JPH10227508A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH10227508A
JPH10227508A JP9033723A JP3372397A JPH10227508A JP H10227508 A JPH10227508 A JP H10227508A JP 9033723 A JP9033723 A JP 9033723A JP 3372397 A JP3372397 A JP 3372397A JP H10227508 A JPH10227508 A JP H10227508A
Authority
JP
Japan
Prior art keywords
indoor
temperature
compressor
air
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9033723A
Other languages
Japanese (ja)
Inventor
Takehiko Nitta
武彦 新田
Masahiro Baba
雅浩 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9033723A priority Critical patent/JPH10227508A/en
Publication of JPH10227508A publication Critical patent/JPH10227508A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent atomized air at an indoor device from being blown-out or prevent dew formation at an indoor fan from being generated without being dependent on a humidity or a temperature in an indoor region. SOLUTION: When a cooling operation is started (S1), an indoor suction temperature S is detected by an indoor suction temperature sensor, an indoor suction humidity H is detected by an indoor suction humidity sensor and an indoor blowing-out temperature F is detected by an indoor blowing-out temperature sensor (S2). An air conditioning dew point R is calculated by an air conditioning dew point calculating means in reference to the indoor suction temperature S and the indoor suction humidity H (S3). The indoor blowing-out temperature F and the air conditioning dew point R are compared with each other by an indoor temperature comparing means (S4). If a result of comparison is R>=F, an operating frequency of the compressor is set to be less than 20Hz at a compressor frequency output section (S5). Only when the indoor blowing-out temperature F reaches the air conditioning dew point R, a frequency of the compressor is changed to reduce a freezing capacity, increase an air blowing-out temperature and then the blowing-out of the atomization or dew formation of the indoor fan or the like is prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空気調和機に関す
るものである。
[0001] The present invention relates to an air conditioner.

【0002】[0002]

【従来の技術】近年、空気調和機はその制御を行うマイ
クロコンピュータの進歩に伴い、より複雑な制御が可能
であり、信頼性追及によりさらに高機能化されている。
その一例として従来のこの種の空気調和機について、図
を用いてその動作を説明する。
2. Description of the Related Art In recent years, with the progress of microcomputers for controlling air conditioners, more complicated controls are possible, and their functions are further enhanced by pursuing reliability.
As an example, the operation of this type of conventional air conditioner will be described with reference to the drawings.

【0003】図10は空気調和機の冷凍サイクルの概略を
示す系統図で、1は圧縮機、2は室内熱交換器、3は室
外熱交換器、4は減圧機、5は室内側ファン、6は室外
側ファン、7は室内側ファンモータ、8は圧縮機周波数
出力部、9は制御回路、10は室内吸込温度センサ、11は
室内側ファン速度センサである。
FIG. 10 is a system diagram showing an outline of a refrigeration cycle of an air conditioner. 1 is a compressor, 2 is an indoor heat exchanger, 3 is an outdoor heat exchanger, 4 is a decompressor, 5 is an indoor fan, 6 is an outdoor fan, 7 is an indoor fan motor, 8 is a compressor frequency output unit, 9 is a control circuit, 10 is an indoor suction temperature sensor, and 11 is an indoor fan speed sensor.

【0004】前記の図10に示すような従来例の冷凍サイ
クルにおいて、圧縮機1から吐出された冷媒は、室外熱
交換器3,減圧装置4,室内熱交換器2と流れ、圧縮機
1に再び吸入される。圧縮機1にはその運転周波数を変
更する圧縮機周波数出力部8、室内熱交換器2の近傍に
は室内側ファン5とそれを駆動する室内側ファンモータ
7および室内吸込温度センサ10,室内側ファン速度セン
サ11、さらに室外熱交換器3には室外側ファン6が配置
され、それらを制御する制御回路9より構成されてい
る。
In the conventional refrigeration cycle as shown in FIG. 10, the refrigerant discharged from the compressor 1 flows through the outdoor heat exchanger 3, the pressure reducing device 4, and the indoor heat exchanger 2, and flows into the compressor 1. It is inhaled again. The compressor 1 has a compressor frequency output section 8 for changing its operating frequency, and an indoor fan 5 and an indoor fan motor 7 for driving the indoor fan 5 and an indoor suction temperature sensor 10 in the vicinity of the indoor heat exchanger 2. An outdoor fan 6 is arranged in the fan speed sensor 11 and further in the outdoor heat exchanger 3, and includes a control circuit 9 for controlling them.

【0005】ここで制御回路9は、室内吸込温度センサ
10により検出された室内吸込温度、室内側ファン速度セ
ンサ11で検出された室内側ファンのファン速度、および
予め設定したファン速度を比較してある一定条件を満た
した場合に、露付制御信号を発生する。この露付制御信
号により、圧縮機1の運転周波数を圧縮機周波数出力部
8により低下させる。この結果、室内熱交換器2の蒸発
温度が上昇して吹き出し温度を上昇させることになり、
高温多湿条件下において露付を防ぐことができる。
Here, the control circuit 9 comprises an indoor suction temperature sensor.
When the indoor suction temperature detected by 10, the fan speed of the indoor fan detected by the indoor fan speed sensor 11, and a predetermined fan speed are compared and a certain condition is satisfied, the dew control signal is output. Occur. The operating frequency of the compressor 1 is reduced by the compressor frequency output unit 8 according to the dew control signal. As a result, the evaporation temperature of the indoor heat exchanger 2 rises and the blowout temperature rises,
Exposure can be prevented under hot and humid conditions.

【0006】現在、市場において多く使用されているワ
ックスや家具の艶出し材等からロウ成分が室内に蒸発
し、それを吸い込んだ空気調和機はその室内熱交換器2
のドレン水にロウ成分を含むことになる。そして、室内
熱交換器2のフィンの表面に付着することにより、フィ
ンの表面は親水性から撥水性になる。これによりドレン
水が室内熱交換器2のフィン間でブリッジしやすくな
り、室内送風回路の通風抵抗が増加して室内風量が低下
する。そのため、室内熱交換器2の蒸発温度が低下し、
吹き出し温度を低下させることになる。したがって、予
め設定された空調条件によらず、霧の吹き出しや室内側
ファン5の結露等が生ずることになる。
At present, wax components evaporate into the room from waxes, furniture glazing materials, etc., which are widely used in the market, and the air conditioner that sucks the wax components into the indoor heat exchanger 2.
Will contain wax components. Then, by adhering to the surface of the fin of the indoor heat exchanger 2, the surface of the fin becomes hydrophilic to water-repellent. This makes it easier for the drain water to bridge between the fins of the indoor heat exchanger 2, increasing the ventilation resistance of the indoor ventilation circuit and reducing the amount of indoor air. Therefore, the evaporation temperature of the indoor heat exchanger 2 decreases,
The blowing temperature will be reduced. Therefore, regardless of the preset air-conditioning conditions, mist blowing, dew condensation on the indoor fan 5, and the like occur.

【0007】[0007]

【発明が解決しようとする課題】このような構成の従来
の空気調和機は、その制御開始条件の一つとして、室内
吸込温度センサ,室内側ファン速度センサ等から判定し
た空調条件を使用していた。したがって、前記のように
室内熱交換器のフィン表面がワックスや家具の艶出し材
等のロウ成分による不純物により汚染された場合などで
は、霧の吹き出しや室内側ファンの結露等が生ずるとい
う課題を有していた。
In the conventional air conditioner having such a configuration, as one of the control start conditions, an air conditioning condition determined from an indoor suction temperature sensor, an indoor fan speed sensor, and the like is used. Was. Therefore, as described above, when the fin surface of the indoor heat exchanger is contaminated with impurities such as wax and wax components such as glazing materials for furniture, there is a problem that mist blowing and dew condensation of the indoor fan occur. Had.

【0008】本発明は、前記従来技術のこのような空気
調和機の課題を考慮し、室内の温湿度によらず、室内ユ
ニット側での霧の吹き出しや室内側ファンの結露等を防
止できる空気調和機を提供することを目的とする。
The present invention has been made in consideration of the above-mentioned problems of the conventional air conditioner, and is capable of preventing the blowing of fog on the indoor unit side and the dew condensation of the indoor fan regardless of the indoor temperature and humidity. It aims at providing a harmony machine.

