JPH10229109A - Method for measuring life time of minority carriers and manufacture of semiconductor device - Google Patents

Method for measuring life time of minority carriers and manufacture of semiconductor device

Info

Publication number
JPH10229109A
JPH10229109A JP3015697A JP3015697A JPH10229109A JP H10229109 A JPH10229109 A JP H10229109A JP 3015697 A JP3015697 A JP 3015697A JP 3015697 A JP3015697 A JP 3015697A JP H10229109 A JPH10229109 A JP H10229109A
Authority
JP
Japan
Prior art keywords
layer
charge
pad electrode
soi
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3015697A
Other languages
Japanese (ja)
Other versions
JP3661334B2 (en
Inventor
Shigeo Sato
成生 佐藤
Yoshiharu Tosaka
義春 戸坂
Hiroyuki Kaneda
博幸 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP03015697A priority Critical patent/JP3661334B2/en
Publication of JPH10229109A publication Critical patent/JPH10229109A/en
Application granted granted Critical
Publication of JP3661334B2 publication Critical patent/JP3661334B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method by which the life time of minority carriers which are excited only in an SOI(silicon-on-insulator) layer in a semiconductor device, having the SOI layer formed by laminating a single-crystal silicon layer upon an insulating film can be measured. SOLUTION: In a method for measuring life time of minority carriers, a p<+> -type layer 4 and an n<+> -type layer 5 are formed in a p<+> -type SOI layer 3 and metal wiring 6a, which connects the layers 4 and 5 to a p<+> -type layer pad electrode and an n<+> -type layer pad electrode, is provided. Then a charge- measuring instrument 8 is provided between the n<+> -type layer pad electrode and the ground, and the p<+> -type layer pad electrode is connected to the ground. In addition, the quantity of charges collected to the n<+> -type layer pad electrode is measured by means of the charge-measuring instrument 8, when ions are implanted into the SOI layer 3 between the layers 4 and 5 and the life time of the minority carrier of the SOI layer 3 is calculated, based on the relation between the implanting position of the ions and the quantity of the charges collected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置における
少数キャリアのライフタイムの測定技術に係り、特に絶
縁膜上に単結晶シリコン層を積層させてなるSOI構造
の半導体装置における少数キャリアのライフタイムの測
定法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technology for measuring the lifetime of minority carriers in a semiconductor device, and more particularly to the technology for measuring the lifetime of minority carriers in a semiconductor device having an SOI structure in which a single crystal silicon layer is laminated on an insulating film. It concerns the measurement method.

【0002】Silicon on Insulator構造(以下、SOI
構造と略称する)のMOSFETは寄生容量が少ないこ
とが特徴であるから消費電力が少なく、また、DRAM
に適用すると、ピット線容量が少なくなり、高速で動作
させることが可能である。
[0002] A silicon on insulator structure (hereinafter referred to as SOI
MOSFETs) are characterized by low parasitic capacitance, and therefore consume less power.
In this case, the pit line capacity is reduced, and the device can be operated at high speed.

【0003】しかし、SOI構造には、埋め込み酸化膜
とシリコン界面の少数キャリアのライフタイムが短いと
いう問題がある。ライフタイムが短いと、pn接合の逆
方向リーク電流が大きくなり、消費電力の増加や、DR
AMの電荷保持特性の劣化などの問題が生じる。
However, the SOI structure has a problem that the minority carrier at the interface between the buried oxide film and the silicon has a short lifetime. If the lifetime is short, the reverse leakage current of the pn junction becomes large, and the power consumption increases,
Problems such as deterioration of the charge retention characteristics of the AM occur.

【0004】このため、SOI構造では、少数キャリア
のライフタイムを定量的にモニターすることが必要であ
る。以上のような状況から、SOI層の少数キャリアの
ライフタイムを正確に測定することが可能な少数キャリ
アのライフタイムの測定法が要望されている。
Therefore, in the SOI structure, it is necessary to quantitatively monitor the minority carrier lifetime. Under the circumstances described above, there is a demand for a method for measuring the minority carrier lifetime that can accurately measure the minority carrier lifetime in the SOI layer.

【0005】[0005]

【従来の技術】従来のSOI層内に発生させた少数キャ
リアが再結合して消滅するまでの時間、即ち少数キャリ
アのライフタイムの測定は、一般に、SOI層に波長が
800nm〜1,000nm の電磁波を照射して少数キャリアを励
起し、この少数キャリアの濃度の経時変化を、SOI層
に照射したマイクロ波の反射強度を計測することにより
行われている。
2. Description of the Related Art In the conventional measurement of the time required for minority carriers generated in an SOI layer to recombine and disappear, that is, the lifetime of the minority carrier, generally, the wavelength is measured in the SOI layer.
Irradiation of electromagnetic waves of 800 nm to 1,000 nm excites minority carriers, and the change over time of the concentration of the minority carriers is performed by measuring the reflection intensity of the microwave applied to the SOI layer.

【0006】このようなマイクロ波を用いる少数キャリ
ア濃度の測定については、例えば、"Microwave Techniq
ues in Measurement of Lifetime in Germanium",Journ
alof Applied Physics,Vol.30,N0.7,pp.1054-1060(195
9) に記載されている。
[0006] The measurement of the minority carrier concentration using such a microwave is described in, for example, "Microwave Techniq."
ues in Measurement of Lifetime in Germanium ", Journ
alof Applied Physics, Vol. 30, N0.7, pp. 1054-1060 (195
9).

【0007】[0007]

【発明が解決しようとする課題】以上説明した従来の少
数キャリアのライフタイムの測定法においては、可視光
をSOI層に照射すると、数十μm 程度の深さまで可視
光が到達することが知られている。
In the conventional method for measuring the lifetime of minority carriers described above, it is known that when visible light is applied to an SOI layer, the visible light reaches a depth of about several tens of μm. ing.

【0008】SOI層に可視光を照射した場合には、可
視光がSOI層の支持基板に達し、この支持基板部分に
おいても少数キャリアが励起されるため、SOI層にの
み励起された少数キャリアのライフタイムを正確に測定
することができないという課題があった。
When the SOI layer is irradiated with visible light, the visible light reaches the support substrate of the SOI layer, and the minority carriers are also excited in the support substrate portion. There was a problem that the lifetime could not be measured accurately.

【0009】本発明は以上のような状況から、簡単且つ
容易にSOI層のみに励起された少数キャリアのライフ
タイムの測定を行うことが可能となる少数キャリアのラ
イフタイムの測定法の提供を目的としたものである。
In view of the above, an object of the present invention is to provide a method for measuring the lifetime of minority carriers which makes it possible to easily and easily measure the lifetime of minority carriers excited only in the SOI layer. It is what it was.

【0010】[0010]

【課題を解決するための手段】本発明の少数キャリアの
ライフタイムの測定法は、p型のSOI層にp+層とn+
層を形成し、このp+層とn+層とをそれぞれp+層パッ
ド電極とn+パッド層電極と接続するメタル配線層を備
えた半導体装置における少数キャリアのライフタイムの
測定法において、このn+層パッド電極とアースの間に
電荷計測器を設け、このp+層パッド電極をアースに接
続し、このp+層とn+層との間のSOI層にイオンを注
入した際にこの電荷計測器によりこのn+層パッド電極
に収集された電荷量を計測し、このイオンの注入位置と
収集電荷量の関係に基づき、このSOI層の少数キャリ
アのライフタイムを算出するように構成する。
According to the method of measuring the minority carrier lifetime of the present invention, a p + layer and an n +
In the method of measuring the minority carrier lifetime in a semiconductor device having a metal wiring layer for forming a layer and connecting the p + layer and the n + layer to the p + layer pad electrode and the n + pad layer electrode, respectively, A charge measuring device is provided between the n + layer pad electrode and the ground, and the p + layer pad electrode is connected to the ground. When ions are implanted into the SOI layer between the p + layer and the n + layer, The charge measuring device measures the amount of charge collected in the n + layer pad electrode, and calculates the lifetime of minority carriers in the SOI layer based on the relationship between the ion implantation position and the collected charge amount. .

【0011】即ち本発明においては図1に示すように、
支持基板1の表面に絶縁膜2を形成し、この絶縁膜2の
表面にp層からなるSOI層3を形成し、このSOI層
3の表面にp+層4とn+層5を形成し、n+層5とアー
スの間に電荷計測器8を設けて、このp+層4とn+層5
との間のSOI層3にイオン7を注入すると、SOI層
3内及び支持基板1内に少数キャリアが励起されるが、
SOI層3と支持基板1との間に絶縁膜2が形成されて
いるので、支持基板1に励起された少数キャリアは、こ
の電荷計測器8の測定には影響を与えず、SOI層3の
みに励起された少数キャリアのライフタイムの測定を行
うことが可能となる。
That is, in the present invention, as shown in FIG.
An insulating film 2 is formed on the surface of the support substrate 1, an SOI layer 3 made of a p-layer is formed on the surface of the insulating film 2, and ap + layer 4 and an n + layer 5 are formed on the surface of the SOI layer 3. by providing an n + layer 5 and a charge measurement device 8 during ground, the p + layer 4 and n + layer 5
When the ions 7 are implanted into the SOI layer 3 between them, minority carriers are excited in the SOI layer 3 and the support substrate 1.
Since the insulating film 2 is formed between the SOI layer 3 and the support substrate 1, the minority carriers excited by the support substrate 1 do not affect the measurement of the charge measuring device 8, and only the SOI layer 3 It becomes possible to measure the lifetime of the minority carriers excited by the above.

【0012】この場合、イオンの照射位置と拡散層、即
ちn+層との距離と、この電荷計測器により収集した収
集電荷量との関係は図2に示すようになり、この距離が
大きくなればこの収集電荷量が減少するので、入射位置
に対応する収集電荷量を測定し、図2において入射位置
の線と収集電荷量の線との交点でライフタイムを見つけ
ることにより、SOI層3の少数キャリアのライフタイ
ムの測定を行うことが可能となる。
In this case, the relationship between the distance between the ion irradiation position and the diffusion layer, that is, the n + layer, and the amount of charge collected by the charge measuring device is as shown in FIG. 2, and this distance is increased. For example, since the collected charge amount decreases, the collected charge amount corresponding to the incident position is measured, and the lifetime is found at the intersection of the line of the incident position and the line of the collected charge amount in FIG. It becomes possible to measure the lifetime of minority carriers.

【0013】[0013]

【発明の実施の形態】以下図3〜図9により本発明の第
1〜第4の実施例について詳細に説明する。図3は本発
明による第1の実施例の断面図、図4は本発明による第
1の実施例の平面図、図5は本発明による第2の実施例
の断面図、図6は本発明による第2の実施例の平面図、
図7は本発明による第3の実施例の断面図、図8は本発
明による第3の実施例の平面図、図9は本発明による第
4の実施例の断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, first to fourth embodiments of the present invention will be described in detail with reference to FIGS. FIG. 3 is a sectional view of a first embodiment according to the present invention, FIG. 4 is a plan view of the first embodiment according to the present invention, FIG. 5 is a sectional view of a second embodiment according to the present invention, and FIG. Plan view of a second embodiment according to
7 is a sectional view of a third embodiment according to the present invention, FIG. 8 is a plan view of the third embodiment according to the present invention, and FIG. 9 is a sectional view of a fourth embodiment according to the present invention.

【0014】本発明による第1の実施例においては、図
3に示すようにp型シリコン層13に50μm の間隔でp+
層4とn+層5を形成し、図4に示すようにp+層4とp
+層パッド電極4aとをアルミニウムなどからなるメタル
配線6aで接続し、n+層5とn+層パッド電極5aとをアル
ミニウムなどからなるメタル配線6bで接続する。
In the first embodiment according to the present invention, as shown in FIG. 3, the p + type silicon layer 13 has p +
A layer 4 and n + layer 5, p and p + layer 4 as shown in FIG. 4
+ Layer pad electrode 4a is connected by metal wiring 6a made of aluminum or the like, and n + layer 5 and n + layer pad electrode 5a are connected by metal wiring 6b made of aluminum or the like.

【0015】そして、0.1 fCの精度で電荷を計測する
ことが可能な電荷計測器8をn+層パッド電極を介して
図1に示すようにこのn+層5に接続する。その後、図
3に示すようにこのn+層5とp+層4の間に数MeV程
度に加速したイオン7を照射し、この電荷計測器8によ
り収集電荷量を計測する。
A charge measuring device 8 capable of measuring charges with an accuracy of 0.1 fC is connected to the n + layer 5 through an n + layer pad electrode as shown in FIG. Thereafter, as shown in FIG. 3, ions 7 accelerated to about several MeV are irradiated between the n + layer 5 and the p + layer 4, and the charge measuring device 8 measures the amount of collected charges.

【0016】イオンの照射位置の制御は、平行平板型の
コンデンサにより数μm の精度で行うことが必要であ
る。そして、図2を用いて、イオンの入射位置の線と収
集電荷量の線との交点でライフタイムを見つけることに
より、SOI層3の少数キャリアのライフタイムの測定
を行うことが可能となる。
It is necessary to control the irradiation position of ions with a parallel plate type condenser with an accuracy of several μm. Then, the lifetime of the minority carrier in the SOI layer 3 can be measured by finding the lifetime at the intersection of the line of the incident position of the ion and the line of the amount of collected charges with reference to FIG.

【0017】本発明による第2の実施例においては、図
5に示すようにp型シリコン層13に50μm の間隔でp+
層4とn+層5を形成し、図6に示すようにp+層4とp
+層パッド電極4aとをアルミニウムなどからなるメタル
配線6aで接続し、n+層5とn+層パッド電極5aとをアル
ミニウムなどからなるメタル配線6bで接続する。
In the second embodiment according to the present invention, as shown in FIG. 5, p +
A layer 4 and n + layer 5, p and p + layer 4 as shown in FIG. 6
+ Layer pad electrode 4a is connected by metal wiring 6a made of aluminum or the like, and n + layer 5 and n + layer pad electrode 5a are connected by metal wiring 6b made of aluminum or the like.

【0018】そして、0.1 fCの精度で電荷を計測する
ことが可能な電荷計測器8をn+層パッド電極を介して
図1に示すようにこのn+層5に接続する。この第2の
実施例においては、メタル配線6a,6b を形成した後、図
5に示すようにα線を遮蔽することができる膜厚30μm
のポリイミド膜9を堆積し、このポリイミド膜9に図6
に示すように2μm □のポリイミドホール9aを形成す
る。
Then, a charge measuring device 8 capable of measuring charges with an accuracy of 0.1 fC is connected to the n + layer 5 through an n + layer pad electrode as shown in FIG. In the second embodiment, after the metal wirings 6a and 6b are formed, as shown in FIG.
6 is deposited on the polyimide film 9 shown in FIG.
A 2 μm square polyimide hole 9a is formed as shown in FIG.

【0019】そして、α線7bを放射するα線源7aをシリ
コン基板上に置くと、α線源7aから放射されるα線7bの
エネルギーは約5MeVであるから、膜厚30μm のポリ
イミド膜9中でエネルギーが減衰し、p型シリコン層13
までは到達しない。このためポリイミドホール9aの部分
のみにα線7bが入射する。
When the α-ray source 7a for emitting the α-ray 7b is placed on a silicon substrate, the energy of the α-ray 7b emitted from the α-ray source 7a is about 5 MeV. The energy is attenuated in the p-type silicon layer 13
Do not reach. Therefore, the α-ray 7b is incident only on the polyimide hole 9a.

【0020】このポリイミドホール9aの位置と収集電荷
量の関係から、第1の実施例の場合と同様に、少数キャ
リアのライフタイムの測定を行うことが可能となる。こ
の第2の実施例においては、α線7bの入射位置を決める
ポリイミドホール9aをリソグラフィー技術を用いて形成
するので、α線7bの入射位置の制御を安価に且つ簡単に
行うことが可能である。
From the relationship between the position of the polyimide hole 9a and the amount of collected charges, it becomes possible to measure the minority carrier lifetime as in the first embodiment. In the second embodiment, since the polyimide hole 9a for determining the incident position of the α-ray 7b is formed by using the lithography technique, it is possible to control the incident position of the α-ray 7b at low cost and easily. .

【0021】本発明による第3の実施例においては、図
7に示すようにp型シリコン層13に50μm の間隔でp+
層4とn+層5を形成する前に、p型シリコン層13の表
面にゲート酸化膜10b を介してゲート電極10を形成し、
図8に示すようにp+層4とp+層パッド電極4aとをアル
ミニウムなどからなるメタル配線6aで接続し、n+層5
とn+層パッド電極5aとをアルミニウムなどからなるメ
タル配線6bで接続する。
[0021] In the third embodiment according to the present invention, at intervals of 50μm to p-type silicon layer 13 as shown in FIG. 7 p +
Before forming the layer 4 and the n + layer 5, the gate electrode 10 is formed on the surface of the p-type silicon layer 13 via the gate oxide film 10b,
As shown in FIG. 8, the p + layer 4 and the p + layer pad electrode 4a are connected by a metal wiring 6a made of aluminum or the like, and the n + layer 5
And n + layer pad electrode 5a are connected by metal wiring 6b made of aluminum or the like.

【0022】そして、0.1 fCの精度で電荷を計測する
ことが可能な電荷計測器8をn+層パッド電極を介して
図1に示すようにこのn+層5に接続する。この第3の
実施例においては、電荷計測器8により電荷量を収集す
る際には、ゲート電極10に正の電圧を印加するから、p
型シリコン層13に発生した電子は、ゲート電極10の直下
の界面を流れるようになるので、第1の実施例や第2の
実施例においてはp型シリコン層13の上側の界面と下側
の界面のライフタイムを別々に測定出来なかったが、こ
の第3の実施例ではp型シリコン層13の上側の界面のラ
イフタイムの測定を行うことが可能となる。
Then, a charge measuring device 8 capable of measuring electric charges with an accuracy of 0.1 fC is connected to this n + layer 5 through an n + layer pad electrode as shown in FIG. In the third embodiment, a positive voltage is applied to the gate electrode 10 when the charge amount is collected by the charge measuring device 8;
Since the electrons generated in the p-type silicon layer 13 flow through the interface immediately below the gate electrode 10, in the first and second embodiments, the upper interface and the lower Although the lifetimes of the interfaces could not be measured separately, in the third embodiment, the lifetime of the interface above the p-type silicon layer 13 can be measured.

【0023】本発明による第4の実施例においては、図
9に示すように酸化膜12の形成工程中にゲート電極10を
形成した後、ゲート酸化膜10b を介してp型シリコン層
13を形成し、50μm の間隔でp+層4とn+層5を形成
し、0.1 fCの精度で電荷を計測することが可能な電荷
計測器8をn+層パッド電極を介して図1に示すように
このn+層5に接続する。
In the fourth embodiment according to the present invention, as shown in FIG. 9, after the gate electrode 10 is formed during the step of forming the oxide film 12, the p-type silicon layer is formed via the gate oxide film 10b.
13, a p + layer 4 and an n + layer 5 are formed at an interval of 50 μm, and a charge measuring device 8 capable of measuring a charge with an accuracy of 0.1 fC is connected to an n + layer pad electrode as shown in FIG. Is connected to this n + layer 5 as shown in FIG.

【0024】その後、図9に示すようにこのn+層5と
+層4の間に数MeV程度に加速したイオン7を照射
し、この電荷計測器8により収集電荷量を計測する。
Thereafter, as shown in FIG. 9, ions 7 accelerated to about several MeV are irradiated between the n + layer 5 and the p + layer 4, and the amount of collected charges is measured by the charge measuring device 8.

【0025】イオンの照射位置の制御は、平行平板型の
コンデンサにより数μm の精度で行うことが必要であ
る。この第4の実施例においても第3の実施例と同様
に、電荷計測器8により電荷量を収集する際には、ゲー
ト電極10に正の電圧を印加するから、p型シリコン層13
に発生した電子は、この場合はゲート電極10の直上の界
面を流れるようになるので、第1の実施例や第2の実施
例においてはp型シリコン層13の上側の界面と下側の界
面のライフタイムを別々に測定出来なかったが、この第
4の実施例ではp型シリコン層13の下側の界面のライフ
タイムの測定を行うことが可能となる。
It is necessary to control the irradiation position of ions with a parallel plate type capacitor with an accuracy of several μm. In the fourth embodiment, similarly to the third embodiment, a positive voltage is applied to the gate electrode 10 when collecting the charge by the charge measuring device 8, so that the p-type silicon layer 13
In this case, the electrons generated at this time flow through the interface immediately above the gate electrode 10. Therefore, in the first and second embodiments, the upper interface and the lower interface of the p-type silicon layer 13 are used. However, in the fourth embodiment, the lifetime of the lower interface of the p-type silicon layer 13 can be measured.

【0026】本実施例では、n+層パッド電極とアース
の間に電荷計測器を設け、p+層パッド電極をアースに
接続し、このp+層とn+層との間のSOI層にイオンを
注入した際にこの電荷計測器によりこのn+層パッド電
極に収集された電荷量を計測し、このイオンの注入位置
と収集電荷量の関係に基づき、このSOI層の少数キャ
リアのライフタイムを算出しているが、本実施例とは逆
に電荷計測器をp+層パッド電極とアースの間に設け、
+層パッド電極をアースに接続し、このn+層とp+
との間のSOI層にイオンを注入した際にこの電荷計測
器によりこのp+層パッド電極に収集された電荷量を計
測し、このイオンの注入位置と収集電荷量の関係に基づ
き、このSOI層の正孔の少数キャリアのライフタイム
を算出することが可能となる。
In this embodiment, a charge measuring device is provided between the n + layer pad electrode and the ground, the p + layer pad electrode is connected to the ground, and the SOI layer between the p + layer and the n + layer is connected. The amount of charge collected on the n + layer pad electrode by the charge measuring device when the ions are implanted is measured, and the minority carrier lifetime of the SOI layer is determined based on the relationship between the ion implantation position and the collected charge amount. In contrast to this embodiment, a charge measuring device is provided between the p + layer pad electrode and the ground,
The n + layer pad electrode is connected to the ground, and the amount of charge collected by the charge measuring device at the p + layer pad electrode when ions are implanted into the SOI layer between the n + layer and the p + layer. It is possible to calculate the lifetime of the minority carriers of holes in the SOI layer based on the measured relationship between the ion implantation position and the collected charge amount.

【0027】[0027]

【発明の効果】以上の説明から明らかなように、本発明
によれば極めて簡単な方法により支持基板の表面のSO
I層に形成した少数キャリアのライフタイムの測定を、
半導体装置の製造工程の途中において行うことが可能
で、少数キャリアのライフタイムの短い半導体基板を工
程の途中で除去することができる利点があり、著しい経
済的及び、信頼性向上の効果が期待できる少数キャリア
のライフタイムの測定法及び半導体装置の製造方法の提
供が可能である。
As is apparent from the above description, according to the present invention, the SO on the surface of the supporting substrate can be obtained by a very simple method.
Measurement of the lifetime of minority carriers formed in the I layer,
The method can be performed in the course of a semiconductor device manufacturing process, and has the advantage that a semiconductor substrate with a short lifetime of minority carriers can be removed in the middle of the process, and significant economical and reliability improvement effects can be expected. A method for measuring the lifetime of minority carriers and a method for manufacturing a semiconductor device can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の原理図FIG. 1 is a principle diagram of the present invention.

【図2】 n+層とイオン入射位置との距離と電荷計測
器により収集した収集電荷量との関係を示す図
FIG. 2 is a diagram showing a relationship between a distance between an n + layer and an ion incident position and a collected charge amount collected by a charge measuring device.

【図3】 本発明による第1の実施例の断面図FIG. 3 is a cross-sectional view of the first embodiment according to the present invention.

【図4】 本発明による第1の実施例の平面図FIG. 4 is a plan view of the first embodiment according to the present invention.

【図5】 本発明による第2の実施例の断面図FIG. 5 is a sectional view of a second embodiment according to the present invention.

【図6】 本発明による第2の実施例の平面図FIG. 6 is a plan view of a second embodiment according to the present invention.

【図7】 本発明による第3の実施例の断面図FIG. 7 is a sectional view of a third embodiment according to the present invention.

【図8】 本発明による第3の実施例の平面図FIG. 8 is a plan view of a third embodiment according to the present invention.

【図9】 本発明による第4の実施例の断面図FIG. 9 is a sectional view of a fourth embodiment according to the present invention.

【符号の説明】[Explanation of symbols]

1 支持基板 2 絶縁膜 3 SOI層 4 p+層 4a p+層パッド電極 5 n+層 5a n+層パッド電極 6a メタル配線 6b メタル配線 7 イオン 7a α線源 7b α線 8 電荷計測器 9 ポリイミド膜 9a ポリイミドホール 10 ゲート電極 10a ゲート電極のパッド電極 10b ゲート酸化膜 11 シリコン基板 12 酸化膜 13 p型シリコン層REFERENCE SIGNS LIST 1 support substrate 2 insulating film 3 SOI layer 4 p + layer 4 a p + layer pad electrode 5 n + layer 5 an + layer pad electrode 6 a metal wiring 6 b metal wiring 7 ion 7 a α-ray source 7 b α-ray 8 charge measuring instrument 9 polyimide Film 9a polyimide hole 10 gate electrode 10a gate electrode pad electrode 10b gate oxide film 11 silicon substrate 12 oxide film 13 p-type silicon layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 p型のSOI層にp+層とn+層を形成
し、該p+層とn+層とをそれぞれp+層パッド電極とn+
層パッド電極と接続するメタル配線層を備えた半導体装
置における少数キャリアのライフタイムの測定法におい
て、 前記n+層パッド電極とアースの間に電荷計測器を設
け、前記p+層パッド電極をアースに接続し、前記p+
とn+層との間のSOI層にイオンを注入した際に前記
電荷計測器により前記n+層パッド電極に収集された電
荷量を計測し、前記イオンの注入位置と収集電荷量の関
係に基づき、前記SOI層の少数キャリアのライフタイ
ムを算出することを特徴とする少数キャリアのライフタ
イムの測定法。
1. A p.sup. + Layer and an n.sup. + Layer are formed on a p-type SOI layer, and the p.sup. + Layer and the n.sup. + Layer are respectively connected to a p.sup. + Layer pad electrode and an n.sup. + Layer.
In a method for measuring the lifetime of minority carriers in a semiconductor device having a metal wiring layer connected to a layer pad electrode, a charge measuring device is provided between the n + layer pad electrode and ground, and the p + layer pad electrode is grounded. And measuring the amount of charge collected in the n + layer pad electrode by the charge measuring device when ions are implanted into the SOI layer between the p + layer and the n + layer, and implanting the ions. A method for measuring a minority carrier lifetime, comprising calculating a minority carrier lifetime of the SOI layer based on a relationship between a position and a collected charge amount.
【請求項2】 前記メタル配線層の表面にα線を遮蔽す
る被膜を形成して該被膜に開口を設け、前記α線の放射
線源を前記半導体装置の上に設け、前記開口の位置と収
集電荷量の関係に基づき、前記SOI層の少数キャリア
のライフタイムを算出することを特徴とする請求項1記
載の少数キャリアのライフタイムの測定法。
2. A coating for blocking α-rays is formed on the surface of the metal wiring layer, an opening is provided in the coating, a radiation source for the α-rays is provided on the semiconductor device, and the position of the opening and collection of 2. The method for measuring the minority carrier lifetime according to claim 1, wherein the minority carrier lifetime of the SOI layer is calculated based on a charge amount relationship.
【請求項3】 前記SOI層上にゲート電極を形成した
後、前記SOI層にp+層とn+層を形成し、該ゲート電
極に正の電圧を印加した状態において前記p +層とn+
との間のSOI層にイオンを注入した際に前記電荷計測
器により前記n+層パッド電極に収集された電荷量を計
測し、前記イオンの注入位置と収集電荷量の関係に基づ
き、前記SOI層の上側界面の少数キャリアのライフタ
イムを算出することを特徴とする請求項1記載の少数キ
ャリアのライフタイムの測定法。
3. A gate electrode is formed on the SOI layer.
Then, p is added to the SOI layer.+Layers and n+Forming a layer, and
When a positive voltage is applied to the pole, +Layers and n+layer
Charge measurement when ions are implanted into the SOI layer between
N+The amount of charge collected on the layer pad electrode
Measured based on the relationship between the ion implantation position and the amount of collected charges.
A minority carrier rifter at the upper interface of the SOI layer.
2. The minority key according to claim 1, wherein
Carrier lifetime measurement method.
【請求項4】 前記SOI層と支持基板間の酸化膜形成
工程中にゲート電極を形成した後、前記SOI層にp+
層とn+層を形成し、該ゲート電極に正の電圧を印加し
た状態において前記p+層とn+層との間のSOI層にイ
オンを注入した際に前記電荷計測器により前記n+層パ
ッド電極に収集された電荷量を計測し、前記イオンの注
入位置と収集電荷量の関係に基づき、前記SOI層の下
側界面の少数キャリアのライフタイムを算出することを
特徴とする請求項1記載の少数キャリアのライフタイム
の測定法。
4. After forming a gate electrode during an oxide film forming step between the SOI layer and the support substrate, p + is added to the SOI layer.
Wherein a layer and n + layer, by the charge meter upon implanting ions into the SOI layer between the p + layer and the n + layer in a state of applying a positive voltage to the gate electrode n + The charge amount collected by the layer pad electrode is measured, and the lifetime of minority carriers at the lower interface of the SOI layer is calculated based on the relationship between the ion implantation position and the collected charge amount. 2. The method for measuring the minority carrier lifetime according to 1.
【請求項5】 半導体装置の製造工程が、前記請求項
1、2、3または4記載の方法により少数キャリアのラ
イフタイムを測定する工程と、ライフタイムが設定値よ
り短い半導体基板を除去する工程とを含むことを特徴と
する半導体装置の製造方法。
5. A method for manufacturing a semiconductor device, comprising: a step of measuring a minority carrier lifetime by the method according to claim 1, and a step of removing a semiconductor substrate having a lifetime shorter than a set value. And a method of manufacturing a semiconductor device.
JP03015697A 1997-02-14 1997-02-14 Minority carrier lifetime measurement method and semiconductor device manufacturing method Expired - Fee Related JP3661334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03015697A JP3661334B2 (en) 1997-02-14 1997-02-14 Minority carrier lifetime measurement method and semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03015697A JP3661334B2 (en) 1997-02-14 1997-02-14 Minority carrier lifetime measurement method and semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JPH10229109A true JPH10229109A (en) 1998-08-25
JP3661334B2 JP3661334B2 (en) 2005-06-15

Family

ID=12295902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03015697A Expired - Fee Related JP3661334B2 (en) 1997-02-14 1997-02-14 Minority carrier lifetime measurement method and semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP3661334B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102364322A (en) * 2011-06-30 2012-02-29 常州天合光能有限公司 Surface treatment method for testing minority carrier lifetime of silicon wafer
CN106853443A (en) * 2016-12-07 2017-06-16 安徽爱森能源有限公司 The detection method of silico briquette after a kind of evolution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102364322A (en) * 2011-06-30 2012-02-29 常州天合光能有限公司 Surface treatment method for testing minority carrier lifetime of silicon wafer
CN106853443A (en) * 2016-12-07 2017-06-16 安徽爱森能源有限公司 The detection method of silico briquette after a kind of evolution

Also Published As

Publication number Publication date
JP3661334B2 (en) 2005-06-15

Similar Documents

Publication Publication Date Title
Kenney et al. Results from 3-D silicon sensors with wall electrodes: near-cell-edge sensitivity measurements as a preview of active-edge sensors
Pellegrini et al. First double-sided 3-D detectors fabricated at CNM-IMB
US7968959B2 (en) Methods and systems of thick semiconductor drift detector fabrication
US6204087B1 (en) Fabrication of three-dimensional architecture for solid state radiation detectors
US8558188B2 (en) Method for manufacturing solid-state thermal neutron detectors with simultaneous high thermal neutron detection efficiency (&gt;50%) and neutron to gamma discrimination (&gt;1.0E4)
US20150061715A1 (en) Method and Apparatus for Non-Contact Measurement of Forward Voltage, Saturation Current Density, Ideality Factor and I-V Curves in P-N Junctions
Li et al. Study of silicon pixel sensor for synchrotron radiation detection
Pohl et al. Radiation hard pixel sensors using high-resistive wafers in a 150 nm CMOS processing line
CN109686812A (en) Bonded silica PIN rdaiation response detector and preparation method based on tunnel oxide
Pennicard et al. Simulation results from double-sided 3-D detectors
US20220349843A1 (en) Detection Method for the Radiation-induced Defects of Oxide Layer in Electronic Devices
WO2010045655A1 (en) Thick semiconductor drift detector fabrication
JP3661334B2 (en) Minority carrier lifetime measurement method and semiconductor device manufacturing method
Bomben et al. Novel silicon n-on-p edgeless planar pixel sensors for the ATLAS upgrade
JP2015065435A (en) Method for extraction of recombination characteristics at metallized semiconductor surfaces
JP3043364B2 (en) A method for determining the interface recombination rate of minority carriers
Koybasi et al. Design, simulation, fabrication, and preliminary tests of 3D CMS pixel detectors for the Super-LHC
Foulon et al. A new technique for the fabrication of thin silicon radiation detectors
JP2963104B2 (en) Method and apparatus for measuring localized level density
Pellegrini et al. Double sided 3D detector technologies at CNM-IMB
CN109786198A (en) A kind of atom doped method and system preparing monatomic solid-state devices and array
US20080182347A1 (en) Methods for monitoring ion implant process in bond and cleave, silicon-on-insulator (SOI) wafer manufacturing
Hoeferkamp et al. Characterization of Low Gain Avalanche Detector Prototypes’ Response to Gamma Radiation
Piemonte Development of Silicon Photomultipliers at IRST
Li et al. Development of new 3D Si detectors at BNL and CNM

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080401

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees