JPH10230919A - Plastic bottle - Google Patents

Plastic bottle

Info

Publication number
JPH10230919A
JPH10230919A JP5095397A JP5095397A JPH10230919A JP H10230919 A JPH10230919 A JP H10230919A JP 5095397 A JP5095397 A JP 5095397A JP 5095397 A JP5095397 A JP 5095397A JP H10230919 A JPH10230919 A JP H10230919A
Authority
JP
Japan
Prior art keywords
wall
rib
bottle
variable
ribs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5095397A
Other languages
Japanese (ja)
Other versions
JP3808160B2 (en
Inventor
Shinji Shimada
伸治 嶋田
Atsushi Oota
淳士 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshino Kogyosho Co Ltd
Original Assignee
Yoshino Kogyosho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshino Kogyosho Co Ltd filed Critical Yoshino Kogyosho Co Ltd
Priority to JP05095397A priority Critical patent/JP3808160B2/en
Publication of JPH10230919A publication Critical patent/JPH10230919A/en
Application granted granted Critical
Publication of JP3808160B2 publication Critical patent/JP3808160B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0223Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by shape
    • B65D1/0292Foldable bottles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/4273Auxiliary operations after the blow-moulding operation not otherwise provided for
    • B29C49/4283Deforming the finished article

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

PROBLEM TO BE SOLVED: To temporarily reduce the volume of a bottle and increase the loading and transporting efficiency, by forming a variable part which is expanded from a specified plane and which is deformable and restorable within an elastic deformation range on the wall face of the bottle body. SOLUTION: This bottle constituted of the opening cylinder 2, the body 3 and the bottom 4, is molded by the blow molding by use of a raw material such as PET, high density polyethylene or other flexible but rigid synthetic resin. Semicircular variable ribs 11a, 11b, 11c, 11d are arranged on the four vertical planes mutually making right angles positioned in the inner side by a certain distance from the outer periphery of the peripheral wall 9. And further, four variable ribs 16a, 16b, 16c, 16d which are vertically symmetrical against the above variable ribs, are formed at the lower peripheral wall 10. The upper variable ribs are formed for reinforcement and folding parts of the body wall. The whole variable faces 17 of the bottle 1 are deformed reversely by a snapping motion and the volume is reduced. The volume is restored by blowing compressed air therein.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、変形、復元可能と
した容器、とくに弾性限度内で変形、復元可能とし、減
容して運搬できるようにしたプラスチックボトルに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deformable and restorable container, and more particularly to a plastic bottle which is deformable and restorable within an elastic limit and can be transported with reduced volume.

【0002】[0002]

【発明が解決しようとする課題】ブロー成形ボトルの利
用にあたっては、飲料、各種家庭用品等、内容物の製造
メーカーは、容器メーカーからボトルを購入し、充填工
場でボトルに内容物を充填し、包装を施した上で製品と
して出荷している。そのため、容器メーカーは、成形工
場でブロー成形されたボトルを箱詰めにして内容物充填
工場に輸送している。
In using a blow-molded bottle, a manufacturer of contents such as beverages and various household goods purchases the bottle from a container maker and fills the bottle with the contents at a filling factory. They are packaged and shipped as products. For this reason, container manufacturers transport bottles blow-molded in a molding plant to a content filling plant in boxes.

【0003】ボトルのブロー成形に引き続いて内容物を
充填する「ブローフィルシール法」も知られているが、
容器製造と内容物製造とは専業化されており、内容物の
製造メーカーはボトルまで成形することは少なく、一般
には、成形工場でブロー成形されたボトルを内容物充填
工場に輸送することが多く行われている。
[0003] A "blow-fill-seal method" in which the contents are filled after the blow molding of the bottle is also known,
Container manufacturing and content manufacturing are specialized, and content manufacturers rarely mold bottles.In general, blow molding bottles are usually transported from molding plants to content filling plants. Is being done.

【0004】しかしながら、成形工場から充填工場への
空ボトルの輸送は、重量こそ軽量であるが、容積が嵩張
り一回に運ばれる個数が少なく、輸送効率はきわめて低
かった。さらに、ボトルが円形であると、直交する二軸
方向にボトルを相互に接合するよう整列させて箱詰めす
るからボトル間の空間容積が増え、積載効力は一層低下
した。
However, transporting empty bottles from a molding factory to a filling factory is light in weight, but has a large volume and a small number of pieces to be transported at one time, and transport efficiency is extremely low. Furthermore, when the bottles are circular, the bottles are aligned and boxed in two orthogonal directions so as to be joined to each other, so that the volume of space between the bottles increases, and the loading efficiency further decreases.

【0005】本発明は、上記の事情に鑑み、ボトルの容
積を一時的に減容させて積載輸送効率を高めることを技
術的課題として、成形ボトルを、素材樹脂の弾性変形の
限度内で反転変形、復元可能としたプラスチックボトル
を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above circumstances, the present invention has a technical problem of temporarily reducing the volume of a bottle to increase the loading and transporting efficiency, and inverts a molded bottle within the limit of elastic deformation of a material resin. An object of the present invention is to provide a plastic bottle that can be deformed and restored.

【0006】[0006]

【課題を解決するための手段】上記の技術的課題は、ボ
トルの胴部壁面に、所定の平面から膨出し弾性変形の範
囲内で変形復元可能な可変部を形成し、その他の部分を
形状不変部とし、可変面をスナップ動作により前記所定
の平面からボトル内方に反転させ、反転変形状態を維持
することによって達成することができる。
SUMMARY OF THE INVENTION The technical problem mentioned above is to form a variable portion which can swell from a predetermined plane and can be restored within the range of elastic deformation on the wall surface of the body portion of the bottle, and the other portions are shaped. This can be achieved by inverting the variable surface from the predetermined plane to the inside of the bottle by a snap operation and maintaining the inverted deformation state.

【0007】本発明は、技術的課題を達成するために、
プラスチックボトルとして、ボトルの胴部壁面に、折れ
部を形成する可変リブを配設して可変面を形成し、可変
リブを弾性限度内で変形させ、前記可変面を形状不変面
に対してスナップ動作により反転させ、反転状態を維持
するようにしたことを特徴とする構成を採用し、可変リ
ブとして、可変リブの断面が、厚肉の中央部と薄肉の両
側部からなり、側部の端縁が胴部胴へ壁面と丸みをもっ
て連結され、可変リブが弾性限度内で湾曲するようにし
たことを特徴とする構成を採用する。成形ボトルの減容
は、減容率10%〜45%に減容するようにする。
[0007] In order to achieve the technical object, the present invention provides:
As a plastic bottle, a variable rib is formed on the body wall of the bottle to form a bent portion to form a variable surface, the variable rib is deformed within the elastic limit, and the variable surface is snapped to the shape invariable surface. The structure is characterized in that it is reversed by operation to maintain the inverted state, and as a variable rib, the cross section of the variable rib comprises a thick central portion and thin side portions, and a side edge. The configuration is adopted in which the rim is roundly connected to the wall of the body, and the variable rib is curved within the elastic limit. The volume of the molded bottle is reduced to a volume reduction rate of 10% to 45%.

【0008】ボトルの形状に応じて、円形ボトルにおけ
る技術手段として、球帯状の肩壁と円筒状の胴壁、球帯
状の下部周壁とからなる胴部を備えた円形ボトルであっ
て、球帯状の肩壁と下部周壁に、上下に対向する位置に
ほぼ半円形の可変リブを配設し、該可変リブによって形
成される平面に対して、該平面より膨出する胴壁を可変
面とし、該可変面を弾性限度内において、スナップ動作
により反転変形、復元可能としたことを特徴とする構成
を採用する。
According to the shape of the bottle, as a technical means of the circular bottle, a circular bottle having a body portion composed of a spherical band-shaped shoulder wall, a cylindrical body wall, and a spherical band-shaped lower peripheral wall is provided. A substantially semicircular variable rib is disposed on the shoulder wall and the lower peripheral wall at positions vertically opposed to each other, and a body wall swelling from the plane with respect to a plane formed by the variable rib is a variable surface, A configuration is adopted in which the variable surface can be reversed and restored by a snap operation within the elastic limit.

【0009】また、ボトルが胴長になる場合に、球帯状
の肩壁と円筒状の胴壁、球帯状の下部周壁とからなる胴
部を備えた円形ボトルにおいては、球帯状の肩壁と下部
周壁に、上下に対向する位置にほぼ半円形の円弧リブを
配設し、円筒状の胴壁内に前記上下円弧リブの両端縁の
それぞれを結ぶ縦リブを配設し、前記円弧リブと二つの
リブによって形成される平面に対して、該平面より膨出
する胴部周壁を可変面とし、該可変面を弾性限度内にお
いて、スナップ動作により反転変形、復元可能としたこ
とを特徴とする構成を採用し、必要に応じて、球帯状の
肩壁と下部周壁、または円筒状の胴壁内に、縦リブを連
結する横リブを架設する。
Further, when the bottle has a body length, in the case of a circular bottle having a body portion composed of a spherical band-shaped shoulder wall, a cylindrical body wall, and a spherical band-shaped lower peripheral wall, a spherical band-shaped shoulder wall is provided. On the lower peripheral wall, a substantially semicircular arc rib is disposed at a position facing up and down, and vertical ribs connecting both end edges of the upper and lower arc ribs are disposed in a cylindrical body wall, and the arc rib is provided. With respect to the plane formed by the two ribs, the body peripheral wall protruding from the plane is a variable surface, and the variable surface can be inverted and deformed and restored by a snap operation within the elastic limit. The structure is adopted, and if necessary, a horizontal rib connecting the vertical ribs is erected in a spherical belt-shaped shoulder wall and a lower peripheral wall or a cylindrical trunk wall.

【0010】角壁を有する円形ボトルにおいては、口筒
部と角壁を有する胴部をを備えた円形ボトルであって、
胴部は、口筒部に続く球帯状の肩壁と、前記肩壁に続く
角壁と、該角壁の表面から膨出するよう形成され、上下
を球帯壁とし、中間部を円筒壁とした膨出部とを具え、
前記膨出部の中央に、上部球帯壁、円筒壁、下部球帯壁
にわたって上下に縦リブを配設し、上下の球帯壁に前記
縦リブに交差する所定長さの横リブを配設し、膨出部の
壁面がスナップ動作により反転変形、復元可能としたこ
とを特徴とする構成を採用する。
In a circular bottle having a square wall, the circular bottle has a mouthpiece and a body having a square wall.
The torso portion is formed so as to bulge from the surface of the spherical wall, a spheroidal wall following the shoulder wall, a square wall following the shoulder wall, and a surface of the square wall. With a bulging part,
In the center of the bulging portion, vertical ribs are disposed vertically over the upper spherical band wall, the cylindrical wall, and the lower spherical band wall, and horizontal ribs having a predetermined length intersecting with the vertical ribs are disposed on the upper and lower spherical band walls. The wall surface of the bulging portion is reversely deformable and can be restored by snap operation.

【0011】また角形ボトルの場合には、口筒部と、口
筒部に連続する肩壁と多角筒壁とからなる胴部と、四角
形の底部を備えたボトルであって、前記多角筒壁は、前
後に対向して平行に配設された長方形の平壁と、肩壁に
連続し左右の側部に対向して平行に配設された等脚台形
の側壁と、平壁と側壁との間に配設されたほぼ台形の側
部傾斜壁と、前記肩壁と平壁および側部傾斜壁の各端縁
の間に配設された上部傾斜壁と、底壁と平壁および側部
傾斜壁の各端縁との間に配設された下部傾斜壁とを具備
しており、平壁と側部傾斜壁の接続部に縦リブを配設
し、平壁と上部傾斜壁との接続部および平壁と下部傾斜
壁との接続部に横リブを配設し、上部傾斜壁の側端縁と
側部傾斜壁の上端縁との間、および下部傾斜壁の側端縁
と側部傾斜壁の下端縁との間に三角リブを配設し、平壁
と各傾斜壁によって形成される可変面が、肩壁と側壁お
よび底壁によって形成される不変面に対して、弾性限度
内においてスナップ動作により反転変形、復元可能とし
たことを特徴とする構成を採用し、三角リブとして、平
壁の角部円弧縁からリブの長手方向に突出する膨出壁と
傾斜壁の対向する端縁との間を連結するリブ底壁とから
なり、リブ底壁が、舟底形のリブ主部と、膨出壁とによ
って分岐された二つの分岐部とを具備し、各分岐部は、
対応する縦リブまたは横リブに連続していることを特徴
とする構成を採用する。変形減容ボトルのの復元は、ボ
トルの口筒部より圧縮空気を吹き込むことによって復元
するようにしたことを特徴とする。
In the case of a rectangular bottle, the bottle comprises a mouthpiece, a body consisting of a shoulder wall continuous with the mouthpiece and a polygonal barrel, and a square bottom. Is a rectangular flat wall arranged in parallel opposite to the front and rear, an isosceles trapezoidal side wall which is continuous with the shoulder wall and is arranged in parallel opposite to the left and right sides, a flat wall and a side wall A sloped side wall substantially trapezoidal disposed therebetween, an upper sloped wall disposed between the shoulder wall and each edge of the flat wall and the side sloped wall, a bottom wall, a flat wall and the side. A lower inclined wall disposed between each end of the inclined wall and a vertical rib at a connecting portion between the flat wall and the side inclined wall, and a flat wall, an upper inclined wall, A horizontal rib is provided at a connection portion of the flat wall and the lower sloped wall, between the side edge of the upper sloped wall and the upper edge of the side sloped wall, and with the side edge of the lower sloped wall. Lower edge of side sloped wall The variable surface formed by the flat wall and each inclined wall is inverted by the snap operation within the elastic limit with respect to the invariable surface formed by the shoulder wall, the side wall, and the bottom wall. A configuration characterized by being deformable and restorable is adopted, as a triangular rib, a portion between a bulging wall protruding in the longitudinal direction of the rib from a corner arc edge of the flat wall and an opposite edge of the inclined wall. A rib bottom wall to be connected, the rib bottom wall comprising a boat bottom-shaped rib main portion, and two branch portions branched by a bulging wall, and each branch portion is:
A configuration characterized by being continuous with the corresponding vertical rib or horizontal rib is adopted. The restoration of the deformed volume-reducing bottle is characterized in that the bottle is restored by blowing compressed air from the mouthpiece of the bottle.

【0012】[0012]

【発明の実施の形態】次に、本発明の第1実施形態につ
いて、図1〜6を参照して説明する。本実施形態は、丸
形ボトルに係わるもので、図1,2に示すように、ボト
ル1は、口筒部2と胴部3と底部4とからなり、PE
T、高密度ポリエチレンその他可撓性のある硬質の合成
樹脂を素材樹脂としてブロー成形によって成型されてい
る。前記口筒部2には、キャップを被嵌するためのネジ
5と該ネジ5の下端に形成された膨出部6が設けられ、
その下方には保持環7が設けられている。
Next, a first embodiment of the present invention will be described with reference to FIGS. This embodiment relates to a round bottle, and as shown in FIGS. 1 and 2, the bottle 1 includes a mouthpiece portion 2, a body portion 3, and a bottom portion 4,
It is molded by blow molding using T, high-density polyethylene, or other flexible hard synthetic resin as a material resin. The barrel 2 is provided with a screw 5 for fitting a cap and a bulging portion 6 formed at a lower end of the screw 5.
Below this, a holding ring 7 is provided.

【0013】胴部3は、口筒部2に続く球帯状の肩壁8
と、該肩壁8に続く円筒状の胴壁9および該胴壁9に続
き底部4に続く球帯状の下部周壁10とからなり、肩壁
8と胴壁9上端との間には、胴壁9外周より一定距離内
側に位置する互いに直角をなす四つの垂直面上で半円形
に延びる可変リブ11a,b,c,dが配設されてお
り、それぞれの可変リブ11は、その上端部12が肩壁
8内に位置し、両側に延びた下端部13は、胴壁9と肩
壁8との境界部に達している。
The trunk 3 has a spherical shoulder 8 connected to the mouthpiece 2.
And a cylindrical torso wall 9 following the shoulder wall 8 and a spherical lower peripheral wall 10 following the torso wall 9 to the bottom portion 4. Between the shoulder wall 8 and the upper end of the torso wall 9, there is a torso. Variable ribs 11a, b, c, and d extending in a semicircular shape on four vertical planes that are perpendicular to each other and that are located inside the outer periphery of the wall 9 at a fixed distance are provided, and each variable rib 11 has an upper end. 12 is located in the shoulder wall 8, and a lower end 13 extending to both sides reaches a boundary between the body wall 9 and the shoulder wall 8.

【0014】前記下部周壁10は、胴壁9下端より延
び、底部4の底壁14の周縁15に続いており、球帯の
形状は肩壁8と同径で対称的になっている。下部周壁1
0には、前記可変リブ11と同一垂直面上で、可変リブ
に対して上下方向に対称形となる4つの可変リブ16
a,b,c,dが設けられている。上下の可変リブ1
1,16に囲まれた胴部3の壁面は、変形復元可能な可
変面17a,b,c,dを形成し、胴部のその他の壁面
は不変面18となっている。
The lower peripheral wall 10 extends from the lower end of the body wall 9 and continues to the peripheral edge 15 of the bottom wall 14 of the bottom portion 4. The shape of the spherical zone is symmetrical with the shoulder wall 8 with the same diameter. Lower peripheral wall 1
0 has four variable ribs 16 on the same vertical plane as the variable ribs 11 that are vertically symmetrical with respect to the variable ribs.
a, b, c, and d are provided. Up and down variable rib 1
The wall surfaces of the body 3 surrounded by the body 1 and 16 form variable surfaces 17a, b, c, and d that can be deformed and restored, and the other wall surfaces of the body are invariable surfaces 18.

【0015】可変リブ11は、胴部の補強とともに、胴
部壁の折れ部を形成するものである。 その断面形状
は、図3に示すように、やや肉厚の中央部19とやや薄
肉の側部20a,bを有しており、その両縁部は胴部壁
と連結されている。それぞれの連結部21a,21b
は、丸みが形成されており、連結部においては、側部2
0a,bの肉厚は連結された胴部壁22の肉厚とほぼ等
しくなっている。中央部19と側部20a,bとは弧状
に湾曲しているので、胴壁部が折り曲げられたり、胴部
巾を縮小するなど両連結部21a,21bを双方から押
圧するような力が加わると、まず、側部が湾曲し、続い
て中央部も湾曲されるので、可変リブ全体が弧状に湾曲
して連結部間の間隔aが間隔bに狭められる。また、逆
に両連結部の間隔を広げるような力が加えられると、湾
曲度が変わり、間隔は広がる。
The variable rib 11 forms a bent portion of the body wall together with the reinforcement of the body. As shown in FIG. 3, the cross-sectional shape has a slightly thicker central portion 19 and slightly thinner side portions 20a and 20b, both edges of which are connected to the body wall. Each connecting part 21a, 21b
Is rounded, and at the connecting portion, the side 2
The thicknesses of 0a and b are substantially equal to the thickness of the connected body wall 22. Since the central portion 19 and the side portions 20a and 20b are curved in an arc shape, a force is applied to press the both connecting portions 21a and 21b from both sides such as bending the trunk wall portion or reducing the trunk width. First, the side portions are curved, and then the central portion is also curved, so that the entire variable rib is curved in an arc shape, and the interval a between the connecting portions is reduced to the interval b. Conversely, when a force that increases the distance between the two connecting portions is applied, the degree of curvature changes, and the distance increases.

【0016】可変リブの中央部19、側部20a,bの
湾曲およびリブ両端部と胴部壁22との連結部21の変
形は、弾性変形の範囲で行われるようになっている。弾
性変形の範囲は、素材樹脂の弾性限応力、可変リブと連
結部の形状、厚さ等によって設計的に定められ、本発明
においては、素材樹脂としてPET、高密度PE、PP
など可撓性のある硬質の樹脂を用い、可変リブの形状、
内厚、壁厚、連結部の曲率などを実験をくり返すことに
よって設定している。
The bending of the central portion 19 and the side portions 20a and 20b of the variable rib and the deformation of the connecting portion 21 between the both ends of the rib and the body wall 22 are performed within a range of elastic deformation. The range of elastic deformation is determined by design based on the elastic limit stress of the material resin, the shape and thickness of the variable rib and the connecting portion, and in the present invention, PET, high-density PE, PP
Using flexible hard resin such as, the shape of the variable rib,
The inner thickness, wall thickness, curvature of the connecting part, etc. are set by repeating the experiment.

【0017】次に、ボトルの変形、減容について、図
4,5,6を参照して説明する。上記ボトル1は、可変
面17a,b,c,dを押圧すると、上下の円弧状の可
変リブ11,16の内側の連結部を含む平面Xに対し
て、可変面17が該平面Xを越え、スナップ動作によっ
て反転位置に維持されるので、可変面17の膨出した胴
壁9は内方に湾曲して平面内に陥没し、ボトル胴部は、
四つの平面によって形成される角形ボトルと同じ形状に
なって、その分減容されることになる。
Next, the deformation and volume reduction of the bottle will be described with reference to FIGS. When the bottle 1 is pressed against the variable surfaces 17a, b, c, d, the variable surface 17 exceeds the plane X with respect to the plane X including the connecting portions inside the upper and lower arc-shaped variable ribs 11, 16. Is maintained in the inverted position by the snap operation, so that the bulged body wall 9 of the variable surface 17 is curved inward and depressed in a plane, and the bottle body is
It has the same shape as a rectangular bottle formed by four planes, and the volume is reduced accordingly.

【0018】そのときの変形状態を図5を参照して、く
わしく説明する。図5は、可変リブ11の上端部12と
ボトル軸線を含む面で切った肩壁8上部の縦断面図であ
り、可変リブの反転作用を模式的に描いた図である。図
5(a)において、胴部3の可変面17を押圧していく
と、可変リブ11の両連結部21a,21bは、ほぼ等
しいモーメントを受けて曲がることになるから、両連結
部21a,21bにおいては、側部20と肩壁8のなす
角はほぼ等しく変形する。胴部の可変面17が押圧され
て平面Xを越えるときには、図5(b)に示すように可
変面17の壁面が曲線から直線になるとすると、連結部
21bの位置は、変形前の位置から距離s上方に移動
し、可変リブ11の両連結部間の間隔が短くなり、間隔
aから間隔bに変化して可変リブ11が湾曲される。
The deformed state at that time will be described in detail with reference to FIG. FIG. 5 is a longitudinal sectional view of the upper end portion 12 of the variable rib 11 and the upper portion of the shoulder wall 8 taken along a plane including the bottle axis, and is a diagram schematically illustrating the inverting action of the variable rib. In FIG. 5A, when the variable surface 17 of the body 3 is pressed, the two connecting portions 21a and 21b of the variable rib 11 bend by receiving substantially equal moments. In 21b, the angle between the side portion 20 and the shoulder wall 8 is deformed substantially equally. When the variable surface 17 of the body portion is pressed and exceeds the plane X, assuming that the wall surface of the variable surface 17 becomes a straight line from a curve as shown in FIG. 5B, the position of the connecting portion 21b is changed from the position before deformation. The variable rib 11 is moved upward by the distance s, the distance between the two connecting portions of the variable rib 11 is reduced, and the variable rib 11 is curved by changing from the distance a to the distance b.

【0019】次いで、胴部の可変面17をさらに内方に
押圧すると、図5(c)に示すように可変面17の膨出
面は内方に湾曲した陥没面となり、その縦断面は、変形
前の曲線に対称的な曲線となる。連結部21a,bにお
いて、可変リブ11の側部20aと肩壁上方部8a、側
部20bと肩壁8のなす角は、ほぼ等しくなるので、両
連結部21a,21bは、上部の連結部21aを通る垂
直線上に位置するようになり、可変面17は、平面Xよ
り内方に位置するようになる。同時に可変リブの両側部
を圧迫する力は小さくなるので、両連結部間の間隔cは
間隔bより広がり、湾曲度は減少する。胴部の可変面1
7を平面Xより膨出した状態に復元させるためには、可
変リブの両連続部間の間隔を再び縮小させ、変形させる
復元力が必要となる。
Next, when the variable surface 17 of the body is further pressed inward, the bulging surface of the variable surface 17 becomes a concave surface curved inward as shown in FIG. The curve is symmetric to the previous curve. In the connecting portions 21a and 21b, the angle between the side portion 20a of the variable rib 11 and the upper portion 8a of the shoulder wall and the angle between the side portion 20b and the shoulder wall 8 become substantially equal, so that both connecting portions 21a and 21b are connected to the upper connecting portion. The variable surface 17 comes to be located on a vertical line passing through 21a, and the variable surface 17 comes to be located inside the plane X. At the same time, the force pressing on both sides of the variable rib becomes smaller, so that the interval c between both connecting portions is wider than the interval b, and the degree of curvature is reduced. Variable surface 1 of torso
In order to restore the swelling of the variable rib 7 from the plane X, a restoring force for reducing the distance between the two continuous portions of the variable rib again and deforming the variable rib is required.

【0020】下部に配設された可変リブ16は、上部の
可変リブ11と対称的に形成され、球帯状の下部周壁1
0内に位置しているので、可変リブ11について述べた
上記作用がもたらされ、変形状態も対称的になるので、
ボトル1の可変面17全体は、図4に示すように、スナ
ップ動作により反転変形され、反転状態は、復元力を作
用させない限りそのまま維持される。復元は、ボトル内
部に圧縮空気を吹き込むことによって行われ、それまで
は反転状態が維持されるのである。
The variable rib 16 disposed at the lower portion is formed symmetrically with the upper variable rib 11 and has a spherical band-shaped lower peripheral wall 1.
Since it is located within 0, the above-described operation of the variable rib 11 is provided, and the deformed state is symmetrical.
As shown in FIG. 4, the entire variable surface 17 of the bottle 1 is inverted and deformed by the snap operation, and the inverted state is maintained as long as no restoring force is applied. The restoration is performed by blowing compressed air into the bottle, and the inverted state is maintained until then.

【0021】次に、減容率について図6を参照して説明
すると、本発明にいう減容率は、成形ボトルの占める四
角柱容積に対し、変形した減容ボトルの占める四角柱容
積を差し引いた容積の割合である。ボトルの高さが同一
の場合には、ボトルの占める四辺形の面積となる。図6
において、円形成形ボトルの占める面積は直径D×直径
Dに対して、対向する変形面(平面X)までの距離を
A,Bとすると、変形した減容ボトルの占める面積は、
A×Bとなり、減容率は、(D・D−A・B)/D・D
で表される。本実施形態においては、それぞれの可変リ
ブは、同一距離内方に配設されているから、A=Bとな
っている。
Next, the volume reduction rate will be described with reference to FIG. 6. The volume reduction rate according to the present invention is obtained by subtracting the square pillar volume occupied by the deformed volume reduction bottle from the square pillar volume occupied by the molded bottle. It is the ratio of the volume. If the heights of the bottles are the same, it is the area of the quadrilateral occupied by the bottle. FIG.
, The area occupied by the circular molded bottle is diameter D × diameter D, and when the distance to the opposing deformed surface (plane X) is A, B, the area occupied by the deformed volume-reducing bottle is:
A × B, and the volume reduction rate is (D · D−A · B) / D · D
It is represented by In the present embodiment, A = B because each variable rib is disposed inside the same distance.

【0022】減容率は、可変リブの配設場所を変えるこ
とによって、換言すればA,Bの値を変えることによっ
て変更することができる。可変面、可変リブの変形を小
さくすれば弾性変形の範囲に押さえられるが、わずかな
外力を加えても復元することになり、可変リブの変形
は、可変面がスナップ動作で反転、復元可能であるよう
にしなければならない。
The volume reduction rate can be changed by changing the location of the variable rib, in other words, by changing the values of A and B. If the deformation of the variable surface and the variable rib is reduced, it can be suppressed to the range of elastic deformation, but it will be restored even if a small external force is applied, and the deformation of the variable rib can be reversed and restored by snapping the variable surface. You have to be.

【0023】積載効率は、直交する二軸方向にボトルを
相互に接合するよう整列させたときに、単位面積当たり
に積み込まれる成形ボトルの個数に対する減容ボトルの
個数の比であり、D・D/A・Bで表される。減容ボト
ルを箱詰めにすると積載効率を高めることができる。
The loading efficiency is the ratio of the number of volume-reduced bottles to the number of molded bottles loaded per unit area when the bottles are aligned so as to be joined to each other in orthogonal biaxial directions. / A · B. If the reduced volume bottles are packed in boxes, the loading efficiency can be increased.

【0024】本実施形態では、図示した減容ボトルは、
減容率は約32%となっており、積載効率は、1.46
となり、ボトルの積載量を46%上昇させることができ
る。
In this embodiment, the illustrated reduced volume bottle is
The volume reduction rate is about 32%, and the loading efficiency is 1.46.
Thus, the loading capacity of the bottle can be increased by 46%.

【0025】本実施形態では、可変リブを弧状として上
下に配置したことを一つの特徴として4面に配設してい
るが、必要に応じ配設位置、数は変更することができ
る。次に変形実施例について図7を参照して説明する。
上記で説明したものと異なる点は、可変リブ11,16
をボトルの軸心に対向するように配設し、可変面を対向
する二面17a,17cとしたことである。ボトルの減
容率は、(D・D−A・D)/D・Dとなり、図示した
実施例では約17%となっている。また、可変リブを上
下一対だけとし、可変面を一面だけにしてもよく、この
場合、ボトルの減容率は約9%となる。
In the present embodiment, the variable ribs are arranged on the four surfaces with one characteristic that they are arranged vertically in an arc shape. However, the arrangement positions and numbers can be changed as necessary. Next, a modified embodiment will be described with reference to FIG.
What differs from the above is that the variable ribs 11 and 16
Are disposed so as to face the axis of the bottle, and the variable faces are two faces 17a and 17c that face each other. The volume reduction rate of the bottle is (DDAD) / DD, which is about 17% in the illustrated embodiment. Further, the variable rib may be a pair of upper and lower, and the variable surface may be only one surface. In this case, the volume reduction rate of the bottle is about 9%.

【0026】また、可変リブの位置をボトルの中心に寄
せることによって、減容率を高めることができる。減容
ボトルを成形ボトルの円周に内接する正四角形に近づけ
ることによって減容率を50%に接近させることができ
るが、可変リブの位置をボトルの中心に寄せると、可変
リブの上端が位置する肩壁の肉厚が厚くなり、可変リブ
の上端における変形が困難となり、また、胴壁に位置す
る可変面の側縁部が相互に干渉し合うという問題も発生
し、一定の限度がでてくる。そこで、可変リブの位置を
変え実験を重ねたところ、可変面が干渉しないだけの細
巾の壁面を残して、隣り合う可変リブの下端部側縁をほ
ぼ一致するように接近させて配設することによって、ボ
トルの減容率を45%まで上げることができた。
Further, by reducing the position of the variable rib toward the center of the bottle, the volume reduction rate can be increased. The volume reduction rate can be made close to 50% by bringing the volume reduction bottle closer to the square inscribed in the circumference of the molded bottle. However, when the position of the variable rib is shifted to the center of the bottle, the upper end of the variable rib is positioned The thickness of the shoulder wall becomes thicker, making it difficult to deform the upper end of the variable rib, and there also occurs a problem that the side edges of the variable surfaces located on the body wall interfere with each other, and to a certain extent. Come. Therefore, when experiments were repeated with changing the position of the variable ribs, the variable ribs were arranged close to each other so that the lower end side edges of the adjacent variable ribs almost coincided with each other, leaving a narrow wall surface that does not interfere with the variable surface. As a result, the volume reduction rate of the bottle could be increased to 45%.

【0027】可変リブの配設位置は、縦方向と横方向で
異なるようにしてもよく、ボトルの形状は楕円ボトルで
あってもよい。
The positions of the variable ribs may be different in the vertical direction and the horizontal direction, and the shape of the bottle may be an elliptical bottle.

【0028】次に、縦長の円形ボトルに係わる第2実施
形態について、図8〜12を参照して説明する。前記第
1実施形態では上下に対向して位置する半円状の可変リ
ブを配設したが、ボトルが縦長になると、上下の可変リ
ブの作用だけでは胴壁の不変面に外力がかかると可変面
の胴壁中央に復元力が働き、復元が全長に渡って広がり
反転状態を維持することが困難になるという問題が生じ
る。本実施形態はこれを改善するため、可変リブを胴壁
にも配設して胴長の円形ボトルにも適応させるようにし
たもので、以下前記実施形態と異なる点を中心に説明す
る。
Next, a second embodiment relating to a vertically long circular bottle will be described with reference to FIGS. In the first embodiment, the semi-circular variable ribs which are vertically opposed to each other are arranged. However, when the bottle becomes vertically long, the variable ribs can be changed only by the action of the upper and lower variable ribs when an external force is applied to the invariable surface of the body wall. A restoring force acts on the center of the torso wall of the surface, and the restoring spreads over the entire length, and it is difficult to maintain the inverted state. In the present embodiment, in order to improve this, a variable rib is arranged on the body wall so as to be adapted to a circular bottle having a body length. Hereinafter, differences from the above embodiment will be mainly described.

【0029】図8〜10に示すようにボトル30は、口
筒部31、胴部32、底部33とからなり、胴部32
は、球帯状の肩壁34と円筒状の胴壁35と、前記肩壁
34と対称形になっている球帯状の下部周壁36とから
なっている。肩壁34から下部周壁36にかけて、胴壁
35から所定距離内側に位置する互いに直角をなす四面
の垂直面上にそれぞれ可変リブ37a,b,c,dが配
設されている。
As shown in FIGS. 8 to 10, the bottle 30 comprises a mouthpiece portion 31, a body portion 32, and a bottom portion 33.
Is composed of a spherical belt-shaped shoulder wall 34, a cylindrical trunk wall 35, and a spherical belt-shaped lower peripheral wall 36 symmetrical to the shoulder wall 34. From the shoulder wall 34 to the lower peripheral wall 36, variable ribs 37a, b, c, and d are respectively disposed on four vertical surfaces that are perpendicular to each other and that are located inside the trunk wall 35 at a predetermined distance from each other.

【0030】可変リブ37は、円弧リブ38、縦リブ3
9、横リブ40とからなっている。円弧リブ38は、肩
壁34内に位置する半円形の上部の円弧リブ38aと、
該円弧リブ38aに対称形とし、下部周壁36内に位置
する下部の円弧リブ38bとを具えており、胴壁35内
に位置して円弧リブ38a,bの半円の両端縁を結ん
で、二つの直線状の縦リブ39a,bが設けられてい
る。上下の円弧リブ38a,bには、その両端縁を結ぶ
円弧状の横リブ40a,bが架設されており、その円弧
中央部41a,bは、胴壁35の上下の端部、すなわち
胴壁35と肩壁34、胴壁35と下部周壁36の境界上
に位置している。前記可変リブ37によって囲まれた部
分は、胴部32の膨出された可変面42a,b,c,d
となっており、その他の胴部32の部分は、不変面43
となっている。
The variable rib 37 includes an arc rib 38, a vertical rib 3
9, and a horizontal rib 40. The arcuate rib 38 includes a semicircular upper arcuate rib 38a located in the shoulder wall 34,
The circular rib 38a has a symmetrical shape, and includes a lower circular rib 38b located in the lower peripheral wall 36. The lower circular rib 38a is located in the body wall 35 and connects both end edges of a semicircle of the circular arc ribs 38a, b. Two linear vertical ribs 39a and 39b are provided. The upper and lower arc ribs 38a and 38b are provided with arc-shaped horizontal ribs 40a and 40b connecting both edges thereof. The arc center portions 41a and 41b are formed at the upper and lower ends of the body wall 35, that is, the body wall. It is located on the boundary between the shoulder wall 35 and the shoulder wall 34, and between the trunk wall 35 and the lower peripheral wall 36. The portions surrounded by the variable ribs 37 are the swelled variable surfaces 42a, b, c, d of the body 32.
The other part of the body 32 is invariable surface 43
It has become.

【0031】次に、可変リブ37の作用について、図1
1,12を参照して説明する。可変リブ37の断面形状
は、第1実施形態のそれとほぼ同一であって、図11に
示すように、肉厚の中央部44とやや薄肉の側部45が
円弧状に湾曲して形成されており、両側部45の端縁
は、胴部32の対応する壁面に続いており、丸みを持っ
た連結部46となっている。上下の円弧リブ38a,b
は、肩壁34または下部周壁36内に配設され、前記第
1実施形態における可変リブ11,16と同様の作用効
果をもたらすことができる。
Next, the operation of the variable rib 37 will be described with reference to FIG.
This will be described with reference to FIGS. The cross-sectional shape of the variable rib 37 is substantially the same as that of the first embodiment, and as shown in FIG. 11, a thick central portion 44 and a slightly thin side portion 45 are formed to be curved in an arc shape. The edges of the both sides 45 continue to the corresponding wall surface of the body 32, forming a rounded connecting portion 46. Upper and lower arc ribs 38a, b
Are arranged in the shoulder wall 34 or the lower peripheral wall 36, and can provide the same operation and effects as those of the variable ribs 11 and 16 in the first embodiment.

【0032】胴壁35に配設された左右の縦リブ39
a,bは、図11に示すように、胴壁35の可変面42
を押圧するとき、まず、縦リブ39a,bの両方の連結
部46の間隔がaからbに縮小し、可変面42の胴壁3
5を平面状とし、さらに、内方に押圧すると、胴壁35
はスナップ動作によって反転し、内方に湾曲する。その
際、縦リブ39a,bは、連結部46間の間隔を拡大し
て可変面を反転位置を維持するように作用する。そし
て、縦リブ39は、胴壁35の上下全長に渡っているの
で、胴壁35の不変面43に外力がかかっても復元する
ことなく、可変面42の反転状態が確実に維持されるの
である。
Left and right vertical ribs 39 disposed on the body wall 35
a and b are variable surfaces 42 of the body wall 35 as shown in FIG.
, First, the interval between both connecting portions 46 of the vertical ribs 39a, b is reduced from a to b, and the body wall 3 of the variable surface 42 is
5 is made flat, and further pressed inward, the body wall 35
Is inverted by the snap action and curves inward. At this time, the vertical ribs 39a and 39b act to enlarge the interval between the connecting portions 46 and maintain the variable surface in the inverted position. Since the vertical ribs 39 extend over the entire vertical length of the body wall 35, even if an external force is applied to the invariable surface 43 of the body wall 35, the inverted state of the variable surface 42 is reliably maintained without being restored. is there.

【0033】次に、弧状の横リブ40a,bの作用につ
いて説明すると、横リブ40a,bは、その円弧中央部
41a,bが、胴壁35の端部すなわち胴壁35と肩壁
34との境界線または胴壁35と下部周壁36との境界
線に位置していることによって、可変面42上下の球帯
の反転を容易にするとともに、反転状態を確実に維持す
るように作用するものである。
Next, the operation of the arc-shaped horizontal ribs 40a, b will be described. The horizontal ribs 40a, b are formed such that the arc central portions 41a, b are formed at the ends of the body wall 35, that is, the body wall 35 and the shoulder wall 34. Located on the boundary line of the body wall 35 or the lower peripheral wall 36, thereby facilitating the reversal of the ball band above and below the variable surface 42 and acting to reliably maintain the reversal state. It is.

【0034】本実施形態では、図12に示すように、円
弧リブ38a,b、縦リブ39a,b、横リブ40a,
bの作用が総合され、可変面42を押圧していくと、不
変面43と可変リブ37の接続部によって形成される平
面Xaに対して、可変面42がスナップ動作によって反
転し、膨出した可変面42が内方に湾曲陥没して減容さ
れることになる。その減容率は、図示した実施例では、
約32%である。
In the present embodiment, as shown in FIG. 12, arcuate ribs 38a, b, vertical ribs 39a, b, horizontal ribs 40a,
When the action of b is integrated and the variable surface 42 is pressed, the variable surface 42 is inverted by a snapping operation and swells with respect to the plane Xa formed by the connection portion of the constant surface 43 and the variable rib 37. The variable surface 42 is curved and depressed inward to reduce the volume. The volume reduction rate is, in the illustrated embodiment,
It is about 32%.

【0035】本実施形態では、可変面を四個所に設けて
いるが、可変面は一個所または二個所に配設するだけで
もよく、また、可変リブの配設位置を内方に位置させる
こと等によって前記第1実施形態と同様に減容率を変え
ることができる。
In the present embodiment, the variable surfaces are provided at four positions. However, the variable surfaces may be provided only at one or two positions, and the variable ribs may be provided at the inner positions. Thus, the volume reduction rate can be changed in the same manner as in the first embodiment.

【0036】次に、円形ボトルに係わる第3実施形態に
ついて図13〜18を参照して説明する。本実施形態
は、第1実施形態と同様に円形ボトルに係わるものであ
るが、胴部周面に円筒形膨出部を設けた角形壁を形成
し、膨出部を可変面として可変リブを配設したものであ
る。
Next, a third embodiment relating to a circular bottle will be described with reference to FIGS. The present embodiment relates to a circular bottle similarly to the first embodiment, but forms a rectangular wall having a cylindrical bulge on the body peripheral surface, and uses a bulge as a variable surface and a variable rib. It is arranged.

【0037】図13〜15に示すように、ボトル50
は、前記各実施形態と同じく口筒部51と胴部52およ
び底部53とからなっており、胴部52は、口筒部51
に続くほぼ球帯状の肩壁54と、胴壁55とを具えてい
る。胴壁55は、前記肩壁54に続く角壁56と、該角
壁56から膨出するよう形成され、上下を球帯壁57
a,57bとし、中間部を円筒壁58とした膨出部59
とを具えている。角壁56の角部は裁断されて、肩壁5
4に続く所定の巾の円筒壁60が形成され、胴部52
は、実質的には円形に近い形状になっている。
As shown in FIGS.
Comprises a mouthpiece 51, a body 52 and a bottom 53, as in the previous embodiments.
, A shoulder wall 54 having a substantially spherical band shape and a torso wall 55. The torso wall 55 is formed so as to bulge out of the corner wall 56 continuing from the shoulder wall 54 and the corner wall 56.
a, 57b, and a bulging portion 59 having a cylindrical portion as an intermediate portion.
With The corner of the corner wall 56 is cut and the shoulder wall 5 is cut.
4, a cylindrical wall 60 having a predetermined width is formed.
Has a substantially circular shape.