【0009】[0009]

【課題を解決するための手段】この目的を達成するため
に、本発明に係る空気調和機は、圧縮機,室内熱交換
器,室外熱交換器,減圧機により構成された冷凍サイク
ルを具備する空気調和機であって、室内の吸い込み温度
を検出する吸込温度検出手段と、室内の吸い込み湿度を
検出する吸込湿度検出手段と、室内の吹き出し温度を検
出する吹出温度検出手段と、検出した室内の吸い込み温
度と吸い込み湿度より空調露点を求める空調露点算出手
段と、求めた空調露点と検出した吹き出し温度を比較す
る室内温度比較手段と、室内温度比較手段の出力に応じ
て圧縮機の周波数を制御する圧縮機周波数出力手段を備
えることを特徴とする。
In order to achieve the above object, an air conditioner according to the present invention comprises a refrigeration cycle including a compressor, an indoor heat exchanger, an outdoor heat exchanger, and a pressure reducer. An air conditioner, a suction temperature detecting means for detecting indoor suction temperature, a suction humidity detecting means for detecting indoor suction humidity, a blowing temperature detecting means for detecting indoor blowing temperature, and a detected indoor temperature. Air-conditioning dew point calculating means for calculating the air-conditioning dew point from the suction temperature and the suction humidity; indoor temperature comparing means for comparing the obtained air-conditioning dew point with the detected outlet temperature; and controlling the frequency of the compressor according to the output of the indoor temperature comparing means. It is characterized by comprising compressor frequency output means.

【0010】また、運転時間を検出する運転時間検出手
段と、予め設定した運転時間を記憶する設定時間記憶手
段と、運転時間検出手段の検出時間が設定時間記憶手段
の設定時間に達したことを比較する時間比較手段を備え
ることを特徴とする。
An operation time detecting means for detecting an operation time, a set time storage means for storing a preset operation time, and a condition that the detection time of the operation time detection means reaches the set time of the set time storage means. It is characterized by comprising time comparison means for comparison.

【0011】また、外気温を検出する室外温度検出手段
と、予め設定した外気温を記憶する設定外気温記憶手段
と、室外温度検出手段の検出外気温と設定外気温記憶手
段の設定外気温を比較する室外温度比較手段を備えるこ
とを特徴とする。
[0011] Further, an outdoor temperature detecting means for detecting an outside air temperature, a set outside air temperature storing means for storing a preset outside air temperature, and an outside air temperature detected by the outdoor temperature detecting means and a set outside air temperature of the set outside air temperature storing means. It is characterized by having an outdoor temperature comparing means for comparison.

【0012】また、室内側ファンのファン速度を検出す
る室内側ファン速度検出手段と、予め設定した室内側フ
ァンのファン速度を記憶するファン速度記憶手段と、室
内側ファン速度検出手段の検出ファン速度とファン速度
記憶手段の設定ファン速度を比較する速度比較手段を備
えるように構成したものである。
Further, an indoor fan speed detecting means for detecting a fan speed of the indoor fan, a fan speed storing means for storing a preset fan speed of the indoor fan, and a detected fan speed of the indoor fan speed detecting means. And a speed comparing means for comparing the set fan speed of the fan speed storing means with the fan speed storing means.

【0013】前記構成によれば、室内の吸い込み温度と
吸い込み湿度と吹き出し温度を検出し、吹き出し温度が
吸い込み温度と吸い込み湿度より求めた空調露点に達し
たことを判定すると、圧縮機の周波数を変更して制御す
る。さらに、時間比較手段の運転時間による条件の判定
出力や、室外温度比較手段の外気温による条件の判定出
力や、速度比較手段のファン速度による条件の判定出力
によっても圧縮機の周波数を変更,制御することができ
る。
According to the above configuration, the indoor suction temperature, the suction humidity and the blow-out temperature are detected, and when it is determined that the blow-out temperature has reached the air conditioning dew point obtained from the suction temperature and the suction humidity, the frequency of the compressor is changed. And control. Further, the frequency of the compressor is changed and controlled by the judgment output of the condition based on the operation time of the time comparison means, the judgment output of the condition based on the outside temperature of the outdoor temperature comparison means, and the judgment output of the condition based on the fan speed of the speed comparison means. can do.

【0014】[0014]

【発明の実施の形態】以下、図面を参照して本発明にお
ける実施の形態を詳細に説明する。図1は本発明の実施
の形態における空気調和機の冷凍サイクルの概略を示す
系統図である。ここで、前記従来例を示す図10において
説明した構成要件に対応し実質的に同等の機能を有する
ものには同一の符号を付してこれを示す。図1におい
て、1は圧縮機、2は室内熱交換器、3は室外熱交換
器、4は減圧機、5は室内側ファン、6は室外側ファ
ン、7は室内側ファンモータ、8は圧縮機周波数出力
部、9は制御回路、10は吸込温度検出手段である室内吸
込温度センサ、11は室内側ファン速度検出手段である室
内側ファン速度センサ、12は吸込湿度検出手段である室
内吸込湿度センサ、13は吹出温度検出手段である室内吹
出温度センサ、14は室外温度検出手段である室外温度セ
ンサである。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a system diagram schematically showing a refrigeration cycle of an air conditioner according to an embodiment of the present invention. Here, components having substantially the same functions and corresponding to the components described in FIG. 10 showing the conventional example are denoted by the same reference numerals. In FIG. 1, 1 is a compressor, 2 is an indoor heat exchanger, 3 is an outdoor heat exchanger, 4 is a decompressor, 5 is an indoor fan, 6 is an outdoor fan, 7 is an indoor fan motor, and 8 is a compressor. A machine frequency output unit, 9 is a control circuit, 10 is an indoor suction temperature sensor as suction temperature detecting means, 11 is an indoor fan speed sensor as indoor fan speed detecting means, and 12 is an indoor suction humidity as suction humidity detecting means. A sensor 13 is an indoor air temperature sensor as an air temperature detecting means, and an outdoor temperature sensor 14 is an outdoor temperature detecting means.

【0015】前記従来例と同様に、その冷凍サイクルに
おいて圧縮機1から吐出された冷媒は、室外熱交換器
3,減圧装置4,室内熱交換器2と流れ、圧縮機1に再
び吸入される。さらに、圧縮機1には圧縮機周波数出力
部8、室内熱交換器2には室内側ファン5と室内側ファ
ンモータ7および室内吸込温度センサ10,室内側ファン
速度センサ11,室内吸込湿度センサ12,室内吹出温度セ
ンサ13、また室外熱交換器3には室外側ファン6と室外
温度センサ14が配置され、それらの検出値によって空気
調和機を制御する制御回路9より構成される。
As in the conventional example, the refrigerant discharged from the compressor 1 in the refrigeration cycle flows through the outdoor heat exchanger 3, the pressure reducing device 4, and the indoor heat exchanger 2, and is sucked into the compressor 1 again. . Further, the compressor 1 has a compressor frequency output section 8, and the indoor heat exchanger 2 has an indoor fan 5, an indoor fan motor 7, an indoor suction temperature sensor 10, an indoor fan speed sensor 11, and an indoor suction humidity sensor 12. An outdoor fan 6 and an outdoor temperature sensor 14 are arranged in the outdoor air temperature sensor 13 and the outdoor heat exchanger 3, and are constituted by a control circuit 9 for controlling the air conditioner based on the detected values.

【0016】前記のように構成される本実施の形態の制
御回路9において、各センサにより検出された室内の吸
い込み温湿度,室内の吹き出し温度,室外の外気温度,
ファン速度や運転時間等を用いて、圧縮機周波数出力部
8により圧縮機1の運転周波数を変更,制御するもので
ある。例えば、それぞれの予め設定してある設定値とし
て、運転時間は15分、設定風量のファン速度は弱(1分
間1000回転;1000rpm)、室外の温度は30℃とし、実測値
と比較判定したり、さらに室内の吸い込み温度と吸い込
み湿度より計算した空調露点と室内の吹き出し温度とを
比較判定し、前記の各条件を満たした場合に圧縮機1の
周波数を制御するものである。より具体的な例として、
以下にその実施例を示し説明する。
In the control circuit 9 of the present embodiment configured as described above, the indoor suction temperature and humidity detected by the sensors, the indoor blowout temperature, the outdoor outdoor temperature,
The operation frequency of the compressor 1 is changed and controlled by the compressor frequency output unit 8 using the fan speed, the operation time, and the like. For example, as the preset values, the operation time is 15 minutes, the fan speed of the set air volume is low (1000 rpm for 1 minute; 1000 rpm), the outdoor temperature is 30 ° C. Further, the air conditioner dew point calculated from the indoor suction temperature and the suction humidity is compared with the indoor blowout temperature, and the frequency of the compressor 1 is controlled when each of the above conditions is satisfied. As a more specific example,
Hereinafter, the embodiment will be described and described.

