difficult to apply a coating film having a uniform film thickness to the whole object to be coated.

【0027】なお、上述の粉体は、上述の体積平均粒子
径の3倍以上の粒子径の粉体の割合が8重量%以下に規
制されているのが好ましく、3重量%以下に規制されて
いるのがより好ましい。この割合が8重量%を超える
と、塗着効率および塗膜の外観が低下する場合がある。
In the above-mentioned powder, the proportion of the powder having a particle diameter of three times or more of the above-mentioned volume average particle diameter is preferably regulated to 8% by weight or less, more preferably 3% by weight or less. Is more preferable. If this proportion exceeds 8% by weight, the coating efficiency and the appearance of the coating film may be reduced.

【0028】また、上述の粉体は、誘電率が2.0〜
6.0に設定されているのが好ましく、2.0〜5.0
に設定されているのがより好ましい。誘電率が2.0未
満の場合は、粉体塗料の塗着効率が低下する場合があ
る。逆に、誘電率が6.0を超える場合は、粉体塗料の
貫入性が低下し、被塗装物全体に均一な膜厚の塗膜を付
与するのが困難になる場合がある。
The above powder has a dielectric constant of 2.0 to 2.0.
It is preferably set to 6.0, and 2.0 to 5.0
Is more preferably set to. When the dielectric constant is less than 2.0, the coating efficiency of the powder coating may decrease. Conversely, when the dielectric constant exceeds 6.0, the penetrability of the powder coating is reduced, and it may be difficult to provide a coating film having a uniform film thickness on the entire object to be coated.

【0029】なお、ここでの誘電率は、次のようにして
測定した値である。先ず、粉体塗料1.0gを300k
g/cm2 の圧力で1分間加圧し、直径が2.0cmの
ペレットを作製する。次に、得られたペレットを温度=
25℃、湿度=50%の測定環境下で24時間放置し、
誘電率測定器を用いて誘電率を測定する。
Here, the permittivity is a value measured as follows. First, 300g of powder coating 1.0g
Pressurize at a pressure of g / cm 2 for 1 minute to produce a pellet having a diameter of 2.0 cm. Next, the obtained pellets were heated at a temperature =
Leave for 24 hours in a measurement environment of 25 ° C and 50% humidity,
The permittivity is measured using a permittivity meter.

【0030】さらに、上述の粉体は、100Vの電圧を
印加したときの体積固有抵抗値が1×1014Ω・cm以
上であることが好ましく、1×1014〜1×1016Ω・
cmの範囲であるのがより好ましい。体積固有抵抗値が
1×1014Ω・cm未満の場合は、粉体を構成する粒子
から電荷が逃げやすくなり、結果的に被塗装物から粉体
塗料粒子が脱落しやすくなる。また、帯電した粒子が被
塗装物に塗着するまでの間に放電してしまい、結果的に
塗着効率が低下する場合がある。なお、体積固有抵抗値
が1×1016Ω・cmを超える場合は、貫入性が低下す
る場合がある。また、被塗装物に付着した粉体塗料粒子
の層に電荷が蓄積されやすくなる結果、当該粉体塗料粒
子の層から放電現象が起こって当該層にクレーター状の
痕跡が形成され、焼き付け処理後に得られる塗膜の外観
が低下するおそれがある。
Further, the above-mentioned powder preferably has a volume resistivity value of 1 × 10 14 Ω · cm or more when a voltage of 100 V is applied, and preferably 1 × 10 14 to 1 × 10 16 Ω · cm.
More preferably, it is in the range of cm. When the volume resistivity is less than 1 × 10 14 Ω · cm, the electric charge easily escapes from the particles constituting the powder, and as a result, the powder coating particles easily fall off from the object to be coated. In addition, the charged particles may be discharged before being applied to the object to be coated, and as a result, the application efficiency may be reduced. If the volume resistivity exceeds 1 × 10 16 Ω · cm, the penetration may be reduced. In addition, as a result of the charge being easily accumulated in the layer of the powder coating particles attached to the object to be coated, a discharge phenomenon occurs from the layer of the powder coating particles, and a crater-like trace is formed in the layer, and after the baking treatment, The appearance of the resulting coating film may be reduced.

【0031】なお、ここでの体積固有抵抗値は、誘電率
の測定の際と同様のペレットを作製し、このペレットを
温度=25℃、湿度=50%の測定環境下で24時間放
置した後に抵抗測定器を用いて測定した抵抗値である。
The volume resistivity was determined by preparing a pellet similar to that used in the measurement of the dielectric constant, leaving the pellet in a measuring environment of temperature = 25 ° C. and humidity = 50% for 24 hours. This is a resistance value measured using a resistance measuring instrument.

【0032】上述の誘電率および体積固有抵抗値は、例
えば、上述の膜形成性樹脂の種類や各種添加剤の種類を
適宜選択することにより、或いは、これらの配合割合を
適宜調整することにより、所望の値に容易に設定するこ
とができる。
The above-mentioned dielectric constant and volume resistivity can be determined, for example, by appropriately selecting the type of the above-mentioned film-forming resin and the type of various additives, or by appropriately adjusting the blending ratio thereof. It can be easily set to a desired value.

【0033】本発明の粉体塗料は、従来からの粉体塗料
と同様の方法により製造することができる。具体的に
は、上述の膜形成性樹脂と他の添加剤とを所定の割合で
混合し、これを溶融混練して冷却した後に粗粉砕する。
これにより得られた粗粉砕粒子をさらに細かく粉砕した
後、分級機を用いて微小粒子と粗大粒子とを取り除き、
体積平均粒子径と粒度分布とを上述の範囲に設定すると
製造することができる。
The powder coating of the present invention can be produced by a method similar to that of a conventional powder coating. Specifically, the above-mentioned film-forming resin and other additives are mixed at a predetermined ratio, melt-kneaded, cooled, and then coarsely pulverized.
After further coarsely pulverizing the obtained coarsely pulverized particles, fine particles and coarse particles are removed using a classifier,
When the volume average particle diameter and the particle size distribution are set in the above-mentioned ranges, it can be produced.

【0034】塗装方法 本発明の粉体塗料は、静電粉体塗装法により目的とする
被塗装物に対して塗布される。ここで、静電粉体塗装法
としては、コロナ荷電法および摩擦荷電法のいずれの方
法が採用されてもよい。なお、コロナ荷電法による場合
は、外部荷電法および内部荷電法のいずれの方法が採用
されてもよい。
Coating Method The powder coating of the present invention is applied to an object to be coated by an electrostatic powder coating method. Here, as the electrostatic powder coating method, any of a corona charging method and a friction charging method may be adopted. In the case of the corona charging method, any of the external charging method and the internal charging method may be employed.

【0035】本発明の粉体塗料による塗膜を形成する対
象となる被塗装物は、従来からの粉体塗料が適用されて
いるものであれば特に限定されない。但し、本発明の粉
体塗料は、凹形状部や凸形状部などの非平面部に対する
貫入性が特に良好であるため、このような非平面部を有
する立体構造物に対して適用した場合でも、非平面部を
含む被塗装物全体に均一な膜厚の塗膜を付与することが
できる。いいかえると、本発明の粉体塗料は、上述のよ
うな非平面部を有する被塗装物に対して塗膜を付与する
ために用いられると特に有効である。
The object to be coated with the powder coating of the present invention is not particularly limited as long as the conventional powder coating is applied. However, since the powder coating of the present invention has particularly good penetration into non-planar portions such as concave portions and convex portions, even when applied to a three-dimensional structure having such non-planar portions. In addition, a coating film having a uniform film thickness can be applied to the whole object including the non-planar part. In other words, the powder coating of the present invention is particularly effective when used to apply a coating film to an object having a non-planar portion as described above.

【0036】ここで、非平面部を有する立体構造物に
は、例えば、凹形状部や凸形状部などの複雑な形状を有
する各種のものが含まれ、具体的には、波板状物、箱状
物、袋状物、棒状物、筒状物、円柱状物、角柱状物、円
錐状物、角錐状物、凹凸模様を有する板状物、スリット
を有する板状物、パンチング穴を有する板状物、網状
物、球状物、半球状物、プロペラ状物、ルーバー状物、
曲面を有する箱状物、曲面を有する板状物、エンジンブ
ロックなどの穴あきブロック状物、窓などのサッシレー
ル、フード形状物、オートバイの燃料タンク、自動車の
ホイールなどの各種のものを挙げることができる。
Here, the three-dimensional structure having a non-planar portion includes various types having a complicated shape such as a concave portion or a convex portion. Box, bag, rod, cylinder, cylinder, prism, cone, pyramid, plate with uneven pattern, plate with slit, punching hole Plates, nets, spheres, hemispheres, propellers, louvers,
Box-shaped objects having curved surfaces, plate-shaped objects having curved surfaces, perforated block-shaped objects such as engine blocks, sash rails such as windows, hood-shaped objects, motorcycle fuel tanks, automobile wheels, etc. Can be.