【0038】胴壁55は、図15に示されているよう
に、一定巾の円筒壁60と、該円筒壁60に続く角壁5
6の細巾の平壁側部56aと、円筒壁60より小径の円
筒壁58によって形成されており、平壁側部56aと膨
出部59の円筒壁58との連続部は、直線縁61a,6
1bとなっている。前記膨出部59の上部球帯壁57a
は、角壁56の平壁上部56bに連続しており、その連
続部は円弧縁62aとなっている。下部球帯壁57b
は、角壁56の平壁下部56cに連続しており、その連
続部は円弧縁62bとなっている。直線縁61a,61
b、円弧縁62a,62bによって長円状の垂直な平面
が形成されている。
As shown in FIG. 15, the torso wall 55 includes a cylindrical wall 60 having a fixed width and a square wall 5 following the cylindrical wall 60.
6 and a cylindrical wall 58 having a smaller diameter than the cylindrical wall 60. A continuous portion between the flat wall side 56a and the cylindrical wall 58 of the bulging portion 59 has a straight edge 61a. , 6
1b. Upper spherical band wall 57a of the bulging portion 59
Is continuous with the flat wall upper portion 56b of the square wall 56, and the continuous portion is an arc edge 62a. Lower spherical belt wall 57b
Is continuous with the lower flat wall portion 56c of the square wall 56, and the continuous portion is an arc edge 62b. Straight edges 61a, 61
b, an elliptical vertical plane is formed by the arc edges 62a and 62b.

【0039】前記膨出部59の中央には、上部球帯壁5
7a、円筒壁58、下部球帯壁57bにわたって上下に
縦リブ63が配設されており、上下の球帯壁57a,b
のそれぞれには、前記縦リブ63に交差する所定長さの
横リブ64が配設されている。縦リブ63及び横リブ6
4は、いずれも可変リブであって、図15に示されてい
るように、肉厚の中央部65とやや薄肉の側部66a,
bとを有しており、両縁部は、膨出部59の壁面に接続
され、連結部67a,bを形成している。
At the center of the bulging portion 59, the upper spherical wall 5
7a, a cylindrical wall 58, and a lower spherical band wall 57b, vertical ribs 63 are disposed vertically, and the upper and lower spherical band walls 57a, b
Each has a horizontal rib 64 having a predetermined length intersecting with the vertical rib 63. Vertical rib 63 and horizontal rib 6
Numeral 4 denotes variable ribs, each of which has a thick central portion 65 and slightly thin side portions 66a, as shown in FIG.
b, and both edges are connected to the wall surface of the bulging portion 59 to form connecting portions 67a and 67b.

【0040】前記底部53は、図16に示すように、円
形の底壁68と該底壁68から立ち上がる周縁69、お
よび該周縁69と角壁56の下端部70とを結ぶ傾斜壁
71、円筒壁60の下端部72とを結ぶ傾斜壁73とか
らなっている。
As shown in FIG. 16, the bottom 53 has a circular bottom wall 68, a peripheral edge 69 rising from the bottom wall 68, an inclined wall 71 connecting the peripheral edge 69 and a lower end 70 of the square wall 56, and a cylindrical member. It comprises an inclined wall 73 connecting the lower end 72 of the wall 60.

【0041】次に、可変リブの作用とボトルの変形作用
について説明する。膨出部59を押圧すると、膨出部5
9は、直線縁61a,bの上下の円弧縁に沿ってスナッ
プ動作によって反転し、内方に湾曲し、陥没する。
Next, the function of the variable rib and the deformation of the bottle will be described. When the bulging portion 59 is pressed, the bulging portion 5
Numeral 9 is inverted by snapping along the upper and lower arc edges of the straight edges 61a, 61b, and is curved inward and depressed.

【0042】そのときの縦リブ63の作用について、図
17を参照して説明すると、膨出部59を押圧すると、
膨出部59の円筒壁58は内方に移動するが、円筒壁6
0と平壁側部56aが屈曲されているので、円筒壁58
は、円筒壁60の側端縁74と直線縁61a,bを軸と
して変形し、円筒壁58の断面は曲線からほぼ直線にな
り、図17(b)に示すように、縦リブ63を湾曲させ
て、両連結部67a,b間の間隔aを間隔bに縮小する
ように作用する。さらに押圧すると、円筒壁58は内方
に湾曲して、縦リブ63は元の状態に戻り、反転状態を
維持する。
The operation of the vertical rib 63 at that time will be described with reference to FIG.
The cylindrical wall 58 of the bulging portion 59 moves inward, but the cylindrical wall 6
0 and the flat wall side portion 56a is bent, so that the cylindrical wall 58
Is deformed with the side edge 74 of the cylindrical wall 60 and the straight edges 61a, 61b as axes, and the cross section of the cylindrical wall 58 becomes substantially straight from a curve, and as shown in FIG. Thus, the gap a between the connecting portions 67a and 67b is reduced to the gap b. When further pressed, the cylindrical wall 58 bends inward, and the vertical rib 63 returns to the original state, and maintains the inverted state.

【0043】球帯壁57a,bにおいては、膨出部59
はボトルの横方向と同時に縦方向に湾曲することになる
が、縦リブ63の上記の作用によって、横断面での球帯
壁57a,bの横方向への変形を行い、横リブ64が変
形することによって第1実施形態における可変リブと同
様に、球帯壁57a,bの縦断面での縦方向への湾曲変
形をさせるように作用する。両者の作用によって、球帯
壁57a,bを反転させ、反転状態を維持するように作
用するが、同時に横リブ64と縦リブ63が交差してい
るので、横リブの変形によって球帯壁57の変形面に剛
直性を付与し、縦リブ63の復元を阻止するように作用
する。
The bulging portions 59 are formed on the spherical belt walls 57a and 57b.
Is bent in the vertical direction at the same time as the horizontal direction of the bottle, but due to the above-mentioned action of the vertical ribs 63, the zonal walls 57a, 57b in the cross section are deformed in the horizontal direction, and By doing so, similarly to the variable rib in the first embodiment, the spherical ribs 57a and 57b act so as to bend and deform in the vertical direction in the vertical cross section. By the action of both, the spherical band walls 57a and 57b are inverted to act to maintain the inverted state. However, since the horizontal rib 64 and the vertical rib 63 cross at the same time, the spherical rib wall 57 is deformed by the horizontal rib. The rigidity is given to the deformed surface of the vertical rib 63 to prevent the vertical rib 63 from restoring.

【0044】膨出部59が、反転して内方に湾曲するこ
とによって変形されたボトルは、角壁56の形状に減容
されるが、図示した実施例では減容率は約32%であ
る。本実施形態においても、縦長のボトルでは第2実施
形態と同様に直線縁61a,61bに沿って縦リブを配
設してもよい。また、膨出部を角壁の対向する二面に配
設するだけでもよく、角壁の形状を短形としてもよい。
The bottle deformed by the bulging portion 59 being inverted and curved inward is reduced in volume to the shape of the square wall 56. In the illustrated embodiment, the volume reduction rate is about 32%. is there. Also in this embodiment, in a vertically long bottle, vertical ribs may be provided along the straight edges 61a and 61b as in the second embodiment. Further, the bulging portions may be simply provided on two opposing surfaces of the square wall, and the shape of the square wall may be made shorter.

【0045】次に、角形ボトルに係わる第4実施形態に
ついて、図19〜30を参照して説明する。図19〜2
2に示すように本実施形態のボトル80は、口筒部81
と胴部82、底部83とからなり、PETその他可撓性
を有する硬質の樹脂を素材樹脂とし押出しブロー成形に
よって成形されている。前記口筒部81には、キャップ
を被嵌するためのネジ84と該ネジ84の下端に形成さ
れた膨出部85が設けられ、その下方には保持環86が
設けられている。
Next, a fourth embodiment relating to a square bottle will be described with reference to FIGS. Figures 19-2
As shown in FIG. 2, the bottle 80 of the present embodiment has a
And a body portion 82 and a bottom portion 83, and are formed by extrusion blow molding using PET or another hard resin having flexibility as a material resin. The mouthpiece 81 is provided with a screw 84 for fitting a cap and a bulging portion 85 formed at the lower end of the screw 84, and a holding ring 86 is provided below the bulge 85.

【0046】前記胴部82は、口筒部81に連続して形
成される肩壁87と該肩壁87に連続する多角周壁88
からなり、前記底部83は、長方形の底壁89とその周
縁から立ち上がる底周壁90とを具えている。多角周壁
88は、前後に対向して平行に配設された長方形の平壁
91a,bと、肩壁87に連続し、左右の側部に対向し
て平行に配設された等脚台形の側壁92a,b、および
平壁91と側壁92との間に配設されたほぼ台形の側部
傾斜壁93a,b,c,dとを具えている。
The body portion 82 has a shoulder wall 87 formed continuously with the mouthpiece portion 81 and a polygonal peripheral wall 88 connected to the shoulder wall 87.
The bottom portion 83 has a rectangular bottom wall 89 and a bottom peripheral wall 90 rising from the periphery thereof. The polygonal peripheral wall 88 is of an isosceles trapezoidal shape that is continuous with rectangular flat walls 91a and 91b disposed in parallel to face each other and the shoulder wall 87, and is disposed in parallel to face left and right sides. It has side walls 92a, b and substantially trapezoidal side inclined walls 93a, b, c, d disposed between the flat wall 91 and the side wall 92.

【0047】前記肩壁87の側縁94と平壁91および
側部傾斜壁93との間には、上部傾斜壁95a,bが配
設されており、底周壁90の前後の端縁96と平壁91
a,b、および側部傾斜壁93との間には下部傾斜壁9
7a,bが配設されている。前記側壁92は、前後の端
部は丸みをもって屈曲し、ボトル前後面で上下に延びる
帯壁98が形成され、その側縁99は、側部傾斜壁93
の縁部に連続している。
Between the side edge 94 of the shoulder wall 87 and the flat wall 91 and the side inclined wall 93, upper inclined walls 95a and 95b are provided. Flat wall 91
a, b, and the lower inclined wall 9 between the side inclined wall 93.
7a and 7b are provided. The side wall 92 is bent at its front and rear ends with roundness, and formed with a band wall 98 extending vertically on the front and rear surfaces of the bottle.
Is continuous with the edge.

【0048】平壁91a,bの側端縁100と各側部傾
斜壁93a,b,c,dの側端縁101との間には、両
者を接続する縦リブ102が配設され、平壁91a,b
の上端縁103と上部傾斜壁95の下端縁104との間
には、両者を接続する上部横リブ105が配設され、平
壁91a,bの下端縁106と下部傾斜壁97a,bの
上端縁107との間には、両者を接続する下部横リブ1
08が配設されている。上部傾斜壁95の側端縁109
と側部傾斜壁93の上端縁110および平壁91の角部
円弧縁111との間には上部三角リブ112が配設さ
れ、下部傾斜壁97の側端縁113と側部傾斜壁93の
下端縁114、および平壁91の角部円弧縁111との
間には、下部三角リブ115が配設されている。
Between the side edge 100 of the flat walls 91a and 91b and the side edge 101 of each of the side inclined walls 93a, 93b and 93d, there is provided a vertical rib 102 for connecting the two. Walls 91a, b
An upper horizontal rib 105 is provided between the upper edge 103 of the flat wall 91a and the lower edge 104 of the upper inclined wall 95, and the lower edge 106 of the flat walls 91a and 91b and the upper edge of the lower inclined wall 97a and 97b. Between the edge 107 and the lower horizontal rib 1 connecting them.
08 is provided. Side edge 109 of upper inclined wall 95
An upper triangular rib 112 is provided between the upper edge 110 of the side inclined wall 93 and the corner arc edge 111 of the flat wall 91, and the side edge 113 of the lower inclined wall 97 and the side A lower triangular rib 115 is provided between the lower edge 114 and the corner arc edge 111 of the flat wall 91.

【0049】前記縦リブ102、各横リブ105,10
8および各三角リブ112,115は、いずれも弾性限
度内で変形、復元可能な可変リブであって、それらの可
変リブで接続された平壁91、側部傾斜壁93、上部傾
斜壁95、下部傾斜壁97によって可変面が形成され、
肩壁87、側壁92および底壁89によって形成される
不変面に対して、変形、復元可能となっている。変形
は、平壁91a,bを押圧することによって行われ、ス
ナップ動作によって可変面がボトル内部に偏寄され、押
圧を解いてもその状態が維持される。
The vertical rib 102, each horizontal rib 105, 10
8 and each of the triangular ribs 112 and 115 are variable ribs that can be deformed and restored within the elastic limit, and are connected by the variable ribs to the flat wall 91, the side inclined wall 93, the upper inclined wall 95, A variable surface is formed by the lower inclined wall 97,
The invariable surface formed by the shoulder wall 87, the side wall 92, and the bottom wall 89 can be deformed and restored. The deformation is performed by pressing the flat walls 91a and 91b, and the variable surface is biased toward the inside of the bottle by the snap operation, and the state is maintained even when the pressing is released.

【0050】次に、各可変リブの構造とその作用につい
て、図23〜29を参照して説明する。まず、始めに各
可変リブの求められる作用効果の基本について、図23
を参照して説明する。説明の前提として、上部傾斜壁9
5が、その壁面と両側の二つの帯壁98の側縁99との
交点を相互に結ぶ直線116を軸として廻動するものと
し、各傾斜壁は等脚台形で、その巾および傾斜辺の傾斜
角度はすべて同一であり、縦リブ102、上部横リブ1
05、下部横リブ108の断面形状とその巾も、すべて
同一であると仮定して説明する。
Next, the structure and operation of each variable rib will be described with reference to FIGS. First, the basics of the function and effect required of each variable rib will be described with reference to FIG.
This will be described with reference to FIG. As a premise of the explanation, the upper inclined wall 9
5 rotates about a straight line 116 connecting the intersections of the wall surface and the side edges 99 of the two band walls 98 on both sides, and each inclined wall has an isosceles trapezoidal shape, and has a width and an inclined side. The inclination angles are all the same, and the vertical rib 102, the upper horizontal rib 1
05, the description will be made on the assumption that the cross-sectional shape and width of the lower horizontal rib 108 are all the same.

【0051】側部傾斜壁93は側縁99を軸とし、下部
傾斜壁97は端縁96を軸として廻動するが、各軸線に
よって、長方形の平面Yが形成され、平壁91は、平面
Yに平行に配設されることになる。平面Yのすべての角
部は相互に対称形になっているので、一つの角部のみを
図示して以下説明する。
The side inclined wall 93 rotates around the side edge 99, and the lower inclined wall 97 rotates around the end edge 96. Each axis forms a rectangular plane Y, and the flat wall 91 forms a plane. It will be arranged in parallel to Y. Since all corners of the plane Y are symmetrical to each other, only one corner is illustrated and described below.

【0052】各傾斜壁(93a,b、95、97)の傾
斜角度をαとし、平壁91を平面Yに平行に移動させ、
各傾斜壁を廻動させ平面Yに一致させると、平壁91は
91Aに、側部傾斜壁93は93Aとなる。そして、側
端縁101は線101A上に、上端縁110は線110
A上に位置するようになり、同じく上部傾斜壁95の下
端縁104は線104A上に、側端縁109は線109
A上に位置することになる。
The angle of inclination of each inclined wall (93a, b, 95, 97) is α, and the flat wall 91 is moved in parallel to the plane Y,
When each inclined wall is rotated to coincide with the plane Y, the flat wall 91 becomes 91A and the side inclined wall 93 becomes 93A. The side edge 101 is on the line 101A, and the upper edge 110 is on the line 110A.
A, the lower edge 104 of the upper inclined wall 95 is also on the line 104A, and the side edge 109 is on the line 109A.
It will be located on A.

【0053】前記可変面のスナップ動作による反転は、
可変面がまず平面Yと一致し、ついで、平面Yを越えて
内側に位置させることであるが、そのときの各可変リブ
の必要とする作用効果について述べる。まず、縦リブ1
02、上部横リブ105については、図に示すように可
変リブの間隔aを間隔bとなるように縮小させることで
ある。つぎに、上部三角リブ112については、側端縁
109、上端縁110、線109A、線110Aの交点
をO、それぞれの端点をA、B、A1 、B1 とすると、
∠AOBを∠A1 OB1 に縮小させ、平面上で平壁の角
部円弧縁111と線分ABとの距離を角部円弧縁111
と線分A1 B1 との距離になるように縮小させることで
ある。これは、三角リブを、長手方向と同時に横方向に
湾曲変形させることによって達成できる。
The reversal of the variable surface by the snapping operation is as follows.
First, the variable surface coincides with the plane Y, and then it is positioned inside beyond the plane Y. At this time, the operation and effect required by each variable rib will be described. First, vertical rib 1
02, the upper horizontal rib 105 is to reduce the interval a between the variable ribs so as to be the interval b as shown in the figure. Next, regarding the upper triangular rib 112, the intersection of the side edge 109, the upper edge 110, the line 109A, and the line 110A is O, and the respective end points are A, B, A1, and B1.
∠AOB is reduced to ∠A1 OB1, and the distance between the corner arc 111 of the flat wall and the line segment AB on the plane is changed to the corner arc 111
And the line segment A1 B1. This can be achieved by bending the triangular ribs laterally as well as longitudinally.

【0054】次に、縦リブ102とボトル80の横断面
での変形について、図24を参照して説明する。図24
(a)に示すように、縦リブ102は、中央部をやや肉
厚とし、断面円弧のリブ本体120を有しており、その
一方の端部121は、側部傾斜壁93の側端縁101と
接続しており、他方の端部122は、平壁91の側端縁
100より傾斜して突出する突出縁123と接続されて
いる。
Next, the deformation of the vertical rib 102 and the bottle 80 in the cross section will be described with reference to FIG. FIG.
As shown in (a), the vertical rib 102 has a rib body 120 having a slightly thick central portion and an arc cross section, and one end 121 of the vertical rib 102 is a side edge of the side inclined wall 93. The other end 122 is connected to a protruding edge 123 that projects obliquely from the side edge 100 of the flat wall 91.

【0055】平壁91を押圧していくと、平壁91は、
ボトルの中心に向かって平行に移動し、側部傾斜壁93
は、帯壁98の側縁99を軸として廻動する。平壁91
と側部傾斜壁93とが平面となると、図24(b)に示
すように、縦リブ102の両端121,122間の間隔
がaからbに狭くなり、リブ本体120は大きく湾曲さ
せられる。
When the flat wall 91 is pressed, the flat wall 91
Moving parallel to the center of the bottle, the side inclined wall 93
Rotates around the side edge 99 of the band wall 98 as an axis. Flat wall 91
When the and the side inclined wall 93 become flat, as shown in FIG. 24B, the interval between both ends 121 and 122 of the vertical rib 102 becomes narrower from a to b, and the rib main body 120 is largely curved.

【0056】次いで、さらに押圧すると、平壁91は、
引き続いて内方に移動し、側部傾斜壁93が内方に廻動
するので、縦リブの両端の間の間隔は広がり、ほぼもと
の状態を回復する。したがって、平壁91と側部傾斜壁
93は、スナップ動作によって反転され、平壁91の外
方に移動させるための力を付与しない限り、反転状態が
維持されることになる。
Next, when the flat wall 91 is further pressed,
Subsequently, since the side wall 93 moves inward and the side inclined wall 93 rotates inward, the interval between both ends of the vertical rib is widened, and almost the original state is restored. Therefore, the flat wall 91 and the side inclined wall 93 are inverted by the snap operation, and the inverted state is maintained unless a force for moving the flat wall 91 to the outside is applied.

【0057】次に、上部横リブ105、下部横リブ10
8とボトル80の縦断面での変形について、図25を参
照して説明する。図25(a)に示すように、上部横リ
ブ105と、下部横リブ108とはほぼ同形であって、
前記した縦リブ102と同様に中央がやや肉厚のリブ本
体125a,bと端部126a,b、端部127a,b
を有している。上部横リブ105の端部126aは、上
部傾斜壁95の下端縁104と接続され、端部127a
は、平壁91の上端縁103より傾斜して突出する突出
縁128aと接続されている。下部横リブ108の端部
126bは、下部傾斜壁97の上端縁107と接続され
ており、端部127aは、平壁91の下端縁106より
傾斜して突出する突出縁128bと接続されている。
Next, the upper horizontal rib 105 and the lower horizontal rib 10
With reference to FIG. 25, a description will be given of the deformation of the bottle 8 and the bottle 80 in the vertical section. As shown in FIG. 25A, the upper horizontal rib 105 and the lower horizontal rib 108 have substantially the same shape,
Similar to the above-described vertical rib 102, the center of the rib body 125a, b is slightly thicker at the center, and the ends 126a, b, 127a, b.
have. The end 126a of the upper horizontal rib 105 is connected to the lower edge 104 of the upper inclined wall 95, and the end 127a
Is connected to a protruding edge 128a that projects obliquely from the upper edge 103 of the flat wall 91. An end 126b of the lower horizontal rib 108 is connected to an upper edge 107 of the lower inclined wall 97, and an end 127a is connected to a protruding edge 128b projecting at an angle from the lower edge 106 of the flat wall 91. .

【0058】平壁91を押圧していくと、上部傾斜壁9
5は、前記した直線116を軸として廻動し、下部傾斜
壁97は、底周壁90の端縁96を軸として廻動する。
図25(b)に示すように、平壁91と、上部および下
部傾斜壁95,97が平面となるとき、端部126a,
bと端部127a,bの間の間隔は狭くなり、リブ本体
125は大きく湾曲され、前記した縦リブの作用と同様
の作用がもたらされることになる。
When the flat wall 91 is pressed, the upper inclined wall 9
5 rotates around the straight line 116 described above, and the lower inclined wall 97 rotates around the edge 96 of the bottom peripheral wall 90.
As shown in FIG. 25 (b), when the flat wall 91 and the upper and lower inclined walls 95 and 97 are flat, the ends 126a,
The distance between b and the end portions 127a and 127b is reduced, and the rib body 125 is greatly curved, so that the same operation as the above-described operation of the vertical rib is provided.

【0059】次に、三角リブの構成とその作用効果につ
いて、図26〜28を参照して説明する。各三角リブ1
12,115は、平壁91の各角部に形成された角部円
弧縁111と、角部に対応する上下部の傾斜壁の側端縁
と、該側縁端に対向する側部傾斜壁の上下いずれかの端
縁との間に形成されている。図26に示すように、上部
三角リブ112は、平壁91の角部円弧縁111からリ
ブの長手方向に突出するよう形成された膨出壁130
と、対向する側端縁109、上端縁110との間を連結
するリブ底壁131とからなっている。
Next, the configuration of the triangular rib and its function and effect will be described with reference to FIGS. Each triangular rib 1
Reference numerals 12 and 115 denote corner arc edges 111 formed at each corner of the flat wall 91, side edges of upper and lower inclined walls corresponding to the corners, and side inclined walls facing the side edges. Is formed between the upper edge and the lower edge. As shown in FIG. 26, the upper triangular rib 112 has a bulging wall 130 formed to protrude from the corner arc edge 111 of the flat wall 91 in the longitudinal direction of the rib.
And a rib bottom wall 131 that connects between the opposing side edge 109 and the upper edge 110.

【0060】膨出壁130は、角部円弧縁111の上端
からリブの長手方向に下方に湾曲した曲線を稜線132
とし、その裾線133を、平壁91の突出縁123を含
む垂直面と突出縁128を含む垂直面上に位置するよう
にしている。リブ底壁131は、傾斜壁(93,95)
の側端縁109、上端縁110によって囲まれた舟底形
の底壁主部135と、膨出壁130とによって分岐され
た二つの分岐部136,137とからなっている。
The bulging wall 130 is formed by forming a curve curved downward in the longitudinal direction of the rib from the upper end of the corner arc edge 111 to the ridge line 132.
The skirt line 133 is located on a vertical plane including the protruding edge 123 and a vertical plane including the protruding edge 128 of the flat wall 91. The rib bottom wall 131 is an inclined wall (93, 95).
The bottom wall 135 has a boat bottom-shaped bottom wall portion 135 surrounded by a side edge 109 and an upper edge 110, and two branch portions 136 and 137 branched by a bulging wall 130.

【0061】底壁主部135の断面は、図27に示すよ
うに、弧状に湾曲した壁面となっており、中央部138
が側部139よりやや厚肉で、接続する傾斜壁の端縁
(109,110)との連結部140において、曲がり
易くなっており、両連結部140の間隔が変化するとき
には、全体として湾曲変形するようになっている。分岐
部136,137の断面は、底壁主部135の断面とほ
ぼ同じ形状となっている。
As shown in FIG. 27, the cross section of the bottom wall main portion 135 is an arc-shaped curved wall, and the center portion 138 is formed.
Is slightly thicker than the side portion 139, and is easily bent at the connecting portion 140 with the edge (109, 110) of the inclined wall to be connected. When the distance between the connecting portions 140 changes, the entire portion is curved and deformed. It is supposed to. The cross sections of the branch portions 136 and 137 have substantially the same shape as the cross section of the bottom wall main portion 135.

【0062】底壁主部135の中央の谷線141は、前
記膨出壁130の稜線132に続いており、底壁主部1
35から分岐部136,137にかけては、一つの広巾
の弧状の壁面から二つの細巾の弧状の壁面に滑らかに連
続して分岐している。分岐部においては、膨出壁130
の側壁と対向する傾斜壁の端縁(109,110)との
間に壁面が形成され、縦リブ102、上部横リブ105
の壁面に連続している。
The valley line 141 at the center of the bottom wall main portion 135 continues to the ridge line 132 of the bulging wall 130, and the bottom wall main portion 1
From 35 to the branch portions 136 and 137, one wide arc-shaped wall surface smoothly branches continuously into two narrow arc-shaped wall surfaces. In the branch, the bulging wall 130
A wall is formed between the side wall of the upper wall and the edge (109, 110) of the inclined wall facing the upper wall.
It is continuous with the wall.

【0063】次に、上記構成による三角リブの作用効果
について、図27,28を参照して説明する。平壁91
を押圧すると、平壁91はボトル80の内側に向かって
平行に移動し、各傾斜壁(93,95)は廻動する。そ
の際、先に図23について説明したように、各傾斜壁の
端縁のなす角度が小さくなり、リブ底壁131の両側の
連結部の間隔は縮小する。
Next, the function and effect of the triangular rib according to the above configuration will be described with reference to FIGS. Flat wall 91
When the is pressed, the flat wall 91 moves in parallel toward the inside of the bottle 80, and each inclined wall (93, 95) rotates. At that time, as described above with reference to FIG. 23, the angle formed by the edges of each inclined wall is reduced, and the interval between the connecting portions on both sides of the rib bottom wall 131 is reduced.

【0064】平壁91と各傾斜壁(93,95)が平面
Y上に一致したときには、底壁主部135においては、
図27(b)に示すように、両連結部140間の間隔が
縮小し、リブ底壁131の壁面は湾曲変形する。さらに
平壁91を押圧すると、リブ底壁131は、平面Yを越
えて反転し、両連結部140間の間隔を広げ、リブ底壁
131を元の状態に戻す。
When the flat wall 91 and the inclined walls (93, 95) coincide with each other on the plane Y, in the bottom wall main portion 135,
As shown in FIG. 27B, the space between both connecting portions 140 is reduced, and the wall surface of the rib bottom wall 131 is curved and deformed. When the flat wall 91 is further pressed, the rib bottom wall 131 is turned over beyond the plane Y to widen the interval between the connecting portions 140, and returns the rib bottom wall 131 to its original state.

【0065】底壁主部135と分岐部136,137の
合流点付近においては、図28,29に示すように、両
連結部140の間の間隔が狭められると同時に、膨出壁
130中央部の押圧によって、各分岐部の二つの湾曲面
が一つの湾曲面となり、底壁主部135の湾曲面に連続
することになる。各分岐部136,137においては、
膨出壁130の側面と傾斜壁の端縁の間の間隔が狭くな
り、傾斜壁の端縁(109,110)と膨出壁周面との
間で湾曲変形された湾曲面が形成され、縦リブ、横リブ
の変形したリブ面に滑らかに続くことになる。
In the vicinity of the confluence of the bottom wall main portion 135 and the branch portions 136 and 137, as shown in FIGS. 28 and 29, the space between the two connecting portions 140 is reduced, and at the same time, the central portion of the bulging wall 130 is formed. By pressing, the two curved surfaces of each branch become one curved surface and are continuous with the curved surface of the bottom wall main portion 135. In each of the branch portions 136 and 137,
The distance between the side surface of the bulging wall 130 and the edge of the inclined wall is reduced, and a curved surface deformed and curved between the edge (109, 110) of the inclined wall and the peripheral surface of the bulging wall is formed. It follows the deformed rib surface of the vertical rib and the horizontal rib smoothly.

【0066】リブ底壁131の変形は、各傾斜壁の側端
縁109、上端縁110のなす角度の縮小と膨出壁13
0の押圧力によって行われるが、同時に、縦リブ10
2、上部横リブ105の変形、湾曲が行われ、その変形
は、リブ底壁131の分岐部136,137に伝達され
るが、分岐部136,137によって、底壁主部135
の変形と結合され、三角リブの作用と総合されるのであ
る。
The deformation of the rib bottom wall 131 is achieved by reducing the angle formed by the side edge 109 and the upper edge 110 of each inclined wall and by reducing the angle of the bulging wall 13.
0, but at the same time, the vertical ribs 10
2. The upper horizontal rib 105 is deformed and curved, and the deformation is transmitted to the branch portions 136 and 137 of the rib bottom wall 131. The branch portions 136 and 137 cause the main portion 135 of the bottom wall to be bent.
Is combined with the action of the triangular rib.

【0067】以上のように、縦リブ102、各横リブ1
05,108、各三角リブ112,115作用が総合さ
れて、図30に示すように、可変面を平面Yに対してス
ナップ動作により反転し、その反転状態が維持され、減
容ボトルとなるのである。減容ボトルの復元は、前記各
実施形態のボトルと同様に、ボトル内に空気を吹き込む
ことによって行われるが、他に平壁を引き出す適当な手
段がないから、反転状態の維持は、より確実となってい
る。本実施形態においては、図示の実施形では減容率
は、約33%になっているが、底壁の巾に対して傾斜壁
の傾斜角度を変え、対向する平壁の距離を変えることに
よって、減容率を変えることができる。
As described above, the vertical rib 102 and each horizontal rib 1
05 and 108, the action of each of the triangular ribs 112 and 115 is integrated, and as shown in FIG. 30, the variable surface is inverted by a snap operation with respect to the plane Y, and the inverted state is maintained, resulting in a reduced volume bottle. is there. Restoration of the reduced volume bottle is performed by blowing air into the bottle, as in the bottles of the above embodiments, but since there is no other suitable means for drawing out a flat wall, maintaining the inverted state is more reliable. It has become. In this embodiment, the volume reduction rate is about 33% in the illustrated embodiment, but by changing the inclination angle of the inclined wall with respect to the width of the bottom wall, and changing the distance between the opposed flat walls. , The volume reduction rate can be changed.

【0068】上記第4実施形態の角形ボトルは、押し潰
し容器としても使用できる。ボトルの容積は、実質的に
減容され空気を吹き込み内部から復元力を付与しない限
り復元しないので、ボトル廃棄のために押し潰し容器と
して利用可能である。内容物の注出後、使用済みのボト
ルを押圧すると簡単に押し潰すことができ、そのまま廃
棄することによってゴミ容量を減らすことができる。
The rectangular bottle of the fourth embodiment can also be used as a crushable container. Since the volume of the bottle is substantially reduced and is not restored unless air is blown into the interior to apply a restoring force, the bottle can be used as a crushed container for discarding the bottle. After the contents are poured out, the used bottle can be easily crushed by pressing it, and the volume of garbage can be reduced by discarding the bottle as it is.

【0069】[0069]

【発明の効果】本発明は、上記のように構成されている
から、次の効果を奏する。ボトルの胴部壁面に、折れ部
を形成する可変リブを配設して可変面を形成し、可変リ
ブを弾性限度内で変形させ、前記可変面を形状不変面に
対してスナップ動作により反転させ、反転状態を維持す
るようにしているから、ボトルを弾性変形の範囲内で変
形させ減容することができる。変形した減容ボトルを箱
詰め輸送する時には、積載効率を高めることができる。
減容ボトルは、弾性変形の範囲内でのスナップ動作によ
る変形であるから、スナップ動作により反転復元させる
ことができる。復元は、ボトル内に圧縮空気を吹き込む
だけで容易に行うことができ、弾性変形の範囲内の変形
で塑性変形はしないから商品価値を損なうことはない。
Since the present invention is configured as described above, it has the following effects. On the body wall of the bottle, a variable rib forming a bent portion is arranged to form a variable surface, the variable rib is deformed within the elastic limit, and the variable surface is inverted by a snap operation with respect to the shape invariant surface. Since the inverted state is maintained, the bottle can be deformed within the range of elastic deformation to reduce the volume. When the deformed volume-reduced bottle is transported in a box, the loading efficiency can be increased.
Since the volume-reducing bottle is deformed by a snap operation within the range of elastic deformation, it can be reversed and restored by the snap operation. Restoration can be easily performed simply by blowing compressed air into the bottle, and does not cause plastic deformation due to deformation within the range of elastic deformation, so that the commercial value is not impaired.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1実施形態におけるボトルの一部
断面正面図である。
FIG. 1 is a partial cross-sectional front view of a bottle according to a first embodiment of the present invention.

【図2】 ボトルの平面図である。FIG. 2 is a plan view of a bottle.

【図3】 可変リブの横断面図で、(a)は変形前、
(b)は変形時の状態を示す説明図である。
FIG. 3 is a cross-sectional view of a variable rib.
(B) is an explanatory view showing a state at the time of deformation.

【図4】 変形減容時の状態を示すボトルの一部断面正
面図である。
FIG. 4 is a partially sectional front view of the bottle showing a state at the time of deformation reduction.

【図5】 可変リブの作用を説明する肩壁の縦断面図
で、(a)は変形前、(b)は押圧時、(c)は反転時
の状態を示す説明図である。
FIGS. 5A and 5B are longitudinal sectional views of a shoulder wall for explaining the function of a variable rib. FIG. 5A is an explanatory view showing a state before deformation, FIG. 5B is a state when pressed, and FIG.

【図6】 変形減容時の状態を示すボトルの平面図であ
る。
FIG. 6 is a plan view of the bottle showing a state during deformation volume reduction.

【図7】 一つの実施例を説明するボトルの平面図であ
る。
FIG. 7 is a plan view of a bottle illustrating one embodiment.

【図8】 本発明の第2実施形態におけるボトルの一部
断面正面図である。
FIG. 8 is a partial cross-sectional front view of a bottle according to a second embodiment of the present invention.

【図9】 ボトルの平面図である。FIG. 9 is a plan view of the bottle.

【図10】 図8のA−A線における断面平面図であ
る。
FIG. 10 is a cross-sectional plan view taken along line AA of FIG.

【図11】 可変リブの作用を説明する胴壁の横断面図
である。
FIG. 11 is a cross-sectional view of the body wall for explaining the function of the variable rib.

【図12】 変形減容時の状態を示すボトルの一部断面
正面図である。
FIG. 12 is a partial cross-sectional front view of the bottle showing a state at the time of deformation volume reduction.

【図13】 本発明の第3実施形態におけるボトルの一
部断面正面図である。
FIG. 13 is a partially sectional front view of a bottle according to a third embodiment of the present invention.

【図14】 ボトルの平面図である。FIG. 14 is a plan view of a bottle.

【図15】 図13のA−A線における断面平面図であ
る。
FIG. 15 is a sectional plan view taken along line AA of FIG.

【図16】 ボトルの底面図である。FIG. 16 is a bottom view of the bottle.

【図17】 可変リブの作用を説明する肩壁の横断面図
で、(a)は変形前、(b)は押圧時、(c)は反転時
の状態を示す説明図である。
FIGS. 17A and 17B are cross-sectional views of the shoulder wall for explaining the function of the variable rib, where FIG. 17A is an explanatory view showing a state before deformation, FIG. 17B is a state at the time of pressing, and FIG.

【図18】 変形減容時の状態を示すボトルの一部断面
正面図である。
FIG. 18 is a partial cross-sectional front view of the bottle showing a state at the time of deformation reduction.

【図19】 本発明の第4実施形態におけるボトルの正
面図である。
FIG. 19 is a front view of a bottle according to a fourth embodiment of the present invention.

【図20】 ボトルの一部断面側面図である。FIG. 20 is a partial cross-sectional side view of a bottle.

【図21】 ボトルの平面図である。FIG. 21 is a plan view of a bottle.

【図22】 図19のA−A線における断面平面図であ
る。
FIG. 22 is a sectional plan view taken along line AA of FIG.

【図23】 可変リブの作用を説明する図である。FIG. 23 is a diagram illustrating the function of a variable rib.

【図24】 縦リブの作用を説明するボトルの一部横断
面図で、(a)は変形前、(b)は変形時の状態を示す
図である。
FIGS. 24A and 24B are partial cross-sectional views of the bottle illustrating the operation of the vertical ribs, where FIG. 24A is a diagram showing a state before deformation and FIG.

【図25】 横リブの作用を説明するボトルの一部縦断
面図で、(a)は変形前、(b)は変形時の状態を示す
図である。
FIGS. 25A and 25B are partial longitudinal sectional views of the bottle illustrating the operation of the horizontal ribs, wherein FIG. 25A shows a state before deformation and FIG.

【図26】 三角リブの構成を説明する図で、(a)は
平面図、(b)は図(a)をX方向からみた側面図、
(c)はY方向からみた側面図である。
26 (a) is a plan view, FIG. 26 (b) is a side view of FIG. (A) viewed from the X direction,
(C) is a side view seen from the Y direction.

【図27】 三角リブ底壁主部の断面形状の作用を説明
する断面図で、(a)は変形前、(b)は変形時の状態
を示す図である。
27A and 27B are cross-sectional views illustrating the operation of the cross-sectional shape of the main portion of the triangular rib bottom wall, where FIG. 27A illustrates a state before deformation, and FIG.

【図28】 三角リブ底壁主部と分岐部との合流点付近
の断面形状の作用を説明する断面図で、(a)は変形
前、(b)は変形時の状態を示す図である。
FIG. 28 is a cross-sectional view for explaining the action of the cross-sectional shape near the junction of the main portion of the triangular rib bottom wall and the branch portion, where (a) shows a state before deformation and (b) shows a state at the time of deformation. .

【図29】 三角リブの作用を説明する縦断面図で、
(a)は変形前、(b)は変形時の状態を示す図であ
る。
FIG. 29 is a longitudinal sectional view for explaining the operation of the triangular rib;
(A) is a figure before deformation | transformation, (b) is a figure which shows the state at the time of deformation | transformation.

【図30】 変形減容時の状態を示すボトルの一部断面
側面図である。
FIG. 30 is a partial cross-sectional side view of the bottle showing a state at the time of deformation reduction.

【符号の説明】[Explanation of symbols]

1,30,50,80 ボトル 2,31,51,81 口筒部 3,32,52,82 胴部 4,33,53,83 底部 8,34,54,87 肩壁 9,35,55 胴壁 10,36 下部周壁 11a,b,c,d 可変リブ 16a,b,c,d 可変リブ 17a,b,c,d 可変面 18 不変面 19 中央部 20a,b 側部 21a,b 連結部 22 胴壁部 37a,b,c,d 可変リブ 38a,b 円弧リブ 39a,b 縦リブ 40a,b 横リブ 42a,b,c,d 可変面 43 不変面 56 角壁 57a,b 球帯壁 58 円筒壁 59 膨出部 63 縦リブ 64 横リブ 91a,b 平壁 92a,b 側壁 93a,b,c,d 側部傾斜壁 95a,b 上部傾斜壁 97a,b 下部傾斜壁 102a,b 縦リブ 105 上部横リブ 108 下部横リブ 112 上部三角リブ 115 下部三角リブ 120 リブ本体 121,122 端部 123 突出縁 130 膨出壁 131 リブ底壁 1,30,50,80 Bottle 2,31,51,81 Mouth 3,3,52,82 Body 4,33,53,83 Bottom 8,34,54,87 Shoulder wall 9,35,55 Body Wall 10, 36 Lower peripheral wall 11a, b, c, d Variable rib 16a, b, c, d Variable rib 17a, b, c, d Variable surface 18 Invariable surface 19 Central portion 20a, b Side portion 21a, b Connecting portion 22 Body wall portion 37a, b, c, d Variable rib 38a, b Arc rib 39a, b Vertical rib 40a, b Horizontal rib 42a, b, c, d Variable surface 43 Invariant surface 56 Square wall 57a, b Spherical band wall 58 Cylindrical wall 58 Wall 59 bulge 63 vertical rib 64 horizontal rib 91a, b flat wall 92a, b side wall 93a, b, c, d side inclined wall 95a, b upper inclined wall 97a, b lower inclined wall 102a, b vertical rib 105 upper Side rib 108 Lower side rib 11 2 Upper triangular rib 115 Lower triangular rib 120 Rib main body 121, 122 End 123 Projecting edge 130 Swelling wall 131 Rib bottom wall