【0017】[0017]

【実施例】【Example】

(実施例1)図2は本実施の形態における実施例1で空気
調和機の要部である制御回路を示すブロック図であり、
図2において、1は圧縮機、8は圧縮機周波数出力部、
9は制御回路、10は室内吸込温度センサ、12は室内吸込
湿度センサ、13は室内吹出温度センサ、15は室内吸込温
度センサ10により検出された室内吸込温度Sと室内吸込
湿度センサ12により検出された室内吸込湿度Hから空調
露点Rを計算する空調露点算出手段、16は空調露点算出
手段15より求められた空調露点Rと室内吹出温度センサ
13より検出された室内吹出温度Fを判定する室内温度比
較手段である。また、図3は前記制御回路の動作を説明
するフローチャートである。
(Embodiment 1) FIG. 2 is a block diagram showing a control circuit which is a main part of an air conditioner in Embodiment 1 of the present embodiment.
In FIG. 2, 1 is a compressor, 8 is a compressor frequency output unit,
9 is a control circuit, 10 is an indoor suction temperature sensor, 12 is an indoor suction humidity sensor, 13 is an indoor discharge temperature sensor, and 15 is an indoor suction temperature S detected by the indoor suction temperature sensor 10 and detected by the indoor suction humidity sensor 12. The air-conditioning dew point calculating means 16 calculates the air-conditioning dew point R from the indoor suction humidity H, and the air-conditioning dew point R obtained by the air-conditioning dew point calculating means 15 and the indoor air temperature sensor.
This is an indoor temperature comparing means for determining the indoor blowout temperature F detected by the controller 13. FIG. 3 is a flowchart illustrating the operation of the control circuit.

【0018】本実施例1は制御回路9において、室内吸
込温度センサ10により検出された室内吸込温度Sと室内
吸込湿度センサ12により検出された室内吸込湿度Hより
空調露点算出手段15が求めた空調露点Rと、室内吹出温
度センサ13より検出された室内吹出温度Fを比較判定す
る室内温度比較手段16を備えている。
In the first embodiment, in the control circuit 9, the air conditioning dew point calculating means 15 calculates the air conditioning dew point calculating means 15 from the indoor suction temperature S detected by the indoor suction temperature sensor 10 and the indoor suction humidity H detected by the indoor suction humidity sensor 12. An indoor temperature comparing means 16 for comparing the dew point R with the indoor air temperature F detected by the indoor air temperature sensor 13 is provided.

【0019】以下に、前記図2に示すように構成される
ブロック図の動作を図3のフローチャートを用いて説明
する。冷房運転の開始と共に(S1)、室内吸込温度Sは
室内吸込温度センサ10により検出、室内吸込湿度Hは室
内吸込湿度センサ12より検出、および室内吹出温度Fは
室内吹出温度センサ13により検出される(S2)。次に、
室内吸込温度センサ10により検出された室内吸込温度S
と室内吸込湿度センサ12により検出された室内吸込湿度
Hから空調露点Rが空調露点算出手段15にて計算される
(S3)。室内吹出温度センサ13より検出された室内吹出
温度Fと空調露点算出手段15で求められた空調露点Rを
室内温度比較手段16で比較する(S4)。そして、空調露
点Rと室内吹出温度Fを比較して、R≧Fであれば、圧
縮機1の運転周波数を圧縮機周波数出力部8により、例
えば20Hz低下させる(S5)。
The operation of the block diagram configured as shown in FIG. 2 will be described below with reference to the flowchart of FIG. At the start of the cooling operation (S1), the indoor suction temperature S is detected by the indoor suction temperature sensor 10, the indoor suction humidity H is detected by the indoor suction humidity sensor 12, and the indoor discharge temperature F is detected by the indoor discharge temperature sensor 13. (S2). next,
Indoor suction temperature S detected by the indoor suction temperature sensor 10
The air-conditioning dew point R is calculated by the air-conditioning dew point calculating means 15 from the indoor suction humidity H detected by the indoor suction humidity sensor 12.
(S3). The indoor air temperature F detected by the indoor air temperature sensor 13 is compared with the air conditioning dew point R obtained by the air conditioning dew point calculating means 15 by the indoor temperature comparing means 16 (S4). Then, the air conditioner dew point R is compared with the indoor outlet temperature F. If R ≧ F, the operating frequency of the compressor 1 is reduced by, for example, 20 Hz by the compressor frequency output unit 8 (S5).

【0020】つまり、室内吹出温度Fが空調露点Rに達
した場合のみ圧縮機1の周波数を変更して冷凍能力を低
下させ、吹き出し温度を上昇させることにより、室内の
温湿度に影響されることなく、不必要な室内空調の上昇
を避けつつ確実に霧の吹き出しや室内側ファン5の結露
等を防止することができる。
That is, only when the indoor outlet temperature F reaches the air-conditioning dew point R, the frequency of the compressor 1 is changed to lower the refrigerating capacity and the outlet temperature is increased, thereby being affected by the indoor temperature and humidity. In addition, it is possible to reliably prevent the blowing of fog and the dew condensation of the indoor side fan 5 while avoiding an unnecessary rise in indoor air conditioning.

【0021】(実施例2)図4は本実施の形態における実
施例2で空気調和機の要部である制御回路を示すブロッ
ク図であり、図4において、1は圧縮機、8は圧縮機周
波数出力部、9は制御回路、10は室内吸込温度センサ、
12は室内吸込湿度センサ、13は室内吹出温度センサ、15
は空調露点算出手段、16は室内温度比較手段、17は空気
調和機の運転時間Tを検出する運転時間検出手段、18は
予め設定された時間を記憶する設定時間記憶手段、19は
運転時間検出手段17の検出した運転時間Tと設定時間記
憶手段18に記憶された時間を比較する時間比較手段であ
る。また、図5は前記制御回路の動作を説明するフロー
チャートである。
(Embodiment 2) FIG. 4 is a block diagram showing a control circuit which is a main part of an air conditioner in Embodiment 2 of the present embodiment. In FIG. 4, reference numeral 1 denotes a compressor, and 8 denotes a compressor. Frequency output unit, 9 is a control circuit, 10 is an indoor suction temperature sensor,
12 is an indoor suction humidity sensor, 13 is an indoor outlet temperature sensor, 15
Is an air conditioning dew point calculating means, 16 is an indoor temperature comparing means, 17 is an operating time detecting means for detecting the operating time T of the air conditioner, 18 is a set time storing means for storing a preset time, and 19 is an operating time detecting. Time comparing means for comparing the operation time T detected by the means 17 with the time stored in the set time storing means 18. FIG. 5 is a flowchart illustrating the operation of the control circuit.

【0022】本実施例2は制御回路9において、運転時
間検出手段17により検出された運転時間Tが設定時間記
憶手段18に予め設定された設定時間(例えば,15分)に達
したことを判定する時間比較手段19と、前記実施例1と
同様に室内吸込温度センサ10が検出する室内吸込温度S
と室内吸込湿度センサ12が検出する室内吸込湿度Hより
空調露点算出手段15で空調露点Rを計算し、室内吹出温
度センサ13が検出して室内吹出温度Fを比較判定する室
内温度比較手段16を備えている。
In the second embodiment, the control circuit 9 determines that the operation time T detected by the operation time detection means 17 has reached a set time (for example, 15 minutes) preset in the set time storage means 18. Time comparing means 19 and the indoor suction temperature S detected by the indoor suction temperature sensor 10 as in the first embodiment.
The air conditioning dew point calculation means 15 calculates the air conditioning dew point R from the indoor suction humidity H detected by the indoor suction humidity sensor 12 and the indoor suction temperature sensor 13 detects and compares the indoor blowing temperature F with the indoor temperature comparing means 16. Have.

【0023】以下に、前記図4に示すように構成される
ブロック図の動作を図5のフローチャートを用いて説明
する。冷房運転開始と共に(S10)、運転時間Tは運転時
間検出手段17により検出され(S11)、室内吸込温度Sは
室内吸込温度センサ10により検出、室内吸込湿度Hは室
内吸込湿度センサ12より検出、および室内吹出温度Fは
室内吹出温度センサ13により検出される(S12)。そし
て、運転時間検出手段17により検出された運転時間Tと
設定時間記憶手段18に予め設定された設定時間(例え
ば、15分)とを時間比較手段19で比較し(S13)、T≧15
分になるまで前記動作が繰り返される。次に、室内吸込
温度センサ10により検出された室内吸込温度Sと室内吸
込湿度センサ12より検出された室内吸込湿度Hから空調
露点Rが空調露点算出手段15にて計算される(S14)。室
内吹出温度センサ13より検出された室内吹出温度Fと空
調露点算出手段15で求められた空調露点Rを室内温度比
較手段16で比較する(S15)。そして、T≧15分およびR
≧Fであれば、圧縮機1の運転周波数を圧縮機周波数出
力部8により20Hz低下させる(S16)。
The operation of the block diagram configured as shown in FIG. 4 will be described below with reference to the flowchart of FIG. With the start of the cooling operation (S10), the operation time T is detected by the operation time detecting means 17 (S11), the indoor suction temperature S is detected by the indoor suction temperature sensor 10, the indoor suction humidity H is detected by the indoor suction humidity sensor 12, And the indoor blowing temperature F is detected by the indoor blowing temperature sensor 13 (S12). Then, the operation time T detected by the operation time detection means 17 is compared with a set time (for example, 15 minutes) preset in the set time storage means 18 by the time comparison means 19 (S13), and T ≧ 15
The above operation is repeated until the minute is reached. Next, the air conditioning dew point R is calculated by the air conditioning dew point calculating means 15 from the indoor suction temperature S detected by the indoor suction temperature sensor 10 and the indoor suction humidity H detected by the indoor suction humidity sensor 12 (S14). The indoor air temperature F detected by the indoor air temperature sensor 13 and the air conditioning dew point R obtained by the air conditioning dew point calculating means 15 are compared by the indoor temperature comparing means 16 (S15). And T ≧ 15 minutes and R
If ≧ F, the operating frequency of the compressor 1 is reduced by 20 Hz by the compressor frequency output unit 8 (S16).

【0024】つまり、運転時間Tが予め設定された時間
に達して、尚かつ室内吹出温度Fが露点に達した場合の
み、圧縮機1の周波数を変更し冷凍能力を低下させて吹
き出し温度を上昇させることにより、運転開始時より一
定時間冷凍能力を確保することが可能であり、かつ室内
の温湿度に影響されることなく、不必要な室内空調の上
昇を避けつつ確実に霧の吹き出しや室内側ファン5の結
露等を防止することができる。
That is, only when the operation time T reaches a preset time and the indoor blowing temperature F reaches the dew point, the frequency of the compressor 1 is changed to lower the refrigerating capacity and raise the blowing temperature. By doing so, it is possible to secure the refrigerating capacity for a certain period of time from the start of operation, and without blowing out indoor air conditioning without being affected by the temperature and humidity inside the room, it is ensured that fog blowing and room Dew condensation and the like of the inner fan 5 can be prevented.

【0025】(実施例3)図6は本実施の形態における実
施例3で空気調和機の要部である制御回路を示すブロッ
ク図であり、図6において、1は圧縮機、8は圧縮機周
波数出力部、9は制御回路、10は室内吸込温度センサ、
12は室内吸込湿度センサ、13は室内吹出温度センサ、14
は室外温度センサ、15は空調露点算出手段、16は室内温
度比較手段、17は運転時間検出手段、18は設定時間記憶
手段、19は時間比較手段、20は予め設定された外気温t
を記憶する設定外気温記憶手段、21は室外温度センサ14
により検出された外気温tと設定外気温記憶手段20に予
め設定された温度とを比較する室外温度比較手段であ
る。また、図7は前記制御回路の動作を説明するフロー
チャートである。
(Embodiment 3) FIG. 6 is a block diagram showing a control circuit which is a main part of an air conditioner in Embodiment 3 of the present embodiment. In FIG. 6, reference numeral 1 denotes a compressor, and 8 denotes a compressor. Frequency output unit, 9 is a control circuit, 10 is an indoor suction temperature sensor,
12 is an indoor suction humidity sensor, 13 is an indoor air temperature sensor, 14
Is an outdoor temperature sensor, 15 is an air conditioning dew point calculating means, 16 is an indoor temperature comparing means, 17 is an operating time detecting means, 18 is a set time storing means, 19 is a time comparing means, and 20 is a preset outside air temperature t.
Outside temperature storage means for storing the outside temperature sensor 14
Is an outdoor temperature comparing means for comparing the outside air temperature t detected by the above with the temperature preset in the set outside air temperature storage means 20. FIG. 7 is a flowchart for explaining the operation of the control circuit.

【0026】本実施例3は制御回路9において、運転時
間検出手段17により検出された運転時間Tが設定時間記
憶手段18に予め設定された設定時間(例えば、15分)に達
したことを判定する時間比較手段19と、室内吸込温度セ
ンサ10により検出された室内吸込温度Sと室内吸込湿度
センサ12により検出された室内吸込湿度Hより空調露点
算出手段15で求めた空調露点Rと、室内吹出温度センサ
13より検出された室内吹出温度Fを比較判定する室内温
度比較手段16と、室外温度センサ14により検出された外
気温tと設定外気温記憶手段20に予め設定された外気温
(例えば、温度30℃)とを比較する室外温度比較手段21を
備えている。
In the third embodiment, the control circuit 9 determines that the operation time T detected by the operation time detection means 17 has reached a set time (for example, 15 minutes) preset in the set time storage means 18. Time comparing means 19, the air-conditioning dew point R obtained by the air-conditioning dew point calculating means 15 from the indoor suction temperature S detected by the indoor suction temperature sensor 10 and the indoor suction humidity H detected by the indoor suction humidity sensor 12; Temperature sensor
An indoor air temperature comparing means 16 for comparing the indoor air temperature F detected from the indoor air temperature detecting means 13, an external air temperature t detected by the outdoor air temperature sensor 14 and an external air temperature preset in the set outdoor air temperature storing means 20.
(For example, a temperature of 30 ° C.).

【0027】以下に、前記図6に示すように構成される
ブロック図の動作を図7のフローチャートを用いて説明
する。冷房運転開始と共に(S20)、運転時間Tは運転時
間検出手段17により検出され(S21)、室内吸込温度Sは
室内吸込温度センサ10により検出、室内吸込湿度Hは室
内吸込湿度センサ12より検出、および室内吹出温度Fは
室内吹出温度センサ13により検出される(S22)。そし
て、運転時間検出手段17により検出された運転時間Tと
設定時間記憶手段18に予め設定された設定時間(例え
ば、15分)とを時間比較手段19で比較し(S23)、T≧15
分になるまで前記動作が繰り返される。次に、室内吸込
温度センサ10により検出された室内吸込温度Sと室内吸
込湿度センサ12より検出された室内吸込湿度Hから空調
露点Rが空調露点算出手段15にて計算される(S24)。室
内吹出温度センサ13より検出された室内吹出温度Fと空
調露点算出手段15で求められた空調露点Rを室内温度比
較手段16で比較する(S25)。そして、T≧15分およびR
≧Fになれば、室外温度センサ14により外気温tを検出
し(S26)、外気温tが設定外気温記憶手段20に予め設定
された外気温(例えば、温度30℃)とを室外温度比較手段
21で比較し(S27)、t≦30℃であれば圧縮機1の運転周
波数を圧縮機周波数出力部8により20Hz低下させる(S
28)。t>30℃であれば圧縮機1の運転周波数を圧縮機周
波数出力部8により10Hz低下させる(S29)。
The operation of the block diagram configured as shown in FIG. 6 will be described below with reference to the flowchart of FIG. With the start of the cooling operation (S20), the operation time T is detected by the operation time detecting means 17 (S21), the indoor suction temperature S is detected by the indoor suction temperature sensor 10, and the indoor suction humidity H is detected by the indoor suction humidity sensor 12. And the indoor blowing temperature F is detected by the indoor blowing temperature sensor 13 (S22). Then, the operation time T detected by the operation time detecting means 17 and the set time (for example, 15 minutes) preset in the set time storage means 18 are compared by the time comparing means 19 (S23), and T ≧ 15
The above operation is repeated until the minute is reached. Next, the air conditioning dew point R is calculated by the air conditioning dew point calculating means 15 from the indoor suction temperature S detected by the indoor suction temperature sensor 10 and the indoor suction humidity H detected by the indoor suction humidity sensor 12 (S24). The indoor temperature comparing means 16 compares the indoor blowing temperature F detected by the indoor blowing temperature sensor 13 with the air conditioning dew point R calculated by the air conditioning dew point calculating means 15 (S25). And T ≧ 15 minutes and R
If ≧ F, the outside temperature sensor 14 detects the outside temperature t (S26), and compares the outside temperature t with the outside temperature (for example, temperature 30 ° C.) preset in the set outside temperature storage means 20. means
21 (S27). If t ≦ 30 ° C., the operating frequency of the compressor 1 is reduced by 20 Hz by the compressor frequency output unit 8 (S27).
28). If t> 30 ° C., the operating frequency of the compressor 1 is reduced by 10 Hz by the compressor frequency output unit 8 (S29).

【0028】つまり、運転時間Tが予め設定された値に
達して、尚かつ室内吹出温度Fが露点に達した場合の
み、外気温tに応じて圧縮機1の周波数を変更し冷凍能
力を低下させ、吹き出し温度を上昇させることにより、
運転開始時より一定時間冷凍能力を確保し、空気調和機
の設置された環境に応じた運転をしながら、室内の温湿
度に影響されることなく、不必要な室内空調の上昇を避
けつつ確実に霧の吹き出しや室内側ファン5の結露等を
防止することができる。
That is, only when the operation time T reaches a preset value and the indoor blowout temperature F reaches the dew point, the frequency of the compressor 1 is changed according to the outside air temperature t to reduce the refrigerating capacity. To increase the blowing temperature,
Refrigeration capacity is secured for a certain period of time from the start of operation, and operation is performed according to the environment in which the air conditioner is installed, while avoiding unnecessary rises in indoor air conditioning without being affected by indoor temperature and humidity. Mist and dew condensation on the indoor side fan 5 can be prevented.

【0029】(実施例4)図8は本実施の形態における実
施例4で空気調和機の要部である制御回路を示すブロッ
ク図であり、図8において、1は圧縮機、8は圧縮機周
波数出力部、9は制御回路、10は室内吸込温度センサ、
11は室内側ファン速度センサ、12は室内吸込湿度セン
サ、13は室内吹出温度センサ、15は空調露点算出手段、
16は室内温度比較手段、17は運転時間検出手段、18は設
定時間記憶手段、19は時間比較手段、22は予め設定され
たファン速度を記憶するファン速度記憶手段、23は室内
側ファン速度センサ11の検出するファン速度nとファン
速度記憶手段22に記憶されたファン速度(例えば、弱)と
を比較する速度比較手段である。また、図9は前記制御
回路の動作を説明するフローチャートである。
(Embodiment 4) FIG. 8 is a block diagram showing a control circuit which is a main part of an air conditioner according to Embodiment 4 of the present embodiment. In FIG. 8, reference numeral 1 denotes a compressor, and 8 denotes a compressor. Frequency output unit, 9 is a control circuit, 10 is an indoor suction temperature sensor,
11 is an indoor fan speed sensor, 12 is an indoor suction humidity sensor, 13 is an indoor blowout temperature sensor, 15 is an air conditioning dew point calculating means,
16 is an indoor temperature comparing means, 17 is an operation time detecting means, 18 is a set time storing means, 19 is a time comparing means, 22 is a fan speed storing means for storing a preset fan speed, and 23 is an indoor fan speed sensor. This is a speed comparison unit that compares the fan speed n detected by 11 with the fan speed (for example, low) stored in the fan speed storage unit 22. FIG. 9 is a flowchart for explaining the operation of the control circuit.

【0030】本実施例4は制御回路9において、運転時
間検出手段17により検出された運転時間Tが設定時間記
憶手段18に予め設定された設定時間(例えば、15分)に達
したことを判定する時間比較手段19と、室内側ファン速
度センサ11により検出されたファン速度nとファン速度
記憶手段22に予め設定されたファン速度(例えば、弱)と
を比較する速度比較手段23と、室内吸込温度センサ10に
より検出された室内吸込温度Sと室内吸込湿度センサ12
により検出された室内吸込湿度Hより空調露点算出手段
15で求めた空調露点Rと、室内吹出温度センサ13より検
出された室内吹出温度Fを比較判定する室内温度比較手
段16を備えている。
In the fourth embodiment, the control circuit 9 determines that the operation time T detected by the operation time detection means 17 has reached a set time (for example, 15 minutes) preset in the set time storage means 18. Time comparison means 19, a speed comparison means 23 for comparing the fan speed n detected by the indoor fan speed sensor 11 with a fan speed (for example, low) preset in the fan speed storage means 22, The indoor suction temperature S detected by the temperature sensor 10 and the indoor suction humidity sensor 12
Air conditioning dew point calculating means from the indoor suction humidity H detected by the
An indoor temperature comparing means 16 is provided for judging and comparing the air-conditioning dew point R obtained in 15 with the indoor blowing temperature F detected by the indoor blowing temperature sensor 13.

【0031】以下に、前記図8に示すように構成される
ブロック図の動作を図9のフローチャートを用いて説明
する。冷房運転開始と共に(S30)、運転時間Tは運転時
間検出手段17により検出され(S31)、室内吸込温度Sは
室内吸込温度センサ10により検出、室内吸込湿度Hは室
内吸込湿度センサ12より検出、および室内吹出温度Fは
室内吹出温度センサ13により検出される(S32)。そし
て、運転時間検出手段17により検出された運転時間Tと
設定時間記憶手段18に予め設定された設定時間(例え
ば、15分)とを時間比較手段19で比較し(S33)、T≧15
分になるまで前記動作が繰り返される。次に、室内吸込
温度検センサ10により検出された室内吸込温度Sと室内
吸込湿度センサ12より検出された室内吸込湿度Hから空
調露点Rが空調露点算出手段15にて計算される(S34)。
室内吹出温度センサ13より検出された室内吹出温度Fと
空調露点算出手段15で求められた空調露点Rを室内温度
比較手段16で比較する(S35)。そして、T≧15分および
R≧Fになれば、室内側ファン速度センサ11により室内
側ファン5のファン速度nを検出し(S36)、ファン速度
nとファン速度記憶手段22に予め設定されたファン速度
(例えば、弱)とを速度比較手段23で比較し(S37)、室内
側ファン速度がn≦弱であれば圧縮機1の運転周波数を
圧縮機周波数出力部8により20Hz低下させる(S38)。
n>弱であれば圧縮機1の運転周波数を圧縮機周波数出
力部8により10Hz低下させる(S39)。
The operation of the block diagram configured as shown in FIG. 8 will be described below with reference to the flowchart of FIG. With the start of the cooling operation (S30), the operation time T is detected by the operation time detecting means 17 (S31), the indoor suction temperature S is detected by the indoor suction temperature sensor 10, the indoor suction humidity H is detected by the indoor suction humidity sensor 12, And the indoor blowing temperature F is detected by the indoor blowing temperature sensor 13 (S32). Then, the operation time T detected by the operation time detecting means 17 and a set time (for example, 15 minutes) preset in the set time storage means 18 are compared by the time comparing means 19 (S33), and T ≧ 15
The above operation is repeated until the minute is reached. Next, the air-conditioning dew point R is calculated by the air-conditioning dew point calculating means 15 from the indoor suction temperature S detected by the indoor suction temperature detection sensor 10 and the indoor suction humidity H detected by the indoor suction humidity sensor 12 (S34).
The indoor air temperature F detected by the indoor air temperature sensor 13 and the air conditioning dew point R calculated by the air conditioning dew point calculating means 15 are compared by the indoor temperature comparing means 16 (S35). If T ≧ 15 minutes and R ≧ F, the fan speed n of the indoor fan 5 is detected by the indoor fan speed sensor 11 (S36), and the fan speed n and the fan speed storage means 22 are preset. Fan speed
(For example, low) by the speed comparing means 23 (S37). If the indoor fan speed is n ≦ low, the operating frequency of the compressor 1 is reduced by 20 Hz by the compressor frequency output unit 8 (S38).
If n> weak, the operating frequency of the compressor 1 is reduced by 10 Hz by the compressor frequency output unit 8 (S39).

【0032】つまり、運転時間Tが予め設定された値に
達して、尚かつ室内吹出温度Fが露点に達した場合の
み、室内側ファン5のファン速度nに応じて圧縮機1の
周波数を変更し冷凍能力を低下させ、吹き出し温度を上
昇させることにより、運転開始時より一定時間冷凍能力
を確保し、より高い冷凍能力を確保しながら、室内の温
湿度に影響されることなく、不必要な室内空調の上昇を
避けつつ確実に霧の吹き出しや室内側ファン5の結露を
防止することができる。
That is, the frequency of the compressor 1 is changed in accordance with the fan speed n of the indoor fan 5 only when the operation time T reaches a preset value and the indoor blowing temperature F reaches the dew point. By lowering the refrigeration capacity and raising the blow-out temperature, the refrigeration capacity is secured for a certain period of time from the start of operation, and while maintaining a higher refrigeration capacity, it is not affected by the indoor temperature and humidity, It is possible to reliably prevent mist blowing and dew condensation on the indoor fan 5 while avoiding an increase in indoor air conditioning.

【0033】[0033]

【発明の効果】以上説明したように、本発明によれば、
空気調和機において、検出した室内の吸い込み温度と吸
い込み湿度から算出した空調露点と室内の吹き出し温度
の比較により、室内の吹き出し温度が空調露点に達した
場合のみ圧縮機の周波数を変更し冷凍能力を低下させ、
吹き出し温度を上昇させることにより、室内の温湿度に
影響されることなく、不必要な室内空調の上昇を避けつ
つ確実に霧の吹き出しや室内側ファンの結露等を防止す
ることができる。
As described above, according to the present invention,
In the air conditioner, by comparing the air conditioning dew point calculated from the detected indoor suction temperature and the detected suction humidity with the indoor blowout temperature, the frequency of the compressor is changed and the refrigeration capacity is changed only when the indoor blowout temperature reaches the air conditioning dew point. Lower
By increasing the blowing temperature, it is possible to reliably prevent the blowing of fog and the dew condensation of the indoor fan while avoiding an unnecessary rise in indoor air conditioning without being affected by the temperature and humidity in the room.

【0034】また、空気調和機において、運転時間が予
め設定された時間に達して、かつ室内の吹き出し温度が
空調露点に達した場合のみ圧縮機の周波数を変更し冷凍
能力を低下させ、吹き出し温度を上昇させることによ
り、運転開始時より一定時間冷凍能力を確保することが
可能であり、かつ室内の温湿度に影響されることなく、
不必要な室内空調の上昇を避けつつ確実に霧の吹き出し
や室内側ファンの結露等を防止することができる。
In the air conditioner, the frequency of the compressor is changed to reduce the refrigerating capacity only when the operation time reaches a preset time and the indoor air temperature reaches the air-conditioning dew point. , It is possible to secure the refrigerating capacity for a certain period of time from the start of operation, and without being affected by indoor temperature and humidity,
It is possible to reliably prevent the blowing of fog and the dew condensation of the indoor fan while avoiding an unnecessary rise in indoor air conditioning.

【0035】また、空気調和機において、運転時間が予
め設定された時間に達して、かつ室内吹出温度が空調露
点に達した場合のみ、その時の外気温に応じて圧縮機の
周波数を変更し冷凍能力を低下させ、吹き出し温度を上
昇させることにより、運転開始時より一定時間冷凍能力
を確保し、空気調和機の設置された環境に応じた運転を
しながら、室内の温湿度に影響されることなく、不必要
な室内空調の上昇を避けつつ確実に霧の吹き出しや室内
側ファンの結露等を防止することができる。
Also, in the air conditioner, only when the operation time reaches a preset time and the indoor blowout temperature reaches the air-conditioning dew point, the frequency of the compressor is changed according to the outside air temperature at that time, and the refrigeration is performed. By lowering the capacity and increasing the blow-out temperature, the refrigeration capacity is maintained for a certain period of time from the start of operation, and the temperature and humidity of the room are affected while operating according to the environment in which the air conditioner is installed. In addition, it is possible to reliably prevent the blowing of fog and the dew condensation of the indoor fan while avoiding an unnecessary rise in indoor air conditioning.

【0036】また、空気調和機において、運転時間が予
め設定された時間に達して、かつ室内吹出温度が空調露
点に達した場合のみ、その時の室内側ファンのファン速
度に応じて圧縮機の周波数を変更し冷凍能力を低下さ
せ、吹き出し温度を上昇させることにより、運転開始時
より一定時間冷凍能力を確保し、より高い冷凍能力を確
保しながら、室内の温湿度に影響されることなく、不必
要な室内空調の上昇を避けつつ確実に霧の吹き出しや室
内側ファンの結露等を防止することができるという効果
を奏する。
In the air conditioner, only when the operation time reaches a preset time and the indoor blowing temperature reaches the air-conditioning dew point, the frequency of the compressor according to the fan speed of the indoor fan at that time is changed. By lowering the refrigerating capacity and raising the blow-out temperature, the refrigerating capacity is maintained for a certain period of time from the start of operation, and a higher refrigerating capacity is ensured without being affected by the indoor temperature and humidity. This has the effect of reliably preventing mist blowing and dew condensation on the indoor fan while avoiding the necessary increase in indoor air conditioning.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態における空気調和機の冷凍
サイクルの概略を示す系統図である。
FIG. 1 is a system diagram schematically showing a refrigeration cycle of an air conditioner according to an embodiment of the present invention.

【図2】本実施の形態における実施例1で空気調和機の
要部である制御回路を示すブロック図である。
FIG. 2 is a block diagram illustrating a control circuit that is a main part of the air conditioner in Example 1 of the present embodiment.

【図3】本実施例1における制御回路の動作を説明する
フローチャートである。
FIG. 3 is a flowchart illustrating an operation of a control circuit according to the first embodiment.

【図4】本実施の形態における実施例2で空気調和機の
要部である制御回路を示すブロック図である。
FIG. 4 is a block diagram showing a control circuit which is a main part of the air conditioner in Example 2 of the present embodiment.

【図5】本実施例2における制御回路の動作を説明する
フローチャートである。
FIG. 5 is a flowchart illustrating an operation of a control circuit according to the second embodiment.

【図6】本実施の形態における実施例3で空気調和機の
要部である制御回路を示すブロック図である。
FIG. 6 is a block diagram illustrating a control circuit that is a main part of the air conditioner in Example 3 of the present embodiment.

【図7】本実施例3における制御回路の動作を説明する
フローチャートである。
FIG. 7 is a flowchart illustrating an operation of a control circuit according to the third embodiment.

【図8】本実施の形態における実施例4で空気調和機の
要部である制御回路を示すブロック図である。
FIG. 8 is a block diagram illustrating a control circuit that is a main part of an air conditioner according to a fourth embodiment of the present invention.

【図9】本実施例4における制御回路の動作を説明する
フローチャートである。
FIG. 9 is a flowchart illustrating an operation of a control circuit according to the fourth embodiment.

【図10】従来の空気調和機の冷凍サイクルの概略を示
す系統図である。
FIG. 10 is a system diagram schematically showing a refrigeration cycle of a conventional air conditioner.

【符号の説明】[Explanation of symbols]

1…圧縮機、 2…室内熱交換器、 3…室外熱交換
器、 4…減圧機、 5…室内側ファン、 6…室外側
ファン、 7…室内側ファンモータ、 8…圧縮機周波
数出力部、 9…制御回路、 10…室内吸込温度セン
サ、 11…室内側ファン速度センサ、 12…室内吸込湿
度センサ、 13…室内吹出温度センサ、 14…室外温度
センサ、 15…空調露点算出手段、 16…室内温度比較
手段、 17…運転時間検出手段、 18…設定時間記憶手
段、 19…時間比較手段、 20…設定外気温記憶手段、
21…室外温度比較手段、 22…ファン速度記憶手段、
23…速度比較手段。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Indoor heat exchanger, 3 ... Outdoor heat exchanger, 4 ... Decompressor, 5 ... Indoor fan, 6 ... Outdoor fan, 7 ... Indoor fan motor, 8 ... Compressor frequency output part 9: control circuit, 10: indoor suction temperature sensor, 11: indoor fan speed sensor, 12: indoor suction humidity sensor, 13: indoor blowout temperature sensor, 14: outdoor temperature sensor, 15: air conditioning dew point calculation means, 16 ... Room temperature comparison means, 17: operation time detection means, 18: set time storage means, 19: time comparison means, 20: set outside air temperature storage means,
21: outdoor temperature comparison means, 22: fan speed storage means,
23 ... Speed comparison means.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機,室内熱交換器,室外熱交換器,
減圧機により構成された冷凍サイクルを具備する空気調
和機であって、 室内の吸い込み温度を検出する吸込温度検出手段と、室
内の吸い込み湿度を検出する吸込湿度検出手段と、室内
の吹き出し温度を検出する吹出温度検出手段と、検出し
た前記室内の吸い込み温度と吸い込み湿度より空調露点
を求める空調露点算出手段と、求めた前記空調露点と検
出した前記室内の吹き出し温度を比較する室内温度比較
手段と、該室内温度比較手段の出力に応じて前記圧縮機
の周波数を制御する圧縮機周波数出力手段を備えたこと
を特徴とする空気調和機。
1. A compressor, an indoor heat exchanger, an outdoor heat exchanger,
An air conditioner having a refrigeration cycle constituted by a decompressor, comprising: a suction temperature detecting means for detecting indoor suction temperature; a suction humidity detecting means for detecting indoor suction humidity; and detecting an indoor blowing temperature. Blow-out temperature detection means, air-conditioning dew point calculating means for obtaining an air-conditioning dew point from the detected indoor suction temperature and suction humidity, and room temperature comparing means for comparing the obtained air-conditioning dew point with the detected room blowing temperature. An air conditioner comprising compressor frequency output means for controlling the frequency of the compressor according to the output of the indoor temperature comparison means.
【請求項2】 前記空気調和機は、運転時間を検出する
運転時間検出手段と、予め設定した運転時間を記憶する
設定時間記憶手段と、前記運転時間検出手段の検出時間
が前記設定時間記憶手段の設定時間に達したことを比較
する時間比較手段を備え、該時間比較手段の出力に応じ
て圧縮機周波数出力手段により圧縮機の周波数を制御す
ることを特徴とする請求項1記載の空気調和機。
2. The air conditioner according to claim 1, wherein the operating time detecting means detects an operating time, a set time storing means stores a preset operating time, and the detecting time of the operating time detecting means is the set time storing means. 2. The air conditioner according to claim 1, further comprising a time comparing means for comparing that the set time has been reached, wherein the frequency of the compressor is controlled by the compressor frequency output means according to an output of the time comparing means. Machine.
【請求項3】 前記空気調和機は、外気温を検出する室
外温度検出手段と、予め設定した外気温を記憶する設定
外気温記憶手段と、前記室外温度検出手段の検出外気温
と前記設定外気温記憶手段の設定外気温を比較する室外
温度比較手段を備え、該室外温度比較手段の出力に応じ
て圧縮機周波数出力手段により圧縮機の周波数を制御す
ることを特徴とする請求項1または2記載の空気調和
機。
3. The air conditioner includes an outdoor temperature detecting means for detecting an outside air temperature, a set outside air temperature storing means for storing a preset outside air temperature, and an outside air temperature detected by the outdoor temperature detecting means. 3. An outdoor temperature comparing means for comparing an outside air temperature set in an air temperature storing means, wherein a frequency of the compressor is controlled by a compressor frequency output means in accordance with an output of the outdoor temperature comparing means. The air conditioner as described.
【請求項4】 前記空気調和機は、室内側ファンのファ
ン速度を検出する室内側ファン速度検出手段と、予め設
定した室内側ファンのファン速度を記憶するファン速度
記憶手段と、前記室内側ファン速度検出手段の検出ファ
ン速度と前記ファン速度記憶手段の設定ファン速度を比
較する速度比較手段を備え、該速度比較手段の出力に応
じて圧縮機周波数出力手段により圧縮機の周波数を制御
することを特徴とする請求項1,2または3記載の空気
調和機。
4. The air conditioner includes: an indoor fan speed detecting unit that detects a fan speed of the indoor fan; a fan speed storing unit that stores a preset fan speed of the indoor fan; Speed comparing means for comparing the detected fan speed of the speed detecting means with the set fan speed of the fan speed storing means, wherein the compressor frequency output means controls the frequency of the compressor in accordance with the output of the speed comparing means. The air conditioner according to claim 1, 2, or 3, wherein
JP9033723A 1997-02-18 1997-02-18 Air conditioner Pending JPH10227508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9033723A JPH10227508A (en) 1997-02-18 1997-02-18 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9033723A JPH10227508A (en) 1997-02-18 1997-02-18 Air conditioner

Publications (1)

Publication Number Publication Date
JPH10227508A true JPH10227508A (en) 1998-08-25

Family

ID=12394330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9033723A Pending JPH10227508A (en) 1997-02-18 1997-02-18 Air conditioner

Country Status (1)

Country Link
JP (1) JPH10227508A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116160A1 (en) * 2008-03-21 2009-09-24 三菱電機株式会社 Indoor unit and air conditioning apparatus including the same
EP2236951A1 (en) * 2007-12-21 2010-10-06 Panasonic Corporation Air conditioner
CN103032933A (en) * 2011-09-30 2013-04-10 珠海格力电器股份有限公司 Relative humidity control method and relative humidity controller for inverter air conditioners
CN104613600A (en) * 2015-01-29 2015-05-13 广东美的制冷设备有限公司 Method and system for controlling air-conditioner
CN104676839A (en) * 2015-02-28 2015-06-03 广东美的制冷设备有限公司 Control method and device for outdoor draught fan in splitting type air conditioner
US9335073B2 (en) 2008-02-01 2016-05-10 Gentherm Incorporated Climate controlled seating assembly with sensors
US9603459B2 (en) 2006-10-13 2017-03-28 Genthem Incorporated Thermally conditioned bed assembly
US9622588B2 (en) 2008-07-18 2017-04-18 Gentherm Incorporated Environmentally-conditioned bed
US9662962B2 (en) 2013-11-05 2017-05-30 Gentherm Incorporated Vehicle headliner assembly for zonal comfort
US9685599B2 (en) 2011-10-07 2017-06-20 Gentherm Incorporated Method and system for controlling an operation of a thermoelectric device
US9814641B2 (en) 2009-08-31 2017-11-14 Genthrem Incorporated Climate-controlled topper member for beds
US9857107B2 (en) 2006-10-12 2018-01-02 Gentherm Incorporated Thermoelectric device with internal sensor
US9974394B2 (en) 2007-10-15 2018-05-22 Gentherm Incorporated Climate controlled bed assembly with intermediate layer
US9989267B2 (en) 2012-02-10 2018-06-05 Gentherm Incorporated Moisture abatement in heating operation of climate controlled systems
US10005337B2 (en) 2004-12-20 2018-06-26 Gentherm Incorporated Heating and cooling systems for seating assemblies
JP2019148410A (en) * 2018-02-26 2019-09-05 日本ピーマック株式会社 Latent heat treatment module, outside air treatment device and air-conditioning system
US10405667B2 (en) 2007-09-10 2019-09-10 Gentherm Incorporated Climate controlled beds and methods of operating the same
US10991869B2 (en) 2018-07-30 2021-04-27 Gentherm Incorporated Thermoelectric device having a plurality of sealing materials
US11033058B2 (en) 2014-11-14 2021-06-15 Gentherm Incorporated Heating and cooling technologies
CN113483446A (en) * 2021-06-29 2021-10-08 宁波奥克斯电气股份有限公司 Multi-connected air conditioner refrigeration operation method
US11152557B2 (en) 2019-02-20 2021-10-19 Gentherm Incorporated Thermoelectric module with integrated printed circuit board
US11240883B2 (en) 2014-02-14 2022-02-01 Gentherm Incorporated Conductive convective climate controlled seat
US11639816B2 (en) 2014-11-14 2023-05-02 Gentherm Incorporated Heating and cooling technologies including temperature regulating pad wrap and technologies with liquid system
US11857004B2 (en) 2014-11-14 2024-01-02 Gentherm Incorporated Heating and cooling technologies
US11993132B2 (en) 2018-11-30 2024-05-28 Gentherm Incorporated Thermoelectric conditioning system and methods
US12016466B2 (en) 2022-04-11 2024-06-25 Sleep Number Corporation Environmentally-conditioned mattress

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10005337B2 (en) 2004-12-20 2018-06-26 Gentherm Incorporated Heating and cooling systems for seating assemblies
US9857107B2 (en) 2006-10-12 2018-01-02 Gentherm Incorporated Thermoelectric device with internal sensor
US9603459B2 (en) 2006-10-13 2017-03-28 Genthem Incorporated Thermally conditioned bed assembly
US10405667B2 (en) 2007-09-10 2019-09-10 Gentherm Incorporated Climate controlled beds and methods of operating the same
US9974394B2 (en) 2007-10-15 2018-05-22 Gentherm Incorporated Climate controlled bed assembly with intermediate layer
EP2236951A1 (en) * 2007-12-21 2010-10-06 Panasonic Corporation Air conditioner
EP2236951A4 (en) * 2007-12-21 2014-05-14 Panasonic Corp Air conditioner
US10228166B2 (en) 2008-02-01 2019-03-12 Gentherm Incorporated Condensation and humidity sensors for thermoelectric devices
US9651279B2 (en) 2008-02-01 2017-05-16 Gentherm Incorporated Condensation and humidity sensors for thermoelectric devices
US9335073B2 (en) 2008-02-01 2016-05-10 Gentherm Incorporated Climate controlled seating assembly with sensors
WO2009116160A1 (en) * 2008-03-21 2009-09-24 三菱電機株式会社 Indoor unit and air conditioning apparatus including the same
US8578727B2 (en) 2008-03-21 2013-11-12 Mitsubishi Electric Corporation Indoor unit and air-conditioning apparatus provided with the same
JPWO2009116160A1 (en) * 2008-03-21 2011-07-21 三菱電機株式会社 Indoor unit and air conditioner equipped with the same
CN101925784A (en) * 2008-03-21 2010-12-22 三菱电机株式会社 Indoor unit and air conditioning apparatus including the same
US9622588B2 (en) 2008-07-18 2017-04-18 Gentherm Incorporated Environmentally-conditioned bed
US10226134B2 (en) 2008-07-18 2019-03-12 Gentherm Incorporated Environmentally-conditioned bed
US11297953B2 (en) 2008-07-18 2022-04-12 Sleep Number Corporation Environmentally-conditioned bed
US11903888B2 (en) 2009-08-31 2024-02-20 Sleep Number Corporation Conditioner mat system for use with a bed assembly
US10675198B2 (en) 2009-08-31 2020-06-09 Gentherm Incorporated Climate-controlled topper member for beds
US9814641B2 (en) 2009-08-31 2017-11-14 Genthrem Incorporated Climate-controlled topper member for beds
US11045371B2 (en) 2009-08-31 2021-06-29 Sleep Number Corporation Climate-controlled topper member for beds
US11020298B2 (en) 2009-08-31 2021-06-01 Sleep Number Corporation Climate-controlled topper member for beds
US11389356B2 (en) 2009-08-31 2022-07-19 Sleep Number Corporation Climate-controlled topper member for beds
US11938071B2 (en) 2009-08-31 2024-03-26 Sleep Number Corporation Climate-controlled bed system
US11642265B2 (en) 2009-08-31 2023-05-09 Sleep Number Corporation Climate-controlled topper member for beds
CN103032933A (en) * 2011-09-30 2013-04-10 珠海格力电器股份有限公司 Relative humidity control method and relative humidity controller for inverter air conditioners
US9685599B2 (en) 2011-10-07 2017-06-20 Gentherm Incorporated Method and system for controlling an operation of a thermoelectric device
US10208990B2 (en) 2011-10-07 2019-02-19 Gentherm Incorporated Thermoelectric device controls and methods
US10495322B2 (en) 2012-02-10 2019-12-03 Gentherm Incorporated Moisture abatement in heating operation of climate controlled systems
US9989267B2 (en) 2012-02-10 2018-06-05 Gentherm Incorporated Moisture abatement in heating operation of climate controlled systems
US10266031B2 (en) 2013-11-05 2019-04-23 Gentherm Incorporated Vehicle headliner assembly for zonal comfort
US9662962B2 (en) 2013-11-05 2017-05-30 Gentherm Incorporated Vehicle headliner assembly for zonal comfort
US11240883B2 (en) 2014-02-14 2022-02-01 Gentherm Incorporated Conductive convective climate controlled seat
US11240882B2 (en) 2014-02-14 2022-02-01 Gentherm Incorporated Conductive convective climate controlled seat
US11639816B2 (en) 2014-11-14 2023-05-02 Gentherm Incorporated Heating and cooling technologies including temperature regulating pad wrap and technologies with liquid system
US11857004B2 (en) 2014-11-14 2024-01-02 Gentherm Incorporated Heating and cooling technologies
US11033058B2 (en) 2014-11-14 2021-06-15 Gentherm Incorporated Heating and cooling technologies
CN104613600A (en) * 2015-01-29 2015-05-13 广东美的制冷设备有限公司 Method and system for controlling air-conditioner
CN104676839A (en) * 2015-02-28 2015-06-03 广东美的制冷设备有限公司 Control method and device for outdoor draught fan in splitting type air conditioner
JP2019148410A (en) * 2018-02-26 2019-09-05 日本ピーマック株式会社 Latent heat treatment module, outside air treatment device and air-conditioning system
US11075331B2 (en) 2018-07-30 2021-07-27 Gentherm Incorporated Thermoelectric device having circuitry with structural rigidity
US10991869B2 (en) 2018-07-30 2021-04-27 Gentherm Incorporated Thermoelectric device having a plurality of sealing materials
US11223004B2 (en) 2018-07-30 2022-01-11 Gentherm Incorporated Thermoelectric device having a polymeric coating
US11993132B2 (en) 2018-11-30 2024-05-28 Gentherm Incorporated Thermoelectric conditioning system and methods
US11152557B2 (en) 2019-02-20 2021-10-19 Gentherm Incorporated Thermoelectric module with integrated printed circuit board
CN113483446B (en) * 2021-06-29 2022-05-13 宁波奥克斯电气股份有限公司 Multi-connected air conditioner refrigeration operation method
CN113483446A (en) * 2021-06-29 2021-10-08 宁波奥克斯电气股份有限公司 Multi-connected air conditioner refrigeration operation method
US12016466B2 (en) 2022-04-11 2024-06-25 Sleep Number Corporation Environmentally-conditioned mattress

Similar Documents

Publication Publication Date Title
JPH10227508A (en) Air conditioner
JP2937090B2 (en) Dehumidifier
JP3651453B2 (en) Air conditioner for vehicles
JP4445246B2 (en) Air conditioner
JPH10339500A (en) Air conditioner
WO2019146377A1 (en) Air conditioning apparatus
JP2001116329A (en) Control of air conditioner
JP2019138504A (en) Air conditioner
JPH10238841A (en) Air-conditioner
KR100692894B1 (en) Air conditioner and IN DOOR UINT in use with it and method for dehumidifying
JP2010032111A (en) Integrated air conditioner
JP2003139343A (en) Air conditioner
WO2019146355A1 (en) Air conditioning apparatus
CN114110955B (en) Self-cleaning control method for air conditioner, air conditioner and computer storage medium
CN114135977B (en) Heating control method and device of air conditioner and air conditioner
US10837670B2 (en) Air-conditioning apparatus
JP7212283B2 (en) air conditioner
JP4450777B2 (en) Air conditioner
JP2019138521A (en) Air conditioning device
JP2005077025A (en) Air conditioner
JP4183320B2 (en) Air conditioner
JP3562064B2 (en) Air conditioner
JP3646668B2 (en) Refrigeration equipment
JP3528369B2 (en) Air conditioner
JP2004271150A (en) Air conditioner