【0037】なお、本発明の粉体塗料は、深さが2〜1
00cm程度でありかつ開口部の幅と奥行きとの比率が
1/50〜50/1程度であるような凹形状部に対する
貫入性が良好であるため、このような凹形状部を有する
被塗装物に対して適用された場合に特に有用である。
The powder coating of the present invention has a depth of 2 to 1
It is about 00 cm and has good penetration into a concave part where the ratio of the width to the depth of the opening is about 1/50 to 50/1. It is particularly useful when applied to

【0038】静電粉体塗装法により本発明の粉体塗料を
塗布する際には、通常、粉体塗料を塗布する被塗装物を
アース(接地)し、この被塗装物に対して粉体塗装ガ
ン、具体的にはコロナ帯電型塗装ガンまたは摩擦帯電型
塗装ガンを用いて粉体塗料を吹き付ける。なお、ここで
用いられるコロナ帯電型塗装ガンは、粉体塗料をコロナ
放電処理して吹き付け可能なものであり、また、摩擦帯
電型塗装ガンは、粉体塗料を摩擦帯電処理して吹き付け
可能なものである。
When the powder coating of the present invention is applied by the electrostatic powder coating method, the object to be coated with the powder coating is usually grounded (grounded), and the powder is applied to the object. The powder paint is sprayed using a coating gun, specifically, a corona charging type coating gun or a friction charging type coating gun. In addition, the corona charging type coating gun used here is a type which can be sprayed by performing a corona discharge treatment on the powder coating, and the friction charging type coating gun can be sprayed by performing a friction charging processing on the powder coating. Things.

【0039】この際、粉体塗装ガンからの粉体塗料の吐
出量は、50〜300g/分に設定するのが好ましい。
また、粉体塗装ガンのガン部分の先端から被塗装物まで
の距離は、塗着効率の観点から、100〜300mmに
設定するのが好ましい。
At this time, the discharge amount of the powder coating from the powder coating gun is preferably set to 50 to 300 g / min.
Further, the distance from the tip of the gun portion of the powder coating gun to the object to be coated is preferably set to 100 to 300 mm from the viewpoint of coating efficiency.

【0040】コロナ帯電型塗装ガンから本発明の粉体塗
料を吐出させて塗装する際には、コロナ放電処理により
粉体塗料を構成する粉体に加える荷電圧を−30〜−1
50kv(好ましくは−50〜−90kv)に設定し、
粉体塗料の帯電量を−0.5〜−3.0μC/g(好ま
しくは、−0.5〜−2.0μC/g)に設定するのが
好ましい。粉体塗料の帯電量が−0.5μC/gより大
きい場合は、粉体塗料が被塗装物に付着しにくくなり、
塗着効率が低下する場合がある。逆に、粉体塗料の帯電
量が−3.0μC/gより小さい場合は、粉体塗料の粒
子1個当たりの平均帯電量が大きくなるので、ファラデ
ー・ゲージ効果により被塗装物の非平面部(特に、凹形
状部)に対する粉体塗料粒子の貫入性が低下し、当該非
平面部(特に、凹形状部)を含む被塗物全体に均一な塗
膜を形成するのが困難になるおそれがある。
When the powder coating composition of the present invention is applied by discharging the powder coating composition from the corona charging type coating gun, the charging voltage applied to the powder constituting the powder coating composition by corona discharge treatment is -30 to -1.
Set to 50 kv (preferably -50 to -90 kv),
It is preferable to set the charge amount of the powder coating to -0.5 to -3.0 µC / g (preferably -0.5 to -2.0 µC / g). If the charge amount of the powder coating is greater than -0.5 μC / g, the powder coating becomes difficult to adhere to the object to be coated,
Coating efficiency may decrease. Conversely, when the charge amount of the powder coating is smaller than -3.0 μC / g, the average charge amount per particle of the powder coating increases, so that the non-planar part of the object to be coated by the Faraday gauge effect. The penetration of the powder coating particles into (particularly, the concave portion) may be reduced, and it may be difficult to form a uniform coating film on the entire workpiece including the non-planar portion (particularly, the concave portion). There is.

【0041】なお、ここでの帯電量は、次の様にして求
めることができる値である。コロナ帯電型塗装ガンから
吐出した粉体塗料をファラデーゲージを用いて補集し、
補集された粉体塗料の電荷量(Q)をデジタルエレクト
ロメーターを用いて測定する。次に、ファラデーゲージ
で補集された粉体塗料量(M)を測定する。そして、電
荷量(Q)を粉体塗料量(M)で割り(Q/M)、得ら
れた値を帯電量とする。
Here, the charge amount is a value that can be obtained as follows. Using a Faraday gauge to collect the powder coating discharged from the corona charging type coating gun,
The charge amount (Q) of the collected powder coating is measured using a digital electrometer. Next, the amount (M) of the powder paint collected by the Faraday gauge is measured. Then, the charge amount (Q) is divided by the powder paint amount (M) (Q / M), and the obtained value is set as the charge amount.

【0042】一方、摩擦帯電型塗装ガンから本発明の粉
体塗料を吐出させて塗装する際には、粉体塗料の内部発
生電流値が1.0〜8.0μAになるよう摩擦帯電処理
するのが好ましい。内部発生電流値が1.0μA未満の
場合は、粉体塗料が被塗装物に付着しにくくなり、塗着
効率が低下する場合がある。逆に、内部発生電流値が
8.0μAを超える場合は、粉体塗料を構成する粒子1
個当たりの平均帯電量が大きくなり過ぎるので、ファラ
デーゲージ効果により被塗装物の非平面部(特に、凹形
状部)に対する粉体塗料の貫入性が低下し、当該非平面
部を含む被塗装物全体に均一な塗膜を形成するのが困難
になるおそれがある。
On the other hand, when the powder coating of the present invention is discharged from the triboelectric coating gun to perform coating, a friction charging treatment is performed so that the current generated inside the powder coating is 1.0 to 8.0 μA. Is preferred. When the internally generated current value is less than 1.0 μA, the powder coating becomes difficult to adhere to the object to be coated, and the coating efficiency may decrease. Conversely, if the internally generated current value exceeds 8.0 μA, the particles 1 constituting the powder coating
Since the average charge amount per unit becomes too large, the penetration of the powder coating material into the non-planar portion (particularly, the concave portion) of the object to be coated is reduced due to the Faraday gauge effect, and the object to be coated including the non-planar portion is reduced. It may be difficult to form a uniform coating film as a whole.

【0043】なお、ここでの内部発生電流値は、摩擦帯
電型塗装ガンを用いて静電粉体塗装を実施する際の内部
発生電流値を、当該摩擦帯電型塗装ガンの電流計より読
み取った値である。
Here, the internally generated current value was obtained by reading the internally generated current value when the electrostatic powder coating was performed using a triboelectric coating gun using an ammeter of the triboelectric coating gun. Value.

【0044】上述のようにして粉体塗装ガンから被塗装
物に向けて吐出された本発明の粉体塗料は、被塗装物に
対して静電的に付着し、被塗装物上に粉体塗料による粒
子層を形成する。この際、粉体塗料は、体積平均粒子径
および粒度分布が上述のように設定されているため、被
塗装物の凹形状部や凸形状部などの非平面部に貫入しや
すく、当該非平面部にも他の平面的な部分と同様に付着
し得る。従って、本発明の粉体塗料は、ファラデー・ゲ
ージ効果のために粉体塗料の貫入性が良好でなく、結果
的に膜厚の一定な塗膜を形成するのが困難であった被塗
装物に対して適用された場合であっても、そのような被
塗装物全体に対して均一に付着し得る。
The powder coating of the present invention discharged from the powder coating gun toward the object to be coated as described above adheres electrostatically to the object to be coated, and forms a powder on the object to be coated. Form a particle layer of paint. At this time, since the volume average particle diameter and the particle size distribution of the powder coating are set as described above, the powder coating easily penetrates into a non-planar part such as a concave part or a convex part of the object to be coated, and It can adhere to parts as well as other planar parts. Therefore, the powder coating of the present invention has poor penetration of the powder coating due to the Faraday gauge effect, and as a result, it is difficult to form a coating film having a uniform film thickness. Even when applied to the entire surface of the object to be coated.

【0045】なお、このようにして被塗装物に対して塗
布された本発明の粉体塗料は、加熱すると溶融・硬化し
ながら塗膜を形成し得る。この際、上述のように被塗装
物の非平面部にも他の部位と同様に粉体塗料が付着して
いるので、被塗装物には、非平面部も含めて全体的に均
一な塗膜が形成され得る。
The powder coating of the present invention applied to the object to be coated in this manner can form a coating film while melting and curing when heated. At this time, as described above, the powder coating adheres to the non-planar part of the object to be coated as well as other parts, so that the object to be coated includes a uniform coating as a whole including the non-planar part. A film can be formed.

【0046】[0046]

【実施例】実施例1(ポリエステル粉体塗料の製造) ポリエステル樹脂(大日本インキ化学工業株式会社製
の”ファインディックM8021”)60重量部、ε−
カプロラクタムブロック化イソシアネート(ヒュルス社
製の”アダクトB−1530”)10重量部、炭酸カル
シウム5重量部、二酸化チタン30重量部、および表面
調整剤(東芝シリコーン株式会社製の”CF−105
6”)0.5重量部を日本スピンドル株式会社製の”ス
ーパーミキサー”を用いて約3分間混合し、さらにブス
社製の”コニーダー”を用いて約100℃で溶融混練し
た。その後、得られた溶融混練物を室温で冷却して粗粉
砕し、さらに不二パウダル株式会社製の”アトマイザ
ー”を用いて粉砕した。得られた粉体を気流分級機(日
本ニュウマチック工業株式会社製の”DS−2”型)を
用いて分級し、微小粒子と粗大粒子とを除去した。これ
により、体積平均粒子径が24μm、体積平均粒子径の
1/5以下の粒子径の粒子の割合が1.7重量%、体積
平均粒子径の3倍以上の粒子径の粒子の割合が1.1重
量%に調整されたポリエステル粉体塗料を得た。
Example 1 (Production of polyester powder coating ) 60 parts by weight of a polyester resin ("FINDIC M8021" manufactured by Dainippon Ink and Chemicals, Inc.), ε-
10 parts by weight of caprolactam-blocked isocyanate ("Adduct B-1530" manufactured by Huls), 5 parts by weight of calcium carbonate, 30 parts by weight of titanium dioxide, and a surface conditioner ("CF-105" manufactured by Toshiba Silicone Co., Ltd.)
6 ") 0.5 part by weight was mixed for about 3 minutes using a" Supermixer "manufactured by Nippon Spindle Co., Ltd., and was further melt-kneaded at about 100 ° C using a" Kneader "manufactured by Buss. The obtained melt-kneaded product was cooled at room temperature, coarsely pulverized, and further pulverized using an “Atomizer” manufactured by Fuji Paudal Co., Ltd. The obtained powder was subjected to an airflow classifier (produced by Nippon Pneumatic Industries, Ltd.). "DS-2" type) to remove fine particles and coarse particles, thereby reducing the proportion of particles having a volume average particle diameter of 24 µm and a particle diameter of 1/5 or less of the volume average particle diameter. A polyester powder coating material in which the ratio of particles having a particle diameter of 1.7% by weight and three times or more the volume average particle diameter was adjusted to 1.1% by weight was obtained.

【0047】なお、体積平均粒子径および粒度分布は、
粒度分析計(日機装株式会社製の商品名”マイクロトラ
ックHRA X−100”)を用いて測定した値であ
る。この測定に際しては、解析プログラムとして日機装
株式会社の商品名”MICROTRAC D.H.S.
X100 Data Handling System S
D−9300PRO−100”を用い、測定条件とし
て”Particle Transparency”
を”reflect”に設定した。また、測定試料は、
サンプル瓶に0.1%界面活性剤水溶液50gと測定対
象たる粉体塗料0.5gとを加え、このサンプル瓶を超
音波洗浄機(シャープ株式会社の商品名”SILENT
SONIC UT−105”)により超音波振動させた
水中に3分間漬けて調製された粉体塗料分散水を用い
た。このような体積平均粒子径および粒度分布の測定方
法は、以下の各実施例および各比較例においても同様で
ある。
The volume average particle size and the particle size distribution are as follows:
It is a value measured using a particle size analyzer (trade name “Microtrack HRA X-100” manufactured by Nikkiso Co., Ltd.). At the time of this measurement, Nikkiso Co., Ltd. product name “MICROTRAC DHSS.
X100 Data Handling System S
D-9300PRO-100 ", and" Particle Transparency "as a measurement condition.
Was set to “reflect”. The measurement sample is
50 g of a 0.1% surfactant aqueous solution and 0.5 g of a powder coating to be measured are added to the sample bottle, and the sample bottle is washed with an ultrasonic cleaner (trade name “SILENT” of Sharp Corporation).
The powder coating dispersion water prepared by immersing in water subjected to ultrasonic vibration by SONIC UT-105 ") for 3 minutes was used. The method of measuring such volume average particle diameter and particle size distribution is described in each of the following Examples. The same applies to each comparative example.

【0048】実施例2(エポキシ粉体塗料の製造) 材料として、エポキシ樹脂(油化シェルエポキシ社製
の”エピコート1004”)65重量部、ジシアンジア
ミド5重量部、二酸化チタン20重量部、炭酸カルシウ
ム5重量部、および表面調整剤(東芝シリコーン株式会
社製の”CF−1056”)0.5重量部を用いた点以
外は実施例1と同様に操作し、体積平均粒子径が26μ
m、体積平均粒子径の1/5以下の粒子径の粒子の割合
が1.2重量%、体積平均粒子径の3倍以上の粒子径の
粒子の割合が2.3重量%に調整されたエポキシ粉体塗
料を得た。
Example 2 (Production of Epoxy Powder Coating) As materials, 65 parts by weight of an epoxy resin ("Epicoat 1004" manufactured by Yuka Shell Epoxy Co., Ltd.), 5 parts by weight of dicyandiamide, 20 parts by weight of titanium dioxide, and 5 parts by weight of calcium carbonate The same procedure as in Example 1 was conducted except that 0.5 parts by weight and 0.5 part by weight of a surface conditioner (“CF-1056” manufactured by Toshiba Silicone Co., Ltd.) were used, and the volume average particle diameter was 26 μm.
m, the proportion of particles having a particle diameter of 1/5 or less of the volume average particle diameter was adjusted to 1.2% by weight, and the proportion of particles having a particle diameter of 3 times or more the volume average particle diameter was adjusted to 2.3% by weight. An epoxy powder coating was obtained.

【0049】実施例3(アクリル粉体塗料の製造) 温度計、撹拌機、冷却管、窒素導入管および滴下ロート
を備えた反応器を用意し、これにキシレンを63重量部
仕込んで130℃に加熱した。この反応器に、グリシジ
ルメタクリレート45重量部、スチレン20重量部、メ
タクリル酸メチル27重量部およびメタクリル酸イソブ
チル8重量部からなるモノマー混合物と、t−ブチルパ
ーオキシ−2−エチルヘキサノエート6.5重量部とキ
シレン6重量部とからなる開始剤溶液とを、それぞれ滴
下ロートを用いて3時間かけて滴下した。滴下終了後、
30分間保温し、さらにt−ブチルパーオキシ−2−エ
チルヘキサノエート0.1重量部とキシレン7重量部と
を滴下ロートを用いて滴下した。滴下終了後、さらに1
30℃で1時間保持し、キシレンを減圧蒸留により除去
したところ、ガラス転移温度が52℃のアクリル樹脂が
得られた。
Example 3 (Production of Acrylic Powder Coating) A reactor equipped with a thermometer, a stirrer, a cooling pipe, a nitrogen introduction pipe and a dropping funnel was prepared, and 63 parts by weight of xylene was charged to 130 ° C. Heated. In this reactor, a monomer mixture consisting of 45 parts by weight of glycidyl methacrylate, 20 parts by weight of styrene, 27 parts by weight of methyl methacrylate and 8 parts by weight of isobutyl methacrylate, 6.5 parts of t-butyl peroxy-2-ethylhexanoate were added. An initiator solution consisting of parts by weight and 6 parts by weight of xylene was added dropwise over 3 hours using a dropping funnel. After dropping,
After keeping the temperature for 30 minutes, 0.1 part by weight of t-butylperoxy-2-ethylhexanoate and 7 parts by weight of xylene were added dropwise using a dropping funnel. After dropping, 1 more
After maintaining at 30 ° C. for 1 hour and removing xylene by distillation under reduced pressure, an acrylic resin having a glass transition temperature of 52 ° C. was obtained.

【0050】次に、得られたアクリル樹脂48重量部、
デカンジカルボン酸12重量部、二酸化チタン10重量
部、炭酸カルシウム5重量部、表面調整剤(東芝シリコ
ーン株式会社製の”CF−1056”)0.1重量部、
ベンゾイン0.3重量部、およびビスフェノールA型エ
ポキシ樹脂(東都化成株式会社製の”YD−012”)
2.2重量部を日本スピンドル株式会社製の”スーパー
ミキサー”を用いて約3分間混合し、さらにブス社製
の”コニーダー”を用いて100℃で溶融混練した。得
られた溶融混練物を室温で冷却して粗粉砕し、さらに日
本ニュウマチック工業株式会社製の”ジェットミルID
S−2型”を用いて粉砕した後、気流分級機(日本ニュ
ウマチック工業株式会社製の”DS−2”型)を用いて
分級した。これにより、体積平均粒子径が9.6μm、
体積平均粒子径の1/5以下の粒子径の粒子の割合が
0.5重量%、体積平均粒子径の3倍以上の粒子径の粒
子の割合が0.4重量%に調整されたアクリル粉体塗料
を得た。
Next, 48 parts by weight of the obtained acrylic resin,
12 parts by weight of decanedicarboxylic acid, 10 parts by weight of titanium dioxide, 5 parts by weight of calcium carbonate, 0.1 part by weight of a surface conditioner (“CF-1056” manufactured by Toshiba Silicone Co., Ltd.)
Benzoin 0.3 parts by weight and bisphenol A type epoxy resin ("YD-012" manufactured by Toto Kasei Co., Ltd.)
2.2 parts by weight were mixed for about 3 minutes using a “Supermixer” manufactured by Nippon Spindle Co., Ltd., and were melt-kneaded at 100 ° C. using a “Coneder” manufactured by Buss. The obtained melt-kneaded material was cooled at room temperature and coarsely pulverized, and further, “Jet Mill ID” manufactured by Nippon Pneumatic Industry Co., Ltd.
After pulverization using an "S-2 type", the particles were classified using an airflow classifier ("DS-2" type manufactured by Nippon Pneumatic Industries, Ltd.), whereby the volume average particle diameter was 9.6 μm,
Acrylic powder in which the proportion of particles having a particle diameter of 1/5 or less of the volume average particle diameter is adjusted to 0.5% by weight, and the proportion of particles having a particle diameter of 3 times or more the volume average particle diameter is adjusted to 0.4% by weight. A body paint was obtained.

【0051】実施例4(ポリエステル粉体塗料の製造) 実施例1の工程中で得られた溶融混練物と同様のものを
室温で冷却後に不二パウダル株式会社製の”アトマイザ
ー”を用いて粉砕し、さらに気流分級機(日本ニュウマ
チック工業株式会社製の”DS−2”型)を用いて微小
粒子のみ分級した。これにより、体積平均粒子径が29
μm、体積平均粒子径の1/5以下の粒子径の粒子の割
合が1.3重量%、体積平均粒子径の3倍以上の粒子径
の粒子の割合が7.1重量%に調整されたポリエステル
粉体塗料を得た。
Example 4 (Production of Polyester Powder Coating) The same melt-kneaded product obtained in the process of Example 1 was cooled at room temperature, and then pulverized using an “Atomizer” manufactured by Fuji Paudal Co., Ltd. Then, only fine particles were classified using an airflow classifier ("DS-2" type, manufactured by Nippon Pneumatic Industries, Ltd.). Thereby, the volume average particle diameter becomes 29
The ratio of particles having a particle diameter of μm and 1/5 or less of the volume average particle diameter was adjusted to 1.3% by weight, and the ratio of particles having a particle diameter of 3 times or more the volume average particle diameter was adjusted to 7.1% by weight. A polyester powder coating was obtained.

【0052】実施例5(ポリエステル粉体塗料の製造) 2重量部の2級アルカンスルホン酸ナトリウム塩がさら
に添加された材料を用いた点を除いて実施例1と同様に
操作し、体積平均粒子径が25μm、体積平均粒子径の
1/5以下の粒子径の粒子の割合が1.8重量%、体積
平均粒子径の3倍以上の粒子径の粒子の割合が2.1重
量%に調整されたポリエステル粉体塗料を得た。
Example 5 (Production of Polyester Powder Coating) The same procedure as in Example 1 was carried out except that a material further added with 2 parts by weight of sodium salt of a secondary alkanesulfonic acid was used. The ratio of particles having a diameter of 25 μm and a particle diameter of 1/5 or less of the volume average particle diameter is adjusted to 1.8% by weight, and the ratio of particles having a particle diameter of 3 times or more the volume average particle diameter is adjusted to 2.1% by weight. The obtained polyester powder coating was obtained.

【0053】実施例6(ポリエステル粉体塗料の製造) 20重量部の炭酸カルシウム、5重量部の二酸化チタン
および2重量部の銅フタロシアニンブルーがさらに添加
された材料を用いた点を除いて実施例1と同様に操作
し、体積平均粒子径が24μm、体積平均粒子径の1/
5以下の粒子径の粒子の割合が2.3重量%、体積平均
粒子径の3倍以上の粒子径の粒子の割合が0.9重量%
に調整されたポリエステル粉体塗料を得た。
Example 6 (Preparation of a polyester powder coating) Except that a material further added with 20 parts by weight of calcium carbonate, 5 parts by weight of titanium dioxide and 2 parts by weight of copper phthalocyanine blue was used. 1, the volume average particle diameter was 24 μm, and 1 / of the volume average particle diameter.
2.3% by weight of particles having a particle diameter of 5 or less, and 0.9% by weight of particles having a particle diameter of 3 times or more the volume average particle diameter.
To obtain a polyester powder coating adjusted to.

【0054】実施例7(アクリル粉体塗料の製造) 粉砕および分級条件を変更した点を除いて実施例3と同
様に操作し、体積平均粒子径が4.6μm、体積平均粒
子径の1/5以下の粒子径の粒子の割合が2.3重量
%、体積平均粒子径の3倍以上の粒子径の粒子の割合が
1.1重量%に調整されたアクリル粉体塗料を得た。
Example 7 (Production of Acrylic Powder Coating) The same operation as in Example 3 was carried out except that the conditions for pulverization and classification were changed, and the volume average particle diameter was 4.6 μm and 1/1 of the volume average particle diameter. An acrylic powder coating material was obtained in which the ratio of particles having a particle size of 5 or less was adjusted to 2.3% by weight, and the ratio of particles having a particle size three times or more the volume average particle size was adjusted to 1.1% by weight.

【0055】実施例8(アクリル粉体塗料の製造) 材料として、実施例3で用いたアクリル樹脂48重量
部、デカンジカルボン酸12重量部、表面調整剤(東芝
シリコーン株式会社製の”CF−1056”)0.1重
量部、ベンゾイン0.3重量部、およびビスフェノール
A型エポキシ樹脂(東都化成株式会社製の”YD−01
2”)2.2重量部を用いた点以外は実施例3と同様に
操作し、体積平均粒子径が9.7μm、体積平均粒子径
の1/5以下の粒子径の粒子の割合が0.5重量%、体
積平均粒子径の3倍以上の粒子径の粒子の割合が0.7
重量%に調整されたアクリル粉体塗料を得た。
Example 8 (Production of Acrylic Powder Coating) As materials, 48 parts by weight of the acrylic resin used in Example 3, 12 parts by weight of decanedicarboxylic acid, and a surface conditioner ("CF-1056" manufactured by Toshiba Silicone Co., Ltd.) ") 0.1 parts by weight, benzoin 0.3 parts by weight, and bisphenol A type epoxy resin (" YD-01 "manufactured by Toto Kasei Co., Ltd.)
2 ″) The same operation as in Example 3 was carried out except that 2.2 parts by weight were used, and the ratio of particles having a volume average particle diameter of 9.7 μm and a particle diameter of 1/5 or less of the volume average particle diameter was 0. 0.5% by weight, the ratio of particles having a particle diameter of three times or more of the volume average particle diameter is 0.7%
An acrylic powder coating adjusted to weight% was obtained.

【0056】比較例1(ポリエステル粉体塗料の製造) 実施例1の工程中で得られた溶融混練物と同様のものを
室温で冷却後に不二パウダル株式会社製の”アトマイザ
ー”を用いて粉砕し、さらに150メッシュの篩いを用
いて粗大粒子を分級した。これにより、体積平均粒子径
が39μm、体積平均粒子径の1/5以下の粒子径の粒
子の割合が4.4重量%、体積平均粒子径の3倍以上の
粒子径の粒子の割合が0.4重量%に調整されたポリエ
ステル粉体塗料を得た。
Comparative Example 1 (Production of Polyester Powder Coating) The same melt-kneaded product obtained in the process of Example 1 was cooled at room temperature, and then pulverized using an “Atomizer” manufactured by Fuji Paudal Co., Ltd. Then, coarse particles were classified using a 150-mesh sieve. As a result, the ratio of particles having a volume average particle diameter of 39 μm, particles having a particle diameter of 1/5 or less of the volume average particle diameter is 4.4% by weight, and the ratio of particles having a particle diameter of 3 times or more the volume average particle diameter is 0%. A polyester powder paint adjusted to 0.4% by weight was obtained.

【0057】比較例2(ポリエステル粉体塗料の製造) 実施例1の工程中で得られた溶融混練物と同様のものを
室温で冷却後に不二パウダル株式会社製の”アトマイザ
ー”を用いて粉砕し、さらに150メッシュの篩いを用
いて粗大粒子のみを分級した。これにより、体積平均粒
子径が24μm、体積平均粒子径の1/5以下の粒子径
の粒子の割合が6.7重量%、体積平均粒子径の3倍以
上の粒子径の粒子の割合が1.5重量%に調整されたポ
リエステル粉体塗料を得た。
Comparative Example 2 (Production of Polyester Powder Coating) The same melt-kneaded product obtained in the process of Example 1 was cooled at room temperature and then pulverized using an “Atomizer” manufactured by Fuji Paudal Co., Ltd. Then, only coarse particles were classified using a 150-mesh sieve. As a result, the ratio of particles having a volume average particle diameter of 24 μm, particles having a particle diameter of 5 or less of the volume average particle diameter is 6.7% by weight, and the ratio of particles having a particle diameter of three times or more the volume average particle diameter is 1 A polyester powder paint adjusted to 0.5% by weight was obtained.

【0058】実施例9(ポリエステル粉体塗料の製造) ポリエステル樹脂(大日本インキ化学工業株式会社製
の”ファインディックM8021”)60重量部、ε−
カプロラクタムブロック化イソシアネート(ヒュルス社
製の”アダクトB−1530”)10重量部、炭酸カル
シウム5重量部、二酸化チタン30重量部、および表面
調整剤(東芝シリコーン株式会社製の”CF−105
6”)0.5重量部を日本スピンドル株式会社製の”ス
ーパーミキサー”を用いて約3分間混合し、さらにブス
社製の”コニーダー”を用いて約100℃で溶融混練し
た。その後、得られた溶融混練物を室温で冷却して粗粉
砕し、さらに不二パウダル株式会社製の”アトマイザ
ー”を用いて粉砕した。得られた粉体を気流分級機(日
本ニュウマチック工業株式会社製の”DS−2”型)を
用いて分級し、微小粒子と粗大粒子とを除去した。この
ような分級工程を経て得られた粉体100重量部に対
し、帯電制御材として酸化アルミニウム微粉末(日本ア
エロジル株式会社製の商品名”Aluminium O
xide C”)を0.2重量部添加し、日本スピンド
ル株式会社製の”スーパーミキサー”を用いて1分間混
合した。
Example 9 (Production of Polyester Powder Coating ) 60 parts by weight of a polyester resin (“FINEDIC M8021” manufactured by Dainippon Ink and Chemicals, Inc.), ε-
10 parts by weight of caprolactam-blocked isocyanate ("Adduct B-1530" manufactured by Huls), 5 parts by weight of calcium carbonate, 30 parts by weight of titanium dioxide, and a surface conditioner ("CF-105" manufactured by Toshiba Silicone Co., Ltd.)
6 ") 0.5 part by weight was mixed for about 3 minutes using a" Supermixer "manufactured by Nippon Spindle Co., Ltd., and was further melt-kneaded at about 100 ° C using a" Kneader "manufactured by Buss. The obtained melt-kneaded product was cooled at room temperature, coarsely pulverized, and further pulverized using an “Atomizer” manufactured by Fuji Paudal Co., Ltd. The obtained powder was subjected to an airflow classifier (produced by Nippon Pneumatic Industries, Ltd.). The particles were classified using a “DS-2” type to remove fine particles and coarse particles, and 100 parts by weight of the powder obtained through such a classification step was added to a fine powder of aluminum oxide ( Product name "Aluminium O" manufactured by Nippon Aerosil Co., Ltd.
xide C ") was added and mixed for 1 minute using" Supermixer "manufactured by Nippon Spindle Co., Ltd.

【0059】以上により、体積平均粒子径が24μm、
体積平均粒子径の1/5以下の粒子径の粒子の割合が
2.0重量%、体積平均粒子径の3倍以上の粒子径の粒
子の割合が0.9重量%に調整されたポリエステル粉体
塗料を得た。
As described above, the volume average particle diameter was 24 μm,
Polyester powder in which the proportion of particles having a particle diameter of 1/5 or less of the volume average particle diameter is adjusted to 2.0% by weight, and the proportion of particles having a particle diameter of 3 times or more the volume average particle diameter is adjusted to 0.9% by weight. A body paint was obtained.

【0060】実施例10(エポキシ粉体塗料の製造) 材料として、エポキシ樹脂(油化シェルエポキシ社製
の”エピコート1004”)65重量部、ジシアンジア
ミド5重量部、二酸化チタン20重量部、炭酸カルシウ
ム5重量部、および表面調整剤(東芝シリコーン株式会
社製の”CF−1056”)0.5重量部を用いた点以
外は実施例9と同様に操作し、体積平均粒子径が24μ
m、体積平均粒子径の1/5以下の粒子径の粒子の割合
が2.2重量%、体積平均粒子径の3倍以上の粒子径の
粒子の割合が2.0重量%に調整されたエポキシ粉体塗
料を得た。
Example 10 (Production of Epoxy Powder Coating) As materials, 65 parts by weight of an epoxy resin (“Epicoat 1004” manufactured by Yuka Shell Epoxy Co., Ltd.), 5 parts by weight of dicyandiamide, 20 parts by weight of titanium dioxide, and 5 parts by weight of calcium carbonate The same procedure as in Example 9 was carried out except that the weight part and 0.5 part by weight of a surface conditioner (“CF-1056” manufactured by Toshiba Silicone Co., Ltd.) were used, the volume average particle diameter was 24 μm.
m, the proportion of particles having a particle diameter of 1/5 or less of the volume average particle diameter was adjusted to 2.2% by weight, and the proportion of particles having a particle diameter of 3 times or more the volume average particle diameter was adjusted to 2.0% by weight. An epoxy powder coating was obtained.

【0061】実施例11(ポリエステル粉体塗料の製
造) 実施例9の工程中で得られた溶融混練物と同様のものを
室温で冷却後に不二パウダル株式会社製の”アトマイザ
ー”を用いて粉砕し、さらに気流分級機(日本ニュウマ
チック工業株式会社製の”DS−2”型)を用いて微小
粒子のみ分級した。このような分級工程を経て得られた
粉体100重量部に対し、帯電制御材として酸化アルミ
ニウム微粉末(日本アエロジル株式会社製の商品名”A
luminium Oxide C”)を0.2重量部
添加し、日本スピンドル株式会社製の”スーパーミキサ
ー”を用いて1分間混合した。これにより、体積平均粒
子径が28μm、体積平均粒子径の1/5以下の粒子径
の粒子の割合が1.1重量%、体積平均粒子径の3倍以
上の粒子径の粒子の割合が6.8重量%に調整されたポ
リエステル粉体塗料を得た。
Example 11 (Production of polyester powder paint)
Production) The same melt-kneaded product obtained in the process of Example 9 was cooled at room temperature and then pulverized using an "Atomizer" manufactured by Fuji Paudal Co., Ltd., and further subjected to an air flow classifier (Nippon Nyumatic Industrial Co., Ltd.). Only the fine particles were classified using a company “DS-2” type. With respect to 100 parts by weight of the powder obtained through such a classification step, aluminum oxide fine powder (trade name “A” manufactured by Nippon Aerosil Co., Ltd.) was used as a charge controlling material.
luminum oxide C)) was added and mixed for 1 minute using a “Supermixer” manufactured by Nippon Spindle Co., Ltd., whereby the volume average particle diameter was 28 μm and 1/5 of the volume average particle diameter. A polyester powder coating material was obtained in which the proportion of particles having the following particle diameter was adjusted to 1.1% by weight and the proportion of particles having a particle diameter of three times or more the volume average particle diameter was adjusted to 6.8% by weight.

【0062】実施例12(ポリエステル粉体塗料の製
造) 2重量部の2級アルカンスルホン酸ナトリウム塩がさら
に添加された材料を用いた点を除いて実施例9と同様に
操作し、体積平均粒子径が25μm、体積平均粒子径の
1/5以下の粒子径の粒子の割合が1.8重量%、体積
平均粒子径の3倍以上の粒子径の粒子の割合が0.8重
量%に調整されたポリエステル粉体塗料を得た。
Example 12 (Production of polyester powder paint)
Manufacture) The same operation as in Example 9 was performed except that a material further added with 2 parts by weight of a sodium salt of a secondary alkanesulfonic acid was used, and the volume average particle diameter was 25 μm and 1/5 of the volume average particle diameter. A polyester powder coating material was prepared in which the proportion of particles having the following particle diameter was adjusted to 1.8% by weight, and the proportion of particles having a particle diameter three times or more the volume average particle diameter was adjusted to 0.8% by weight.

【0063】実施例13(ポリエステル粉体塗料の製
造) 20重量部の炭酸カルシウム、5重量部の二酸化チタン
および2重量部の銅フタロシアニンブルーがさらに添加
された材料を用いた点を除いて実施例9と同様に操作
し、体積平均粒子径が24μm、体積平均粒子径の1/
5以下の粒子径の粒子の割合が2.3重量%、体積平均
粒子径の3倍以上の粒子径の粒子の割合が0.9重量%
に調整されたポリエステル粉体塗料を得た。
Example 13 (Production of polyester powder paint)
Manufacture) The same operation as in Example 9 was carried out except that a material further added with 20 parts by weight of calcium carbonate, 5 parts by weight of titanium dioxide and 2 parts by weight of copper phthalocyanine blue was used. 24 μm, 1 / of the volume average particle diameter
2.3% by weight of particles having a particle diameter of 5 or less, and 0.9% by weight of particles having a particle diameter of 3 times or more the volume average particle diameter.
To obtain a polyester powder coating adjusted to.

【0064】実施例14(ポリエステル粉体塗料の製
造) 酸化アルミニウム微粉末(日本アエロジル株式会社製の
商品名”Aluminium Oxide C”)の添
加量を0.7重量部に変更した点を除いて実施例9と同
様に操作し、体積平均粒子径が24μm、体積平均粒子
径の1/5以下の粒子径の粒子の割合が2.0重量%、
体積平均粒子径の3倍以上の粒子径の粒子の割合が1.
4重量%に調整されたポリエステル粉体塗料を得た。
Example 14 (Production of polyester powder coating)
Concrete) except changing 0.7 parts by weight the amount of the aluminum oxide fine powder (Nippon Aerosil Co., Ltd. under the trade name "Aluminum Oxide C") same operation as in Example 9, the volume average particle diameter Is 24 μm, and the proportion of particles having a particle diameter of 1/5 or less of the volume average particle diameter is 2.0% by weight,
The ratio of particles having a particle diameter of three times or more of the volume average particle diameter is 1.
A polyester powder coating adjusted to 4% by weight was obtained.

【0065】実施例15(ポリエステル粉体塗料の製
造) 酸化アルミニウム微粉末(日本アエロジル株式会社製の
商品名”Aluminium Oxide C”)の添
加量を0.05重量部に変更した点を除いて実施例9と
同様に操作し、体積平均粒子径が24μm、体積平均粒
子径の1/5以下の粒子径の粒子の割合が2.0重量
%、体積平均粒子径の3倍以上の粒子径の粒子の割合が
1.0重量%に調整されたポリエステル粉体塗料を得
た。
Example 15 (Production of polyester powder paint)
Manufacture) The same procedure as in Example 9 was carried out except that the addition amount of aluminum oxide fine powder (trade name “Aluminium Oxide C” manufactured by Nippon Aerosil Co., Ltd.) was changed to 0.05 parts by weight, the volume average particle diameter was changed. Is adjusted to be 24 μm, the proportion of particles having a particle diameter of 1/5 or less of the volume average particle diameter is 2.0% by weight, and the proportion of particles having a particle diameter not less than 3 times the volume average particle diameter is adjusted to 1.0% by weight. A polyester powder coating was obtained.

【0066】比較例3(ポリエステル粉体塗料の製造) 実施例9の工程中で得られた溶融混練物と同様のものを
室温で冷却後に不二パウダル株式会社製の”アトマイザ
ー”を用いて粉砕し、さらに150メッシュの篩いを用
いて粗大粒子を分級した。このような分級工程を経て得
られた粉体100重量部に対し、帯電制御材として酸化
アルミニウム微粉末(日本アエロジル株式会社製の商品
名”Aluminium Oxide C”)を0.2
重量部添加し、日本スピンドル株式会社製の”スーパー
ミキサー”を用いて1分間混合した。これにより、体積
平均粒子径が36μm、体積平均粒子径の1/5以下の
粒子径の粒子の割合が4.5重量%、体積平均粒子径の
3倍以上の粒子径の粒子の割合が0.1重量%に調整さ
れたポリエステル粉体塗料を得た。
Comparative Example 3 (Production of Polyester Powder Coating) The same melt-kneaded product obtained in the process of Example 9 was cooled at room temperature, and then pulverized using an “Atomizer” manufactured by Fuji Paudal Co., Ltd. Then, coarse particles were classified using a 150-mesh sieve. To 100 parts by weight of the powder obtained through such a classification step, 0.2 parts of aluminum oxide fine powder (trade name “Aluminium Oxide C” manufactured by Nippon Aerosil Co., Ltd.) was added as a charge control material to 0.2 part.
Parts by weight were added and mixed for 1 minute using "Super Mixer" manufactured by Nippon Spindle Co., Ltd. As a result, the ratio of particles having a volume average particle diameter of 36 μm, a particle diameter of 1/5 or less of the volume average particle diameter is 4.5% by weight, and the ratio of particles having a particle diameter of 3 times or more of the volume average particle diameter is 0%. A polyester powder paint adjusted to 0.1% by weight was obtained.

【0067】比較例4(ポリエステル粉体塗料の製造) 実施例9の工程中で得られた溶融混練物と同様のものを
室温で冷却後に不二パウダル株式会社製の”アトマイザ
ー”を用いて粉砕し、さらに150メッシュの篩いを用
いて粗大粒子のみを分級した。このような分級工程を経
て得られた粉体100重量部に対し、帯電制御材として
酸化アルミニウム微粉末(日本アエロジル株式会社製の
商品名”Aluminium Oxide C”)を
0.2重量部添加し、日本スピンドル株式会社製の”ス
ーパーミキサー”を用いて1分間混合した。これによ
り、体積平均粒子径が23μm、体積平均粒子径の1/
5以下の粒子径の粒子の割合が7.3重量%、体積平均
粒子径の3倍以上の粒子径の粒子の割合が1.5重量%
に調整されたポリエステル粉体塗料を得た。
Comparative Example 4 (Production of Polyester Powder Coating) The same melt-kneaded product obtained in the process of Example 9 was cooled at room temperature, and then pulverized using an “Atomizer” manufactured by Fuji Paudal Co., Ltd. Then, only coarse particles were classified using a 150-mesh sieve. To 100 parts by weight of the powder obtained through such a classification step, 0.2 parts by weight of aluminum oxide fine powder (trade name “Aluminium Oxide C” manufactured by Nippon Aerosil Co., Ltd.) was added as a charge control material, The mixture was mixed for 1 minute using "Super Mixer" manufactured by Nippon Spindle Co., Ltd. Thereby, the volume average particle diameter is 23 μm, and 1 /
The ratio of particles having a particle size of 5 or less is 7.3% by weight, and the ratio of particles having a particle size not less than 3 times the volume average particle size is 1.5% by weight.
To obtain a polyester powder coating adjusted to.

【0068】塗装試験 被塗装物として、図1(底面図)および図2(正面図)
に示すような、中央部に幅方向に延びる凹形状部2を有
しかつ両端にフランジ部3を有する基材1を用意した。
この基材1は、厚さが0.8mmの燐酸処理鋼板であ
り、図1および図2に示した各部の大きさおよび角度が
次の通りである。
[0068] As coated test object to be coated, Fig. 1 (bottom view) and 2 (front view)
As shown in (1), a substrate 1 having a concave portion 2 extending in the width direction at the center portion and having flange portions 3 at both ends was prepared.
This substrate 1 is a phosphoric acid-treated steel sheet having a thickness of 0.8 mm, and the size and angle of each part shown in FIGS. 1 and 2 are as follows.

【0069】a=70mm b=40mm c=290mm d=600mm θ=60°A = 70 mm b = 40 mm c = 290 mm d = 600 mm θ = 60 °

【0070】次に、図3に示すように、水平移動型オー
バーヘッドコンベアー(図示せず)に対して3個の基材
1を100mm間隔で吊して配置した。そして、図4に
示すように、配置された基材1の前方に、水平移動型オ
ーバーヘッドコンベアーにより基材1を移動させた際に
図3に一点鎖線で示すような軌跡のスプレーパターンが
描かれるように粉体塗装ガンGを固定した。この際、基
材1のフランジ部3と粉体塗装ガンGのヘッド部先端と
の間隔Xが200mmになるよう設定した。なお、粉体
塗装ガンGとしては、実施例1〜8および比較例1,2
の場合はコロナ帯電型塗装ガン(GEMA社製の商品
名”PG−1”)を用い、また、実施例9〜15および
比較例3,4の場合は摩擦帯電型塗装ガン(松尾産業株
式会社製の商品名”SFC−TR100D”)を用い
た。
Next, as shown in FIG. 3, three substrates 1 were suspended from a horizontally movable overhead conveyor (not shown) at intervals of 100 mm. Then, as shown in FIG. 4, when the base material 1 is moved by the horizontally moving overhead conveyor, a spray pattern having a locus as shown by a dashed line in FIG. 3 is drawn in front of the placed base material 1. The powder coating gun G was fixed as described above. At this time, the distance X between the flange 3 of the base material 1 and the tip of the head of the powder coating gun G was set to be 200 mm. Examples of the powder coating gun G include Examples 1 to 8 and Comparative Examples 1 and 2.
, A corona charging type coating gun (trade name “PG-1” manufactured by GEMA) is used. In Examples 9 to 15 and Comparative Examples 3 and 4, a friction charging type coating gun (Matsuo Sangyo Co., Ltd.) Trade name "SFC-TR100D").

【0071】上述のように設定された塗装装置を用い、
各実施例および各比較例で得られた粉体塗料を基材1に
塗布した。この際、塗装条件を下記の様に設定し、ま
た、膜厚が60±5μmになるように設定した。
Using the coating apparatus set as described above,
The powder coating obtained in each of the examples and the comparative examples was applied to the substrate 1. At this time, the coating conditions were set as follows, and the film thickness was set to be 60 ± 5 μm.

【0072】(実施例1〜8および比較例1,2の場
合) オーバーヘッドコンベアー移動速度:1.8m/分 印加電圧:−80kv 吐出量:100g/分 吐出圧:1.0kgf/cm2 エアー流量:4.5m3/h
(Examples 1 to 8 and Comparative Examples 1 and 2) Moving speed of overhead conveyor: 1.8 m / min Applied voltage: -80 kv Discharge amount: 100 g / min Discharge pressure: 1.0 kgf / cm 2 Air flow rate : 4.5 m 3 / h

【0073】(実施例9〜15および比較例3,4の場
合) オーバーヘッドコンベアー移動速度:1.8m/分 吐出量:100g/分 吐出圧:2.0kgf/cm2 加速圧:2.0kgf/cm2
(Examples 9 to 15 and Comparative Examples 3 and 4) Moving speed of overhead conveyor: 1.8 m / min Discharge amount: 100 g / min Discharge pressure: 2.0 kgf / cm 2 Acceleration pressure: 2.0 kgf / cm 2

【0074】次に、粉体塗料が塗装された基材1(上述
の3個の基材1のうちの中央に配置されたもの)を18
0℃の熱風乾燥炉内で20分間焼き付け処理し、塗膜を
形成した。得られた塗膜について、塗膜外観、粉体塗料
の塗着効率および粉体塗料の貫入性を調べた。また、各
実施例および各比較例で得られた粉体塗料について、粉
体塗料特性、即ち、誘電率および100Vの電圧を印加
した際の体積固有抵抗値、並びにコロナ帯電型塗装ガン
から吐出された際の帯電量(実施例1〜8および比較例
1,2の場合)または摩擦帯電型塗装ガンから吐出され
た際の内部発生電流値(実施例9〜15および比較例
3,4の場合)を調べた。調査方法は下記の通りであ
る。結果を表1および表2に示す。
Next, the base material 1 coated with the powder coating material (the one arranged at the center of the above three base materials 1) is
It was baked in a hot air drying oven at 0 ° C. for 20 minutes to form a coating film. About the obtained coating film, the coating film appearance, the coating efficiency of the powder coating, and the penetration of the powder coating were examined. In addition, for the powder coatings obtained in each of the examples and comparative examples, the powder coating properties, that is, the dielectric constant and the volume resistivity when a voltage of 100 V was applied, and the discharge from the corona charging type coating gun. (Examples 1 to 8 and Comparative Examples 1 and 2) or an internally generated current value when discharged from a triboelectric coating gun (Examples 9 to 15 and Comparative Examples 3 and 4) ). The survey method is as follows. The results are shown in Tables 1 and 2.

【0075】(塗膜外観)表面粗さ形状測定器(株式会
社東京精密製の”サーフコム470A”)を用いてRa
値を測定し、評価した。なお、Ra値が0.6以下の場
合は塗膜外観が良好である。
(Appearance of coating film) Ra was measured using a surface roughness shape measuring instrument (“Surfcom 470A” manufactured by Tokyo Seimitsu Co., Ltd.).
The values were measured and evaluated. When the Ra value is 0.6 or less, the appearance of the coating film is good.

【0076】(塗着効率)塗装ガンから吐出された粉体
塗料の全量に対する、基材1に塗布された粉体塗料の重
量の割合(%)を求めることにより評価した。この数値
が大きい程、塗着効率は良好である。より具体的には、
コロナ帯電型塗装ガンを用いた場合は65%以上が良好
であり、摩擦帯電型塗装ガンを用いた場合は50%以上
が良好である。
(Coating Efficiency) Evaluation was made by obtaining the ratio (%) of the weight of the powder coating applied to the substrate 1 to the total amount of the powder coating discharged from the coating gun. The larger the value, the better the coating efficiency. More specifically,
When a corona charging type coating gun is used, 65% or more is good, and when a friction charging type coating gun is used, 50% or more is good.

【0077】(貫入性)塗装された基材1について、図
2に示すA、BおよびC部の各部位の塗膜厚さを測定し
た。そして、各部位の膜厚を下記の式(1)に代入し、
貫入性を求めた。数値が大きいほど貫入性は良好であ
る。より具体的には、コロナ帯電型塗装ガンを用いた場
合は0.7以上が良好であり、摩擦帯電型塗装ガンを用
いた場合は0.55以上が良好である。
(Penetration Property) With respect to the coated base material 1, the thickness of the coating film at each of the portions A, B and C shown in FIG. 2 was measured. Then, the film thickness of each part is substituted into the following equation (1),
Intrusion was sought. The higher the value, the better the penetration. More specifically, when the corona charging type coating gun is used, 0.7 or more is good, and when the friction charging type coating gun is used, 0.55 or more is good.

【0078】[0078]

【数1】貫入性=B/((A+C)/2)## EQU1 ## Penetration = B / ((A + C) / 2)

【0079】(粉体塗料特性)誘電率、体積固有抵抗
値、帯電量(実施例1〜8および比較例1,2の場合)
および内部発生電流値(実施例9〜15および比較例
3,4の場合)は、既述の方法に従がって測定した。こ
の際、誘電率測定器として安藤電気株式会社製のTYP
E AG−4311 LCR METERを、抵抗測定
器としてタケダリケン株式会社製のTR8601を、ま
た、帯電量測定用のデジタルエレクトロメーターとして
アドバンテスト株式会社製の”TR−8652”をそれ
ぞれ用いた。なお、帯電量の測定では、上述の塗装方法
と同一の条件でコロナ帯電型塗装ガンから吐出された粉
体塗料をファラデーゲージで捕集した。
(Characteristics of powder paint) Dielectric constant, volume resistivity, charge amount (Examples 1 to 8 and Comparative Examples 1 and 2)
And the internally generated current value (in the case of Examples 9 to 15 and Comparative Examples 3 and 4) was measured according to the method described above. At this time, TYP manufactured by Ando Electric Co., Ltd. was used as a dielectric constant measuring device.
EAG-4311 LCR METER, TR8601 manufactured by Takedariken Co., Ltd. was used as a resistance measuring instrument, and "TR-8652" manufactured by Advantest Co., Ltd. was used as a digital electrometer for measuring a charge amount. In the measurement of the charge amount, the powder coating material discharged from the corona charging type coating gun was collected by a Faraday gauge under the same conditions as the above-mentioned coating method.

【0080】[0080]

【表1】 [Table 1]

【0081】[0081]

【表2】 [Table 2]

【0082】表1および表2から、粗大粒子割合が大き
い場合(実施例4,11)は、貫入性が良好であるもの
の塗膜外観および塗着効率が若干低下することがわか
る。また、体積固有抵抗値が上述の好ましい範囲よりも
小さい場合(実施例5,12)は、塗膜外観および塗着
効率がやや損なわれることがわかる。さらに誘電率又は
帯電量が上述の好ましい範囲から外れる場合(実施例
6,7,13)は、塗着効率が損なわれることがわか
る。さらに、体積固有抵抗値が上述の好ましい範囲内で
あっても、そのより好ましい範囲よりも大きい場合は、
塗膜外観と貫入性とが許容可能な範囲で若干損なわれる
ことがわかる。さらに、内部発生電流値が上述の好まし
い範囲よりも大きい場合(実施例14)は、塗膜外観が
やや損なわれ、逆に好ましい範囲よりも小さい場合(実
施例15)は塗膜外観および塗着効率の両者が損なわれ
ることがわかる。しかしながら、上述のいずれの実施例
の場合でも、体積平均粒子径と微少粒子割合とは本発明
の範囲内であるため、貫入性は概ね良好である。
From Tables 1 and 2, it can be seen that when the proportion of coarse particles is large (Examples 4 and 11), although the penetration is good, the appearance of the coating film and the coating efficiency are slightly reduced. When the volume resistivity is smaller than the above-mentioned preferable range (Examples 5 and 12), it can be seen that the appearance of the coating film and the coating efficiency are slightly impaired. Further, when the dielectric constant or the charge amount is out of the preferable range described above (Examples 6, 7, and 13), it can be seen that the coating efficiency is impaired. Furthermore, even if the volume specific resistance value is within the above preferable range, if it is larger than the more preferable range,
It can be seen that the appearance and penetration of the coating film are slightly impaired within an acceptable range. Further, when the internally generated current value is larger than the above preferred range (Example 14), the appearance of the coating film is slightly impaired, and when it is smaller than the preferred range (Example 15), the appearance and coating of the coating film are reduced. It can be seen that both efficiency is impaired. However, in any of the above-mentioned examples, since the volume average particle diameter and the fine particle ratio are within the range of the present invention, the penetration is generally good.

【0083】[0083]

【発明の効果】本発明の粉体塗料は、体積平均粒子径お
よび粒度分布が上述のように設定されているため、非平
面部を有する複雑な形状の被塗装物に対しても、均一な
塗膜を形成することができる。
According to the powder coating of the present invention, the volume average particle diameter and the particle size distribution are set as described above. A coating can be formed.

【0084】本発明の粉体塗装方法は、上述の粉体塗料
を用いているので、非平面部を有する複雑な形状の被塗
装物に対しても均一な塗膜を形成することができる。
Since the powder coating method of the present invention uses the above-described powder coating, a uniform coating film can be formed even on a workpiece having a complicated shape having a non-planar portion.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の塗装試験で用いた基材の底面
図。
FIG. 1 is a bottom view of a substrate used in a coating test according to an example of the present invention.

【図2】前記基材の正面図。FIG. 2 is a front view of the substrate.

【図3】実施例において、前記基材に対して粉体塗料を
塗布する際の前記基材の配列状態を示す図。
FIG. 3 is a view showing an arrangement state of the base material when applying a powder coating material to the base material in an embodiment.

【図4】実施例において、前記基材に対して粉体塗料を
塗布する際の前記基材の配列状態を示す平面図。
FIG. 4 is a plan view showing an arrangement state of the base materials when a powder coating material is applied to the base materials in the embodiment.

【符号の説明】[Explanation of symbols]

1 基材 2 凹形状部 G 粉体塗装ガン 1 base material 2 concave part G powder coating gun

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】体積平均粒子径が3〜30μmに設定され
かつ膜形成性樹脂を主要成分とする粉体からなり、 前記粉体は、前記体積平均粒子径の1/5以下の粒子径
の粉体を5重量%以下の割合で含む、粉体塗料。
1. A powder having a volume average particle size of 3 to 30 μm and comprising a film-forming resin as a main component, wherein the powder has a particle size of 1 / or less of the volume average particle size. A powder coating containing powder in an amount of 5% by weight or less.
【請求項2】前記粉体は、前記体積平均粒子径の3倍以
上の粒子径の粉体を8重量%以下の割合で含む、請求項
1に記載の粉体塗料。
2. The powder coating according to claim 1, wherein said powder contains a powder having a particle diameter of three times or more of said volume average particle diameter at a ratio of 8% by weight or less.
【請求項3】前記粉体は、誘電率が2.0〜6.0に設
定されている、請求項1または2に記載の粉体塗料。
3. The powder coating according to claim 1, wherein the powder has a dielectric constant of 2.0 to 6.0.
【請求項4】前記粉体は、100Vの電圧を印加した際
の体積固有抵抗値が1×1014Ω・cm以上である、請
求項1、2または3に記載の粉体塗料。
4. The powder coating according to claim 1, wherein the powder has a volume resistivity of 1 × 10 14 Ω · cm or more when a voltage of 100 V is applied.
【請求項5】前記粉体は、前記粉体に対して摩擦帯電性
を付与するための帯電制御材を含んでいる、請求項1、
2、3または4に記載の粉体塗料。
5. The powder according to claim 1, wherein the powder contains a charge control material for imparting triboelectricity to the powder.
The powder coating according to 2, 3, or 4.
【請求項6】前記粉体は、コロナ放電処理されかつ帯電
量が−0.5〜−3.0μC/gに設定されている、請
求項1、2、3または4に記載の粉体塗料。
6. The powder coating according to claim 1, wherein the powder is subjected to a corona discharge treatment and has a charge amount of -0.5 to -3.0 μC / g. .
【請求項7】前記粉体は、内部発生電流値が1.0〜
8.0μAになるよう摩擦帯電処理されている、請求項
1、2、3、4または5に記載の粉体塗料。
7. The powder has an internally generated current value of 1.0 to 1.0.
The powder coating according to claim 1, which has been subjected to a triboelectric charging treatment so as to have a current of 8.0 μA.
【請求項8】非平面部を有する被塗装物に対して塗膜を
形成するための粉体塗料であって、 体積平均粒子径が3〜30μmに設定されかつ膜形成性
樹脂を主要成分とする粉体からなり、 前記粉体は、前記体積平均粒子径の1/5以下の粒子径
の粉体を5重量%以下の割合で含む、粉体塗料。
8. A powder coating material for forming a coating film on an object to be coated having a non-planar part, wherein a volume average particle diameter is set to 3 to 30 μm and a film-forming resin is used as a main component. A powder coating, comprising: a powder having a particle diameter of 1/5 or less of the volume average particle diameter at a ratio of 5% by weight or less.
【請求項9】前記粉体は、前記体積平均粒子径の3倍以
上の粒子径の粉体を8重量%以下の割合で含む、請求項
8に記載の粉体塗料。
9. The powder coating material according to claim 8, wherein said powder contains a powder having a particle diameter three times or more of said volume average particle diameter at a ratio of 8% by weight or less.
【請求項10】非平面部を有する被塗装物に対し、粉体
塗装ガンを用いて塗膜を形成するための粉体塗装方法で
あって、 体積平均粒子径が3〜30μmに設定されかつ膜形成性
樹脂を主要成分とし、前記体積平均粒子径の1/5以下
の粒子径の粉体の含有量が5重量%以下の粉体からなる
粉体塗料を用意するための工程と、 前記粉体塗装ガンを用いて前記粉体塗料を前記被塗装物
に対して吹き付けるための工程と、を含む粉体塗装方
法。
10. A powder coating method for forming a coating film on an object having a non-planar part using a powder coating gun, wherein the volume average particle diameter is set to 3 to 30 μm and A step of preparing a powder coating comprising a powder having a film-forming resin as a main component and a powder having a particle diameter of 1/5 or less of the volume average particle diameter of 5% by weight or less; A step of spraying the powder coating on the object using a powder coating gun.
【請求項11】前記粉体塗装ガンと前記被塗装物との距
離を100〜300mmに設定する、請求項10に記載
の粉体塗装方法。
11. The powder coating method according to claim 10, wherein a distance between the powder coating gun and the object to be coated is set to 100 to 300 mm.
【請求項12】前記粉体塗装ガンは、前記粉体塗料をコ
ロナ放電処理可能なコロナ帯電型塗装ガンである、請求
項10または11に記載の粉体塗装方法。
12. The powder coating method according to claim 10, wherein the powder coating gun is a corona charging type coating gun capable of performing a corona discharge treatment on the powder coating.
【請求項13】前記コロナ放電処理により前記粉体塗料
の帯電量を−0.5〜−3.0μC/gに設定する、請
求項12に記載の粉体塗装方法。
13. The powder coating method according to claim 12, wherein the charge amount of the powder coating is set to -0.5 to -3.0 μC / g by the corona discharge treatment.
【請求項14】前記粉体塗装ガンは、前記粉体塗料を摩
擦帯電処理可能な摩擦帯電型塗装ガンである、請求項1
0または11に記載の粉体塗装方法。
14. The powder coating gun according to claim 1, wherein said powder coating gun is a triboelectric coating gun capable of triboelectrically treating said powder coating.
12. The powder coating method according to 0 or 11.
【請求項15】前記摩擦帯電処理により前記粉体塗料の
内部発生電流値を1.0〜8.0μAに設定する、請求
項14に記載の粉体塗装方法。
15. The powder coating method according to claim 14, wherein the internally generated current value of the powder coating is set to 1.0 to 8.0 μA by the triboelectric charging process.
JP25277397A 1996-09-05 1997-09-02 Powder coating material and powder coating method Pending JPH10231446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25277397A JPH10231446A (en) 1996-09-05 1997-09-02 Powder coating material and powder coating method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP25759396 1996-09-05
JP8-257593 1996-09-05
JP35344596 1996-12-16
JP8-353445 1996-12-16
JP25277397A JPH10231446A (en) 1996-09-05 1997-09-02 Powder coating material and powder coating method

Publications (1)

Publication Number Publication Date
JPH10231446A true JPH10231446A (en) 1998-09-02

Family

ID=27334154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25277397A Pending JPH10231446A (en) 1996-09-05 1997-09-02 Powder coating material and powder coating method

Country Status (1)

Country Link
JP (1) JPH10231446A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294805A (en) * 2000-04-17 2001-10-23 Nippon Paint Co Ltd Powder coating composition
JP2016183227A (en) * 2015-03-25 2016-10-20 富士ゼロックス株式会社 Thermosetting powder coating material, coated article, and method for producing coated article
WO2017056773A1 (en) * 2015-09-28 2017-04-06 積水化成品工業株式会社 Polyester-based resin particles, process for producing same, and use thereof
US10195641B2 (en) 2015-12-18 2019-02-05 Fuji Xerox Co., Ltd. Electrostatic powder coating method and powder coating material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294805A (en) * 2000-04-17 2001-10-23 Nippon Paint Co Ltd Powder coating composition
JP2016183227A (en) * 2015-03-25 2016-10-20 富士ゼロックス株式会社 Thermosetting powder coating material, coated article, and method for producing coated article
WO2017056773A1 (en) * 2015-09-28 2017-04-06 積水化成品工業株式会社 Polyester-based resin particles, process for producing same, and use thereof
JP2017066187A (en) * 2015-09-28 2017-04-06 積水化成品工業株式会社 Polyester resin particle, method for producing the same, and use thereof
KR20180017158A (en) * 2015-09-28 2018-02-20 세키스이가세이힝코교가부시키가이샤 Polyester-based resin particles, method for producing the same, and uses thereof
US10501586B2 (en) 2015-09-28 2019-12-10 Sekisui Plastics Co., Ltd. Polyester-based resin particles, process for producing same, and use thereof
US10195641B2 (en) 2015-12-18 2019-02-05 Fuji Xerox Co., Ltd. Electrostatic powder coating method and powder coating material

Similar Documents

Publication Publication Date Title
AU678077B2 (en) Coated golf ball
CZ200417A3 (en) Process for producing coatings on electrically conducting substrates and apparatus for making the same
EP1901852B1 (en) Electrostatic fluidised powder bed coating process
JP3583532B2 (en) Powder paint
JP2909881B2 (en) Powder paint
US6130281A (en) Powder coating, method for coating same and coating film obtained therefrom
JPH10231446A (en) Powder coating material and powder coating method
JPH1180612A (en) Powder coating and film forming method using it
JPH083480A (en) Powder coating material
JP2849353B2 (en) Powder paint
JP2002233819A (en) Powder coating method of steel and powder coated steel
JP3779047B2 (en) Film forming method and powder coating used therefor
JP3759196B2 (en) Powder coating for tribo-charging spray gun
JP2983868B2 (en) Powder coating and powder coating method using the same
JPH11100534A (en) Powder coating material for electrostatic coating and method for coating therewith
JP2008081670A (en) Powder coating composition
JP3437973B2 (en) Powder coating for glass surface coating and coating method
JP3325728B2 (en) Powder coating, production method thereof, and powder coating method using the same
JP4162769B2 (en) Coating film forming method and coating film
JPH11106683A (en) Powder coating composition for electrostatic coating and coating of the same
JPH10279848A (en) Powder coating material
JP3258256B2 (en) Powder coating suitable for electrostatic fluidized immersion method
JPH11246796A (en) Powder coating for pcm, powder coating process for pcm and pcm steel plate obtained thereby
JP3225198B2 (en) How to apply powder paint
JP2001019906A (en) Powder toning method, composite powder coating material composition and powder coating method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040831

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041029

A131 Notification of reasons for refusal

Effective date: 20070612

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071016