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 ボトルの胴部壁面に、折れ部を形成する
可変リブを配設して可変面を形成し、可変リブを弾性限
度内で変形させ、前記可変面を形状不変面に対してスナ
ップ動作により反転させ、反転状態を維持するようにし
たことを特徴とするプラスチックボトル。
1. A variable surface forming a bent portion is formed on a wall surface of a body of a bottle to form a variable surface, and the variable rib is deformed within an elastic limit. A plastic bottle characterized by being inverted by a snap operation to maintain the inverted state.
【請求項2】 可変リブの断面が、厚肉の中央部と薄肉
の両側部からなり、側部の端縁を胴部壁面と丸みをもっ
て連結し、可変リブが弾性限度内で湾曲するようにした
ことを特徴とする請求項1記載のプラスチックボトル。
2. A cross section of the variable rib has a thick central portion and thin side portions, and the side edges are roundly connected to the body wall so that the variable rib is curved within the elastic limit. The plastic bottle according to claim 1, wherein:
【請求項3】 ボトルが円形ボトルであって、成形ボト
ルを減容率10%〜45%に減容するようにしたことを
特徴とする請求項1記載のプラスチックボトル。
3. The plastic bottle according to claim 1, wherein the bottle is a circular bottle, and the volume of the molded bottle is reduced to 10% to 45%.
【請求項4】 球帯状の肩壁と円筒状の胴壁、球帯状の
下部周壁とからなる胴部を備えた円形ボトルであって、 球帯状の肩壁と下部周壁に、上下に対向する位置にほぼ
半円形の可変リブを配設し、該可変リブによって形成さ
れる平面に対して、該平面より膨出する胴壁を可変面と
し、該可変面を弾性限度内において、スナップ動作によ
り反転変形、復元可能としたことを特徴とするプラスチ
ックボトル。
4. A circular bottle provided with a body comprising a spherical belt-shaped shoulder wall, a cylindrical trunk wall, and a spherical belt-shaped lower peripheral wall, wherein the bottle is vertically opposed to the spherical belt-shaped shoulder wall and the lower peripheral wall. A variable rib having a substantially semicircular shape is disposed at a position, and a body wall bulging out of the plane is defined as a variable surface with respect to a plane formed by the variable rib. A plastic bottle characterized by being capable of being inverted and restored.
【請求項5】 球帯状の肩壁と円筒状の胴壁、球帯状の
下部周壁とからなる胴部を備えた円形ボトルであって、 球帯状の肩壁と下部周壁に、上下に対向する位置にほぼ
半円形の円弧リブを配設し、円筒状の胴壁内に前記上下
円弧リブの両端縁のそれぞれを結ぶ縦リブを配設し、前
記円弧リブと二つのリブによって形成される平面に対し
て、該平面より膨出する胴部周壁を可変面とし、該可変
面を弾性限度内において、スナップ動作により反転変
形、復元可能としたことを特徴とするプラスチックボト
ル。
5. A circular bottle provided with a body composed of a spherical belt-shaped shoulder wall, a cylindrical trunk wall, and a spherical belt-shaped lower peripheral wall, wherein the bottle is vertically opposed to the spherical belt-shaped shoulder wall and the lower peripheral wall. A substantially semicircular arc rib is disposed at a position, and a vertical rib connecting both ends of the upper and lower arc ribs is disposed in a cylindrical body wall, and a plane formed by the arc rib and two ribs is provided. In contrast, a plastic bottle characterized in that a body peripheral wall protruding from the plane is a variable surface, and the variable surface can be inverted and deformed and restored by a snap operation within an elastic limit.
【請求項6】 球帯状の肩壁と下部周壁、または円筒状
の胴壁内に、縦リブを連結する横リブを架設したことを
特徴とする請求項5記載のプラスチックボトル。
6. The plastic bottle according to claim 5, wherein horizontal ribs connecting the vertical ribs are provided in the spherical belt-shaped shoulder wall and lower peripheral wall, or in the cylindrical trunk wall.
【請求項7】 口筒部と角壁を有する胴部とを備えた円
形ボトルにおいて、 前記胴部は、口筒部に続く球帯状の肩壁と、前記肩壁に
続く角壁と、該角壁の表面から膨出するよう形成され、
上下を球帯壁とし、中間部を円筒壁とした膨出部とを具
え、 前記膨出部の中央に、上部球帯壁、円筒壁、下部球帯壁
にわたって上下に縦リブを配設し、上下の球帯壁に前記
縦リブに交差する所定長さの横リブを配設し、膨出部の
壁面がスナップ動作により反転変形、復元可能としたこ
とを特徴とするプラスチックボトル。
7. A circular bottle provided with a mouthpiece and a body having a corner wall, wherein the body has a spherical shoulder wall following the mouthpiece, a square wall following the shoulder wall, It is formed to swell from the surface of the corner wall,
A bulging portion having upper and lower portions as a spherical band wall and a middle portion as a cylindrical wall, and a vertical rib disposed vertically over the upper spherical band wall, the cylindrical wall, and the lower spherical band wall at the center of the bulging portion. A plastic bottle wherein horizontal ribs having a predetermined length intersecting with the vertical ribs are disposed on upper and lower spherical belt walls, and the wall surface of the bulging portion is capable of being inverted and deformed and restored by a snap operation.
【請求項8】 口筒部と、口筒部に連続する肩壁と多角
筒壁とからなる胴部と、四角形の底部を備えたボトルで
あって、 前記多角筒壁は、前後に対向して平行に配設された長方
形の平壁と、肩壁に連続し左右の側部に平行に対向して
配設された等脚台形の側壁と、平壁と側壁との間に配設
されたほぼ台形の側部傾斜壁と、前記肩壁と平壁および
側部傾斜壁の各端縁の間に配設された上部傾斜壁と、底
壁と平壁および側部傾斜壁の各端縁との間に配設された
下部傾斜壁とを具備しており、 平壁と側部傾斜壁の接続部に縦リブを配設し、平壁と上
部傾斜壁との接続部および平壁と下部傾斜壁との接続部
に横リブを配設し、上部傾斜壁の側端縁と側部傾斜壁の
上端縁との間、および下部傾斜壁の側端縁と側部傾斜壁
の下端縁との間に三角リブを配設し、平壁と各傾斜壁に
よって形成される可変面が、肩壁と側壁および底壁によ
って形成される不変面に対して、弾性限度内においてス
ナップ動作により反転変形、復元可能としたことを特徴
とするプラスチックボトル。
8. A bottle having a mouth portion, a body portion formed of a shoulder wall and a polygonal tube wall connected to the mouth portion, and a rectangular bottom portion, wherein said polygonal wall faces back and forth. A rectangular flat wall disposed parallel to the shoulder wall, an isosceles trapezoidal side wall continuous to the shoulder wall and disposed parallel to the left and right sides, and disposed between the flat wall and the side wall. A substantially trapezoidal side inclined wall, an upper inclined wall disposed between the shoulder wall, the flat wall, and each edge of the side inclined wall, and a bottom wall, a flat wall, and each end of the side inclined wall. A lower wall disposed between the edge and the edge; a vertical rib being disposed at a connection between the flat wall and the side wall; a connection between the flat wall and the upper wall; and a flat wall. A horizontal rib is disposed at a connection portion between the upper inclined wall and the lower inclined wall, and between the side edge of the upper inclined wall and the upper edge of the side inclined wall, and the lower edge of the side inclined wall and the lower end of the side inclined wall. Triangular ribs arranged between the rim The variable surface formed by the flat wall and each inclined wall is capable of inverting deformation and restoring by a snap operation within the elastic limit with respect to the invariable surface formed by the shoulder wall, the side wall, and the bottom wall. Plastic bottle.
【請求項9】 三角リブが、平壁の角部円弧縁からリブ
の長手方向に突出する膨出壁と傾斜壁の対向する端縁と
の間を連結するリブ底壁とからなり、リブ底壁が、舟底
形のリブ主部と、膨出壁とによって分岐された二つの分
岐部とを具備し、各分岐部は、対応する縦リブまたは横
リブに連続していることを特徴とする請求項8記載のプ
ラスチックボトル。
9. The triangular rib comprises a rib bottom wall connecting between a bulging wall protruding in the longitudinal direction of the rib from a corner arc edge of the flat wall and an opposing edge of the inclined wall. The wall includes a boat bottom-shaped rib main portion and two branch portions branched by a bulging wall, and each branch portion is continuous with a corresponding vertical rib or horizontal rib. The plastic bottle according to claim 8, wherein
【請求項10】 ボトルの口筒部より圧縮空気を吹き込
むことによって復元するようにしたことを特徴とする請
求項1〜9記載のプラスチックボトル。
10. The plastic bottle according to claim 1, wherein the plastic bottle is restored by blowing compressed air from a mouth portion of the bottle.
JP05095397A 1997-02-19 1997-02-19 Plastic bottle Expired - Fee Related JP3808160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05095397A JP3808160B2 (en) 1997-02-19 1997-02-19 Plastic bottle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05095397A JP3808160B2 (en) 1997-02-19 1997-02-19 Plastic bottle

Publications (2)

Publication Number Publication Date
JPH10230919A true JPH10230919A (en) 1998-09-02
JP3808160B2 JP3808160B2 (en) 2006-08-09

Family

ID=12873200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05095397A Expired - Fee Related JP3808160B2 (en) 1997-02-19 1997-02-19 Plastic bottle

Country Status (1)

Country Link
JP (1) JP3808160B2 (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2833244A1 (en) * 2001-12-12 2003-06-13 Claude Triquere Deformable bottle containing gaseous liquid comprises several deformable blisters in its surface directed towards outside of bottle which on compressing inwards reduce bottle volume and decrease loss of dissolved bubbles
EP1350726A1 (en) * 2002-03-25 2003-10-08 ACQUA MINERALE SAN BENEDETTO S.p.A. Plastic bottle particularly for containing beverages
JP2006182438A (en) * 2004-12-28 2006-07-13 Yoshino Kogyosho Co Ltd Synthetic resin made bottle container
JP2006327677A (en) * 2005-05-30 2006-12-07 Yoshino Kogyosho Co Ltd Bottle made of synthetic resin
WO2007094479A1 (en) * 2006-02-14 2007-08-23 The Coca-Cola Company Plastic bottle
WO2007109022A3 (en) * 2006-03-15 2007-11-22 Graham Packaging Co Container and method for blowmolding a base in a partial vacuum pressure reduction setup
WO2008020776A1 (en) * 2006-08-17 2008-02-21 Luis Vargas Collapsible package
EP1935613A1 (en) * 2006-12-21 2008-06-25 The Procter and Gamble Company Method of filling containers, process for manufacturing a container and the manufactured container
WO2008075314A1 (en) * 2006-12-21 2008-06-26 The Procter & Gamble Company Method of filling containers, process for manufacturing a container and the manufactured container
JP2010105718A (en) * 2008-10-31 2010-05-13 Yoshino Kogyosho Co Ltd Synthetic resin blow-molded container
US7717282B2 (en) 2000-08-31 2010-05-18 Co2 Pac Limited Semi-rigid collapsible container
JP2010137898A (en) * 2008-12-12 2010-06-24 Kobayashi Pharmaceut Co Ltd Resin-made encapsulating container
JP2010137897A (en) * 2008-12-12 2010-06-24 Kobayashi Pharmaceut Co Ltd Resin-made encapsulating container
JP2010524789A (en) * 2007-04-16 2010-07-22 コンスター インターナショナル インク. Container with vacuum correction element
US7926243B2 (en) 2009-01-06 2011-04-19 Graham Packaging Company, L.P. Method and system for handling containers
US7980404B2 (en) 2001-04-19 2011-07-19 Graham Packaging Company, L.P. Multi-functional base for a plastic, wide-mouth, blow-molded container
EP2319679A3 (en) * 2005-04-15 2011-08-03 Graham Packaging Company, L.P. System and method for manufacturing blow molded containers having optimal plastic distribution
US8011166B2 (en) 2004-03-11 2011-09-06 Graham Packaging Company L.P. System for conveying odd-shaped containers
US8017065B2 (en) 2006-04-07 2011-09-13 Graham Packaging Company L.P. System and method for forming a container having a grip region
US8075833B2 (en) 2005-04-15 2011-12-13 Graham Packaging Company L.P. Method and apparatus for manufacturing blow molded containers
US8178140B2 (en) 2008-03-27 2012-05-15 The Coca-Cola Company PET pouch/package with foldable base
US8215509B2 (en) 2008-03-27 2012-07-10 The Coca-Cola Company Soft PET bottle with a rigid top and bottom portion
US8919587B2 (en) 2011-10-03 2014-12-30 Graham Packaging Company, L.P. Plastic container with angular vacuum panel and method of same
US8962114B2 (en) 2010-10-30 2015-02-24 Graham Packaging Company, L.P. Compression molded preform for forming invertible base hot-fill container, and systems and methods thereof
US9022776B2 (en) 2013-03-15 2015-05-05 Graham Packaging Company, L.P. Deep grip mechanism within blow mold hanger and related methods and bottles
JP2015515948A (en) * 2012-05-04 2015-06-04 エコラボ ユーエスエー インコーポレイティド Crushable bottle
US9090363B2 (en) 2003-07-30 2015-07-28 Graham Packaging Company, L.P. Container handling system
US9133006B2 (en) 2010-10-31 2015-09-15 Graham Packaging Company, L.P. Systems, methods, and apparatuses for cooling hot-filled containers
US9145223B2 (en) 2000-08-31 2015-09-29 Co2 Pac Limited Container structure for removal of vacuum pressure
US9150320B2 (en) 2011-08-15 2015-10-06 Graham Packaging Company, L.P. Plastic containers having base configurations with up-stand walls having a plurality of rings, and systems, methods, and base molds thereof
JP2015224077A (en) * 2014-05-30 2015-12-14 株式会社吉野工業所 Bottle which can deform by squeeze deformation
US9211968B2 (en) 2002-09-30 2015-12-15 Co2 Pac Limited Container structure for removal of vacuum pressure
US9211993B2 (en) 2011-03-01 2015-12-15 Advanced Technology Materials, Inc. Nested blow molded liner and overpack and methods of making same
US9387971B2 (en) 2000-08-31 2016-07-12 C02Pac Limited Plastic container having a deep-set invertible base and related methods
US9522773B2 (en) 2009-07-09 2016-12-20 Entegris, Inc. Substantially rigid collapsible liner and flexible gusseted or non-gusseted liners and methods of manufacturing the same and methods for limiting choke-off in liners
US9637300B2 (en) 2010-11-23 2017-05-02 Entegris, Inc. Liner-based dispenser
US9707711B2 (en) 2006-04-07 2017-07-18 Graham Packaging Company, L.P. Container having outwardly blown, invertible deep-set grips
US9764873B2 (en) 2005-10-14 2017-09-19 Graham Packaging Company, L.P. Repositionable base structure for a container
US9802730B2 (en) 2002-09-30 2017-10-31 Co2 Pac Limited Methods of compensating for vacuum pressure changes within a plastic container
US9969517B2 (en) 2002-09-30 2018-05-15 Co2Pac Limited Systems and methods for handling plastic containers having a deep-set invertible base
US9994378B2 (en) 2011-08-15 2018-06-12 Graham Packaging Company, L.P. Plastic containers, base configurations for plastic containers, and systems, methods, and base molds thereof
US9993959B2 (en) 2013-03-15 2018-06-12 Graham Packaging Company, L.P. Deep grip mechanism for blow mold and related methods and bottles
US10246238B2 (en) 2000-08-31 2019-04-02 Co2Pac Limited Plastic container having a deep-set invertible base and related methods
US10836552B2 (en) 2007-02-09 2020-11-17 Co2Pac Limited Method of handling a plastic container having a moveable base
WO2021261292A1 (en) * 2020-06-22 2021-12-30 サントリーホールディングス株式会社 Plastic bottle
WO2022138145A1 (en) * 2020-12-25 2022-06-30 小林製薬株式会社 Resin container
US11565867B2 (en) 2000-08-31 2023-01-31 C02Pac Limited Method of handling a plastic container having a moveable base
US11731823B2 (en) 2007-02-09 2023-08-22 Co2Pac Limited Method of handling a plastic container having a moveable base
US11897656B2 (en) 2007-02-09 2024-02-13 Co2Pac Limited Plastic container having a movable base

Cited By (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10246238B2 (en) 2000-08-31 2019-04-02 Co2Pac Limited Plastic container having a deep-set invertible base and related methods
US11565867B2 (en) 2000-08-31 2023-01-31 C02Pac Limited Method of handling a plastic container having a moveable base
US9688427B2 (en) 2000-08-31 2017-06-27 Co2 Pac Limited Method of hot-filling a plastic container having vertically folding vacuum panels
US11565866B2 (en) 2000-08-31 2023-01-31 C02Pac Limited Plastic container having a deep-set invertible base and related methods
US7717282B2 (en) 2000-08-31 2010-05-18 Co2 Pac Limited Semi-rigid collapsible container
US9387971B2 (en) 2000-08-31 2016-07-12 C02Pac Limited Plastic container having a deep-set invertible base and related methods
US9145223B2 (en) 2000-08-31 2015-09-29 Co2 Pac Limited Container structure for removal of vacuum pressure
US8381496B2 (en) 2001-04-19 2013-02-26 Graham Packaging Company Lp Method of hot-filling a plastic, wide-mouth, blow-molded container having a multi-functional base
US8839972B2 (en) 2001-04-19 2014-09-23 Graham Packaging Company, L.P. Multi-functional base for a plastic, wide-mouth, blow-molded container
US9522749B2 (en) 2001-04-19 2016-12-20 Graham Packaging Company, L.P. Method of processing a plastic container including a multi-functional base
US7980404B2 (en) 2001-04-19 2011-07-19 Graham Packaging Company, L.P. Multi-functional base for a plastic, wide-mouth, blow-molded container
FR2833244A1 (en) * 2001-12-12 2003-06-13 Claude Triquere Deformable bottle containing gaseous liquid comprises several deformable blisters in its surface directed towards outside of bottle which on compressing inwards reduce bottle volume and decrease loss of dissolved bubbles
EP1350726A1 (en) * 2002-03-25 2003-10-08 ACQUA MINERALE SAN BENEDETTO S.p.A. Plastic bottle particularly for containing beverages
US9211968B2 (en) 2002-09-30 2015-12-15 Co2 Pac Limited Container structure for removal of vacuum pressure
US10273072B2 (en) 2002-09-30 2019-04-30 Co2 Pac Limited Container structure for removal of vacuum pressure
US9878816B2 (en) 2002-09-30 2018-01-30 Co2 Pac Ltd Systems for compensating for vacuum pressure changes within a plastic container
US10351325B2 (en) 2002-09-30 2019-07-16 Co2 Pac Limited Container structure for removal of vacuum pressure
US10315796B2 (en) 2002-09-30 2019-06-11 Co2 Pac Limited Pressure reinforced deformable plastic container with hoop rings
US9802730B2 (en) 2002-09-30 2017-10-31 Co2 Pac Limited Methods of compensating for vacuum pressure changes within a plastic container
US9624018B2 (en) 2002-09-30 2017-04-18 Co2 Pac Limited Container structure for removal of vacuum pressure
US9969517B2 (en) 2002-09-30 2018-05-15 Co2Pac Limited Systems and methods for handling plastic containers having a deep-set invertible base
US11377286B2 (en) 2002-09-30 2022-07-05 Co2 Pac Limited Container structure for removal of vacuum pressure
US9090363B2 (en) 2003-07-30 2015-07-28 Graham Packaging Company, L.P. Container handling system
US10661939B2 (en) 2003-07-30 2020-05-26 Co2Pac Limited Pressure reinforced plastic container and related method of processing a plastic container
US10501225B2 (en) 2003-07-30 2019-12-10 Graham Packaging Company, L.P. Container handling system
US8011166B2 (en) 2004-03-11 2011-09-06 Graham Packaging Company L.P. System for conveying odd-shaped containers
JP4605366B2 (en) * 2004-12-28 2011-01-05 株式会社吉野工業所 Plastic resin container
JP2006182438A (en) * 2004-12-28 2006-07-13 Yoshino Kogyosho Co Ltd Synthetic resin made bottle container
US8235704B2 (en) 2005-04-15 2012-08-07 Graham Packaging Company, L.P. Method and apparatus for manufacturing blow molded containers
US8075833B2 (en) 2005-04-15 2011-12-13 Graham Packaging Company L.P. Method and apparatus for manufacturing blow molded containers
EP2319679A3 (en) * 2005-04-15 2011-08-03 Graham Packaging Company, L.P. System and method for manufacturing blow molded containers having optimal plastic distribution
AU2010235932B2 (en) * 2005-04-15 2012-02-16 Graham Packaging Company, L.P. System and method for manufacturing blow molded containers having optimal plastic distribution
JP2006327677A (en) * 2005-05-30 2006-12-07 Yoshino Kogyosho Co Ltd Bottle made of synthetic resin
US9764873B2 (en) 2005-10-14 2017-09-19 Graham Packaging Company, L.P. Repositionable base structure for a container
WO2007094479A1 (en) * 2006-02-14 2007-08-23 The Coca-Cola Company Plastic bottle
US7857156B2 (en) 2006-02-14 2010-12-28 The Coca-Cola Company Collapsible plastic bottle
WO2007109022A3 (en) * 2006-03-15 2007-11-22 Graham Packaging Co Container and method for blowmolding a base in a partial vacuum pressure reduction setup
US8162655B2 (en) 2006-04-07 2012-04-24 Graham Packaging Company, L.P. System and method for forming a container having a grip region
US9707711B2 (en) 2006-04-07 2017-07-18 Graham Packaging Company, L.P. Container having outwardly blown, invertible deep-set grips
US8017065B2 (en) 2006-04-07 2011-09-13 Graham Packaging Company L.P. System and method for forming a container having a grip region
US10118331B2 (en) 2006-04-07 2018-11-06 Graham Packaging Company, L.P. System and method for forming a container having a grip region
WO2008020776A1 (en) * 2006-08-17 2008-02-21 Luis Vargas Collapsible package
WO2008075314A1 (en) * 2006-12-21 2008-06-26 The Procter & Gamble Company Method of filling containers, process for manufacturing a container and the manufactured container
EP1935613A1 (en) * 2006-12-21 2008-06-25 The Procter and Gamble Company Method of filling containers, process for manufacturing a container and the manufactured container
US11377287B2 (en) 2007-02-09 2022-07-05 Co2Pac Limited Method of handling a plastic container having a moveable base
US11993443B2 (en) 2007-02-09 2024-05-28 Co2Pac Limited Method of handling a plastic container having a moveable base
US11897656B2 (en) 2007-02-09 2024-02-13 Co2Pac Limited Plastic container having a movable base
US10836552B2 (en) 2007-02-09 2020-11-17 Co2Pac Limited Method of handling a plastic container having a moveable base
US11731823B2 (en) 2007-02-09 2023-08-22 Co2Pac Limited Method of handling a plastic container having a moveable base
JP2010524789A (en) * 2007-04-16 2010-07-22 コンスター インターナショナル インク. Container with vacuum correction element
US8905253B2 (en) 2007-04-16 2014-12-09 Plastipak Packaging, Inc. Container having vacuum compensation elements
US8215509B2 (en) 2008-03-27 2012-07-10 The Coca-Cola Company Soft PET bottle with a rigid top and bottom portion
US8178140B2 (en) 2008-03-27 2012-05-15 The Coca-Cola Company PET pouch/package with foldable base
JP2010105718A (en) * 2008-10-31 2010-05-13 Yoshino Kogyosho Co Ltd Synthetic resin blow-molded container
JP2010137898A (en) * 2008-12-12 2010-06-24 Kobayashi Pharmaceut Co Ltd Resin-made encapsulating container
JP2010137897A (en) * 2008-12-12 2010-06-24 Kobayashi Pharmaceut Co Ltd Resin-made encapsulating container
US10035690B2 (en) 2009-01-06 2018-07-31 Graham Packaging Company, L.P. Deformable container with hoop rings
US7926243B2 (en) 2009-01-06 2011-04-19 Graham Packaging Company, L.P. Method and system for handling containers
US8096098B2 (en) 2009-01-06 2012-01-17 Graham Packaging Company, L.P. Method and system for handling containers
US8171701B2 (en) 2009-01-06 2012-05-08 Graham Packaging Company, L.P. Method and system for handling containers
US8429880B2 (en) 2009-01-06 2013-04-30 Graham Packaging Company L.P. System for filling, capping, cooling and handling containers
US9522773B2 (en) 2009-07-09 2016-12-20 Entegris, Inc. Substantially rigid collapsible liner and flexible gusseted or non-gusseted liners and methods of manufacturing the same and methods for limiting choke-off in liners
US8962114B2 (en) 2010-10-30 2015-02-24 Graham Packaging Company, L.P. Compression molded preform for forming invertible base hot-fill container, and systems and methods thereof
US9133006B2 (en) 2010-10-31 2015-09-15 Graham Packaging Company, L.P. Systems, methods, and apparatuses for cooling hot-filled containers
US10214407B2 (en) 2010-10-31 2019-02-26 Graham Packaging Company, L.P. Systems for cooling hot-filled containers
US9637300B2 (en) 2010-11-23 2017-05-02 Entegris, Inc. Liner-based dispenser
US9650169B2 (en) 2011-03-01 2017-05-16 Entegris, Inc. Nested blow molded liner and overpack and methods of making same
US9211993B2 (en) 2011-03-01 2015-12-15 Advanced Technology Materials, Inc. Nested blow molded liner and overpack and methods of making same
US9150320B2 (en) 2011-08-15 2015-10-06 Graham Packaging Company, L.P. Plastic containers having base configurations with up-stand walls having a plurality of rings, and systems, methods, and base molds thereof
US9994378B2 (en) 2011-08-15 2018-06-12 Graham Packaging Company, L.P. Plastic containers, base configurations for plastic containers, and systems, methods, and base molds thereof
US10189596B2 (en) 2011-08-15 2019-01-29 Graham Packaging Company, L.P. Plastic containers having base configurations with up-stand walls having a plurality of rings, and systems, methods, and base molds thereof
US8919587B2 (en) 2011-10-03 2014-12-30 Graham Packaging Company, L.P. Plastic container with angular vacuum panel and method of same
JP2015515948A (en) * 2012-05-04 2015-06-04 エコラボ ユーエスエー インコーポレイティド Crushable bottle
US9022776B2 (en) 2013-03-15 2015-05-05 Graham Packaging Company, L.P. Deep grip mechanism within blow mold hanger and related methods and bottles
US9346212B2 (en) 2013-03-15 2016-05-24 Graham Packaging Company, L.P. Deep grip mechanism within blow mold hanger and related methods and bottles
US9993959B2 (en) 2013-03-15 2018-06-12 Graham Packaging Company, L.P. Deep grip mechanism for blow mold and related methods and bottles
JP2015224077A (en) * 2014-05-30 2015-12-14 株式会社吉野工業所 Bottle which can deform by squeeze deformation
WO2021261292A1 (en) * 2020-06-22 2021-12-30 サントリーホールディングス株式会社 Plastic bottle
JP2022001502A (en) * 2020-06-22 2022-01-06 サントリーホールディングス株式会社 Plastic bottle
WO2022138145A1 (en) * 2020-12-25 2022-06-30 小林製薬株式会社 Resin container

Also Published As

Publication number Publication date
JP3808160B2 (en) 2006-08-09

Similar Documents

Publication Publication Date Title
JPH10230919A (en) Plastic bottle
US6935525B2 (en) Container with flexible panels
JP3881154B2 (en) Bottle-shaped synthetic resin container suitable for filling high temperature contents
US7748553B2 (en) Synthetic resin container with thin wall
CA1161213A (en) Snap hinge of plastic material
KR100699122B1 (en) Plastic bottle with handle
US20110084046A1 (en) Plastic container having improved flexible panel
WO1991004912A1 (en) Biaxially stretched blow molded bottle
DE69032107T2 (en) Bottle-shaped container made of plastic
EP2792466A1 (en) Parison and container blow-molding method using same
EP1550611B1 (en) Synthetic resin bottle
JP3693775B2 (en) Crushable plastic container
EP2456677A1 (en) Container having compound flexible panels
JP3268087B2 (en) Plastic bottle
JP2000127231A (en) Thin-walled bottle by stretching blow molding
JP5057305B2 (en) Synthetic resin housing
WO2018008494A1 (en) Synthetic resin container
JP2949459B2 (en) Hollow container made of polyethylene terephthalate resin
JP2002029524A (en) Thin-walled bottle made of synthetic resin
JPH1035678A (en) Easy-to-crush hollow container
JP5587124B2 (en) Plastic container
KR20040055821A (en) Chemical container for high-pure chemicals
JP3993759B2 (en) Blow bottle
JP7419669B2 (en) Synthetic resin container
JP7175751B2 (en) blow molded container

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees