JPH10226583A - Fiber reinforced ceramic sintered body - Google Patents

Fiber reinforced ceramic sintered body

Info

Publication number
JPH10226583A
JPH10226583A JP9048406A JP4840697A JPH10226583A JP H10226583 A JPH10226583 A JP H10226583A JP 9048406 A JP9048406 A JP 9048406A JP 4840697 A JP4840697 A JP 4840697A JP H10226583 A JPH10226583 A JP H10226583A
Authority
JP
Japan
Prior art keywords
fibers
fiber
sintered body
oxide layer
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9048406A
Other languages
Japanese (ja)
Inventor
Kazuo Osumi
和生 大角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Ceramics Research Institute Co Ltd
Original Assignee
Isuzu Ceramics Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Ceramics Research Institute Co Ltd filed Critical Isuzu Ceramics Research Institute Co Ltd
Priority to JP9048406A priority Critical patent/JPH10226583A/en
Publication of JPH10226583A publication Critical patent/JPH10226583A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure superior mechanical strength by forming at least one oxide layer on the surface of each of reinforcing fibers, uniformly dispersing the fibers in a sintered body, irregularly orienting them and bonding the contact parts of the fibers with the oxide layers. SOLUTION: Short SiC fibers are heated to form SiO2 layers having a gradient structure on the surfaces of the fibers. In the oxide layers, the amt. of oxygen increases toward the outer surfaces and the amts. of Si and C decrease toward the outer surfaces. A slurry contg. Si and a sintering aid such as Al2 O3 or Y2 O3 is impregnated into a nonwoven fabric formed by bonding the contact parts of the resultant short fibers and a molded body is formed and fired to obtain the objective fiber reinforced ceramic sintered body. When 2nd oxide layers each consisting essentially of oxygen and a metal such as Al or Zr are formed on the surfaces of the 1st oxide layers and the resultant fibers are used as a reinforcing material for the sintered body, the shape of the reinforcing material can freely be set and the rigidity of the nonwoven fabric is increased. Blending with the fibers is facilitated at the time of molding and the fibers can be more uniformly dispersed and more irregularly oriented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はセラミツクス繊維か
らなる不織布を用いた繊維強化セラミツクス焼結体に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber-reinforced ceramic sintered body using a nonwoven fabric made of ceramic fibers.

【0002】[0002]

【従来の技術】従来、長繊維フイラメントを平行に配置
した繊維強化セラミツクス複合材料a、長繊維フイラメ
ントを織つて3次元構造に配置した繊維強化セラミツク
ス複合材料b、短繊維を不規則に配向した繊維強化セラ
ミツクス複合材料c、不織布の表面に溶液を用いたデイ
ツプコーテイング、CVD、蒸着などの被覆処理を行つ
て繊維の交差部分を固着した繊維プリフオーム材料(米
国特許第4,761,323 号)dなどが知られている。しか
し、(a)上述の材料aは繊維を連続的に繰り出しなが
ら成形するものであるので、繊維の配向が一方向にな
り、形状が限定される、(b)材料bは3次元織物の形
状が制限され、織物の製造経費が高い、(c)材料cは
繊維を均一に分散させることが難しい、(d)材料dは
均質な被覆処理が難しく、したがつて平滑な材料表面が
得にくいなどの難点がある。
2. Description of the Related Art Conventionally, a fiber-reinforced ceramic composite material a in which long fiber filaments are arranged in parallel, a fiber-reinforced ceramic composite material b in which long fiber filaments are woven and arranged in a three-dimensional structure, and fibers in which short fibers are irregularly oriented. A reinforced ceramics composite material c, a fiber preform material (US Pat. No. 4,761,323) d in which the intersection of the fibers is fixed by performing a coating treatment such as a dip coating using a solution, CVD, or vapor deposition on the surface of the nonwoven fabric, and the like are known. ing. However, since (a) the material a is formed while continuously drawing out the fiber, the orientation of the fiber is in one direction, and the shape is limited. (B) The material b is the shape of a three-dimensional woven fabric. And (c) it is difficult to uniformly disperse the fibers, (d) it is difficult to uniformly coat the material (d), and thus it is difficult to obtain a smooth material surface. There are difficulties such as.

【0003】[0003]

【発明が解決しようとする課題】本発明の課題は上述の
問題に鑑み、強化繊維の分散が均一で繊維の配向が不規
則であり、機械的強度に優れた繊維強化セラミツクス焼
結体を提供することにある。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide a fiber-reinforced ceramics sintered body having a uniform dispersion of reinforcing fibers, irregular fiber orientation, and excellent mechanical strength. Is to do.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明の構成は繊維強化セラミツクス焼結体の表面
に少くとも1つの酸化物層が形成された強化繊維が均一
に分散し、強化繊維の配向が不規則でありかつ強化繊維
相互の接触部分が前記酸化物層により接合されているこ
とを特徴とする。
In order to solve the above-mentioned problems, the present invention provides a fiber-reinforced ceramics sintered body in which at least one oxide layer is formed on the surface thereof, and the reinforcing fibers are uniformly dispersed. The orientation of the reinforcing fibers is irregular, and the contact portions between the reinforcing fibers are joined by the oxide layer.

【0005】[0005]

【発明の実施の形態】本発明では強化繊維として、セラ
ミツクス短繊維から不織布を加工し、該不織布に酸化処
理、コーテイングなどを施して、不織布の表面に酸化物
層を形成し、該酸化物層により不織布の繊維相互の接触
部分を接合する。得られた不織布を強化材に用い、不織
布の隙間にセラミツクスのスラリーを重点した後に焼成
して繊維強化セラミツクス焼結体を形成する。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a nonwoven fabric is processed from a ceramic short fiber as a reinforcing fiber, and the nonwoven fabric is subjected to an oxidation treatment and a coating to form an oxide layer on the surface of the nonwoven fabric. By this, the contact portions between the fibers of the nonwoven fabric are joined. The obtained nonwoven fabric is used as a reinforcing material, and a ceramic slurry is formed by emphasizing a ceramic slurry in gaps between the nonwoven fabrics and firing.

【0006】[0006]

【実施例】【Example】

[実施例1]図1に示すように、太さ5〜20μmのSi
-C-Ti-O 繊維を長さ30〜50mmに切断して短繊維2
をつくり、短繊維2の配向を不規則にして積層し、カー
デイングを施して不織布20を作製する。次いで、不織
布20を温度1000℃の大気中で10時間加熱した。
その結果、図2に示すように、不織布20の短繊維2の
表面に2酸化ケイ素(SiO2)からなる厚さ最大5μmの
酸化物層6が形成され、かつ短繊維相互の接触部分4が
酸化物層6により接合された不織布20が得られた。酸
化前の不織布20と酸化後の不織布20とについて圧縮
試験を行つた結果、酸化後の不織布20の方が大きな弾
性率を示し、剛性が向上したことが分かつた。
[Example 1] As shown in FIG.
-C-Ti-O fiber cut into 30-50mm length and short fiber 2
The nonwoven fabric 20 is manufactured by laminating the short fibers 2 in an irregular orientation and performing carding. Next, the nonwoven fabric 20 was heated in the air at a temperature of 1000 ° C. for 10 hours.
As a result, as shown in FIG. 2, an oxide layer 6 having a maximum thickness of 5 μm made of silicon dioxide (SiO 2 ) is formed on the surface of the short fiber 2 of the nonwoven fabric 20 and the contact portion 4 between the short fibers is formed. The nonwoven fabric 20 joined by the oxide layer 6 was obtained. A compression test was performed on the non-woven fabric 20 before oxidation and the non-woven fabric 20 after oxidation, and it was found that the non-woven fabric 20 after oxidation showed a higher elastic modulus and improved rigidity.

【0007】スリツプキヤスト法により、不織布20の
短繊維相互の隙間に、ケイ素(Si)と、焼結助剤である
アルミナ(Al2O3 )とイツトリア(Y2O3)を原料とする
セラミツクスのスラリーを充填して成形体を作製した。
強化材として酸化前の不織布20を用いた場合は、不織
布20にスラリーを充填する時に、スラリーが不織布2
0の隙間から潰れてしまい、良好な成形体が得られなか
つた。しかし、強化材として酸化後の不織布20を用い
た場合は、スラリーが不織布20の隙間から潰れことは
なく、不織布20の隙間にセラミツクスのスラリーが充
填され、良好な成形体が得られた。
[0007] A ceramic made from silicon (Si), alumina (Al 2 O 3 ) as a sintering aid, and yttria (Y 2 O 3 ) as raw materials in gaps between short fibers of the nonwoven fabric 20 by a slip casting method. Was formed into a compact.
When the non-woven fabric 20 before oxidation is used as the reinforcing material, when the non-woven fabric 20 is filled with the slurry,
Thus, the molded product was crushed from the gap 0, and a good molded product could not be obtained. However, when the oxidized nonwoven fabric 20 was used as the reinforcing material, the slurry did not collapse from the gap between the nonwoven fabrics 20, and the gap between the nonwoven fabrics 20 was filled with the slurry of ceramics, and a good molded product was obtained.

【0008】得られた成形体を温度1300℃の窒素雰
囲気で反応焼成して、繊維強化セラミツクス焼結体Aを
得た。上述のようにして得られた本発明による繊維強化
セラミツクス焼結体Aは、図3に示すように不規則に積
層された強化繊維の隙間に炭化ケイ素が分散し、4点曲
げ強度が400MPa 、破壊靭性値が15MPa・m1/2という
優れた特性を示した。本発明による繊維強化セラミツク
ス焼結体Aはどの方向から切り出しても、同様の強度と
靭性が得られた。これは不織布20の短繊維2が不規則
に積層し、かつ短繊維2が均一な厚さに分散している結
果である。
The obtained compact was fired in a nitrogen atmosphere at a temperature of 1300 ° C. to obtain a fiber-reinforced ceramic sintered body A. As shown in FIG. 3, the fiber-reinforced ceramic sintered body A according to the present invention obtained as described above has silicon carbide dispersed in the gaps between the reinforcing fibers randomly stacked, and has a four-point bending strength of 400 MPa, Excellent properties such as a fracture toughness value of 15 MPa · m 1/2 were exhibited. The same strength and toughness were obtained when the fiber-reinforced ceramics sintered body A according to the present invention was cut out from any direction. This is a result of the fact that the short fibers 2 of the nonwoven fabric 20 are irregularly stacked and the short fibers 2 are dispersed in a uniform thickness.

【0009】図4に示すように、本発明による繊維強化
セラミツクス焼結体Aでは、自己酸化により短繊維2の
表面に形成された2酸化ケイ素(SiO2)からなる第1の
酸化物層6は、短繊維2の表面から第1の酸化物層6の
外表面へ向うにつれて、酸素の含有量が増加し、かつケ
イ素と炭素の含有量が減少する、いわゆる傾斜組織にな
つている。溶液を用いたデイツプコーテイング、CV
D、蒸着などによる被覆処理では、上述のような傾斜組
織を作るのは非常に困難である。さらに、自己酸化によ
り短繊維2の表面に形成された2酸化ケイ素(SiO2)か
らなる第1の酸化物層6は、表面が平滑である。これに
対し、CVD、蒸着などにより形成した被覆では、表面
が粗くなり、強度低下の原因になる。
As shown in FIG. 4, in the fiber-reinforced ceramic sintered body A according to the present invention, the first oxide layer 6 made of silicon dioxide (SiO 2 ) formed on the surface of the short fiber 2 by self-oxidation. Has a so-called inclined structure in which the content of oxygen increases and the content of silicon and carbon decreases as going from the surface of the short fiber 2 to the outer surface of the first oxide layer 6. Dip coating using solution, CV
It is very difficult to form the above-mentioned gradient structure in the coating treatment by D, vapor deposition, or the like. Furthermore, the surface of the first oxide layer 6 made of silicon dioxide (SiO 2 ) formed on the surface of the short fiber 2 by self-oxidation is smooth. On the other hand, a coating formed by CVD, vapor deposition, or the like has a rough surface, which causes a reduction in strength.

【0010】[実施例2]実施例1により作製した酸化
後の不織布20を、アルミニウム,ジルコニウム,チタ
ンなどの金属のアルコキシドの溶液に浸漬し、温度80
0℃の大気中で熱処理し、図5に示すように、不織布2
0の表面の2酸化ケイ素(SiO2)からなる第1の酸化物
層6の外表面に、アルミナ(Al2O3 )からなる第2の酸
化物層8と、ジルコニア(ZrO2)からなる第3の酸化物
層10とを形成した。次いで、不織布20の短繊維相互
の隙間へ、ケイ素(Si),アルミナ(Al2O3 ),イツト
リア(Y2O3)を原料とするセラミツクスのスラリーを充
填して成形体を作製した。この成形体を温度1300℃
の窒素雰囲気で反応焼成し、次いで温度1500℃で焼
成して繊維強化セラミツクス焼結体Bを得た。本発明に
よる繊維強化セラミツクス焼結体Bは、曲げ強度が60
0MPa 、破壊靭性値が20MPa・m1/2という優れた特性の
ものである。これは、不織布20の短繊維2の表面に形
成された酸化物の複合層6,8,10が、短繊維2の耐
熱性を高めるとともに、窒化ケイ素粒子(Si3N4 )14
および粒界相12からなる基材16との間に適度な反応
層として働くことによるものと考えられる。
Example 2 The oxidized nonwoven fabric 20 prepared in Example 1 was immersed in a solution of an alkoxide of a metal such as aluminum, zirconium, or titanium.
Heat treatment in the air at 0 ° C., as shown in FIG.
On the outer surface of the first oxide layer 6 made of silicon dioxide (SiO 2 ) on the surface 0, a second oxide layer 8 made of alumina (Al 2 O 3 ) and zirconia (ZrO 2 ) are formed. A third oxide layer 10 was formed. Next, a gap between the short fibers of the nonwoven fabric 20 was filled with a slurry of ceramics made of silicon (Si), alumina (Al 2 O 3 ), and yttria (Y 2 O 3 ) as a raw material to produce a molded body. This molded body is heated to 1300 ° C.
Then, the mixture was fired at a temperature of 1500 ° C. to obtain a fiber-reinforced ceramic sintered body B. The fiber-reinforced ceramic sintered body B according to the present invention has a bending strength of 60.
It has excellent properties of 0 MPa and a fracture toughness value of 20 MPa · m 1/2 . This is because the oxide composite layers 6, 8, and 10 formed on the surfaces of the short fibers 2 of the nonwoven fabric 20 increase the heat resistance of the short fibers 2 and increase the silicon nitride particles (Si 3 N 4 ) 14.
This is considered to be due to the fact that it acts as an appropriate reaction layer between the base material 16 and the grain boundary phase 12.

【0011】図5に示すように、本発明による繊維強化
セラミツクス焼結体Bでは、2酸化ケイ素(SiO2)から
なる第1の酸化物層6の外表面に、アルミナ(Al2O3
からなる第2の酸化物層8と、ジルコニア(ZrO2)から
なる第3の酸化物層10とが形成されるので、密着強度
が高くなる。
As shown in FIG. 5, in the fiber-reinforced ceramic sintered body B according to the present invention, alumina (Al 2 O 3 ) is formed on the outer surface of the first oxide layer 6 made of silicon dioxide (SiO 2 ).
Since the second oxide layer 8 made of and the third oxide layer 10 made of zirconia (ZrO 2 ) are formed, the adhesion strength is increased.

【0012】図6に示すように、本発明による繊維強化
セラミツクス焼結体Bでも、自己酸化により短繊維2の
表面に形成された2酸化ケイ素(SiO2)からなる第1の
酸化物層6は、短繊維2の表面から第1の酸化物層6の
外表面へ向うにつれて、酸素の含有量が増加し、かつケ
イ素と炭素の含有量が減少する、いわゆる傾斜組織にな
つている。
As shown in FIG. 6, the fiber-reinforced ceramic sintered body B according to the present invention also has a first oxide layer 6 made of silicon dioxide (SiO 2 ) formed on the surface of the short fiber 2 by self-oxidation. Has a so-called inclined structure in which the content of oxygen increases and the content of silicon and carbon decreases as going from the surface of the short fiber 2 to the outer surface of the first oxide layer 6.

【0013】上述の各実施例では、不織布20の繊維に
Si-C-Ti-O 繊維を用いているが、本発明はこれに限定さ
れるものではなく、不織布20の繊維にSi-Ti-C-O 繊
維、Si-Zr-C-O 繊維、Si-N-O系繊維を用いても同様の効
果が得られる。また、基材16は窒化物、炭化物、酸化
物などでも同様の効果が得られる。さらに、第2の酸化
物層8と第3の酸化物層10には、基材16の種類や焼
結助剤の種類により、他の物質を適用できる。
In each of the above embodiments, the fibers of the nonwoven fabric 20
Although Si-C-Ti-O fibers are used, the present invention is not limited to this, and the fibers of the nonwoven fabric 20 may be Si-Ti-CO fibers, Si-Zr-CO fibers, or Si-NO fibers. The same effect can be obtained by using. The same effect can be obtained even when the base material 16 is a nitride, a carbide, an oxide, or the like. Further, other substances can be applied to the second oxide layer 8 and the third oxide layer 10 depending on the type of the base material 16 and the type of the sintering aid.

【0014】[0014]

【発明の効果】本発明は上述のように、繊維強化セラミ
ツクス焼結体の表面に少くとも1つの酸化物層が形成さ
れた強化繊維が均一に分散し、強化繊維の配向が不規則
でありかつ強化繊維相互の接触部分が前記酸化物層によ
り接合されているものであり、セラミツクス繊維からな
る不織布を酸化させて第1の酸化物層を形成したもの、
または第1の酸化物層の外表面に第2の酸化物層を形成
したものを、繊維強化セラミツクス焼結体の強化材に使
用するので、強化材の形状を自由に設定できる。強化材
としての不織布に形状を付与した後に酸化させて第1の
酸化物層を形成するか、さらに第1の酸化物層の外表面
に第2の酸化物層を形成すれば、不織布の剛性が向上
し、成型時の繊維の配合が容易になり、繊維の分散を均
一に、かつ繊維の配向を不規則にできる。
As described above, according to the present invention, the reinforcing fibers having at least one oxide layer formed on the surface of the fiber-reinforced ceramics sintered body are uniformly dispersed, and the orientation of the reinforcing fibers is irregular. And a contact portion between the reinforcing fibers is bonded by the oxide layer, and a first oxide layer is formed by oxidizing a nonwoven fabric made of ceramics fibers;
Alternatively, since the second oxide layer formed on the outer surface of the first oxide layer is used as the reinforcing material of the fiber-reinforced ceramic sintered body, the shape of the reinforcing material can be freely set. If a non-woven fabric as a reinforcing material is given a shape and then oxidized to form a first oxide layer, or if a second oxide layer is further formed on the outer surface of the first oxide layer, the rigidity of the non-woven fabric is increased. Is improved, the blending of the fibers at the time of molding is facilitated, the dispersion of the fibers can be made uniform, and the orientation of the fibers can be made irregular.

【0015】不織布の酸化後に繊維の表面に形成した2
酸化ケイ素の傾斜組織からなる第1の酸化物層が緩衝層
として働き、第2の酸化物層との密着強度が向上され
る。
2 formed on the surface of the fiber after oxidation of the nonwoven fabric
The first oxide layer having a graded structure of silicon oxide functions as a buffer layer, and the adhesion strength with the second oxide layer is improved.

【0016】不織布の短繊維の第1の酸化物層の外表面
に形成した第2の酸化物層が、基材との反応を適切に制
御するので、繊維強化セラミツクス焼結体の機械的強度
が向上される。
Since the second oxide layer formed on the outer surface of the first oxide layer of the short fibers of the nonwoven fabric appropriately controls the reaction with the substrate, the mechanical strength of the fiber-reinforced ceramic sintered body is improved. Is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る繊維強化セラミツクス焼結体に用
いる不織布の平面図である。
FIG. 1 is a plan view of a nonwoven fabric used for a fiber-reinforced ceramic sintered body according to the present invention.

【図2】同不織布を拡大して示す平面断面図である。FIG. 2 is an enlarged plan sectional view showing the nonwoven fabric.

【図3】本発明に係る繊維強化セラミツクス焼結体の組
織図である。
FIG. 3 is a structural diagram of a fiber-reinforced ceramic sintered body according to the present invention.

【図4】同繊維強化セラミツクス焼結体の酸化物層の組
成を表す線図である。
FIG. 4 is a diagram showing a composition of an oxide layer of the fiber-reinforced ceramic sintered body.

【図5】本発明の変更実施例に係る繊維強化セラミツク
ス焼結体の組織図である。
FIG. 5 is a structural diagram of a fiber-reinforced ceramic sintered body according to a modified example of the present invention.

【図6】同繊維強化セラミツクス焼結体の酸化物層の組
成を表す線図である。
FIG. 6 is a diagram showing a composition of an oxide layer of the fiber-reinforced ceramic sintered body.

【符号の説明】[Explanation of symbols]

2:短繊維 4:接触部分 6:第1の酸化物層(Si
O2) 8:第2の酸化物層(Al2O3 ) 10:第3の酸
化物層(ZrO2) 12:粒界層 14:窒化ケイ素粒子
(Si3N4 ) 20:不織布
2: short fiber 4: contact portion 6: first oxide layer (Si
O 2 ) 8: Second oxide layer (Al 2 O 3 ) 10: Third oxide layer (ZrO 2 ) 12: Grain boundary layer 14: Silicon nitride particles (Si 3 N 4 ) 20: Non-woven fabric

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】繊維強化セラミツクス焼結体の表面に少く
とも1つの酸化物層が形成された強化繊維が均一に分散
し、強化繊維の配向が不規則でありかつ強化繊維相互の
接触部分が前記酸化物層により接合されていることを特
徴とする繊維強化セラミツクス焼結体。
1. A reinforcing fiber having at least one oxide layer formed on the surface of a fiber-reinforced ceramics sintered body is uniformly dispersed, the orientation of the reinforcing fibers is irregular, and the contacting portions between the reinforcing fibers are formed. A fiber-reinforced ceramics sintered body joined by the oxide layer.
【請求項2】前記強化繊維の酸化物層は、該酸化物層の
前記強化繊維に接する内側がケイ素と酸素を主成分とし
て構成され、前記酸化物層の内側から外側へ向つて酸素
含有量が増加しかつケイ素含有量が減少する、請求項1
に記載の繊維強化セラミツクス焼結体。
2. The oxide layer of the reinforcing fiber, wherein the inside of the oxide layer in contact with the reinforcing fiber is composed mainly of silicon and oxygen, and the oxygen content is from the inside to the outside of the oxide layer. And the silicon content decreases.
2. A fiber-reinforced ceramic sintered body according to item 1.
【請求項3】前記強化繊維の酸化物層の外表面に、酸
素、アルミニウム、ジルコニウムの内の少くとも1つの
元素を主成分とする第2の酸化物層が形成されている、
請求項1に記載の繊維強化セラミツクス焼結体。
3. A second oxide layer containing at least one of oxygen, aluminum and zirconium as a main component is formed on an outer surface of the oxide layer of the reinforcing fiber.
The fiber-reinforced ceramic sintered body according to claim 1.
【請求項4】前記強化繊維がケイ素と炭素と酸素からな
る炭化ケイ素系繊維、ケイ素とチタンと炭素と酸素から
なる炭化ケイ素系繊維、ケイ素とジルコニウムと炭素と
酸素からなる炭化ケイ素系繊維、ケイ素と窒素と炭素か
らなる窒化ケイ素系繊維の内の少くとも1つである、請
求項1に記載の繊維強化セラミツクス焼結体。
4. A silicon carbide fiber comprising silicon, carbon and oxygen, a silicon carbide fiber comprising silicon, titanium, carbon and oxygen, a silicon carbide fiber comprising silicon, zirconium, carbon and oxygen, and silicon. The fiber-reinforced ceramic sintered body according to claim 1, wherein the fiber-reinforced ceramics sintered body is at least one of silicon nitride-based fibers comprising nitrogen, nitrogen and carbon.
【請求項5】前記強化繊維の酸化物層はチタン、ジルコ
ニウム、炭素、窒素の内の少くとも1つの元素を含んで
いる、請求項1に記載の繊維強化セラミツクス焼結体。
5. The fiber-reinforced ceramic sintered body according to claim 1, wherein the oxide layer of the reinforcing fiber contains at least one element of titanium, zirconium, carbon, and nitrogen.
JP9048406A 1997-02-17 1997-02-17 Fiber reinforced ceramic sintered body Pending JPH10226583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9048406A JPH10226583A (en) 1997-02-17 1997-02-17 Fiber reinforced ceramic sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9048406A JPH10226583A (en) 1997-02-17 1997-02-17 Fiber reinforced ceramic sintered body

Publications (1)

Publication Number Publication Date
JPH10226583A true JPH10226583A (en) 1998-08-25

Family

ID=12802434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9048406A Pending JPH10226583A (en) 1997-02-17 1997-02-17 Fiber reinforced ceramic sintered body

Country Status (1)

Country Link
JP (1) JPH10226583A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6538255B1 (en) 1999-02-22 2003-03-25 Nikon Corporation Electron gun and electron-beam optical systems and methods including detecting and adjusting transverse beam-intensity profile, and device manufacturing methods including same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6538255B1 (en) 1999-02-22 2003-03-25 Nikon Corporation Electron gun and electron-beam optical systems and methods including detecting and adjusting transverse beam-intensity profile, and device manufacturing methods including same

Similar Documents

Publication Publication Date Title
US5354398A (en) Method of manufacturing fiber-reinforced composites having a gradient function
US5443770A (en) High toughness carbide ceramics by slip casting and method thereof
JPH0585841A (en) Process for producing precrack fiber coating for reinforcing ceramic fiber matrix composite material
JP5920788B2 (en) Oxide-based composite material
JPH10226583A (en) Fiber reinforced ceramic sintered body
US5425909A (en) Heat treatment for particle reinforced alumina ceramic composite
US6251317B1 (en) Method for manufacturing a ceramic composite material
JPH07315947A (en) Fiber reinforced composite material, its production and its member
JP2002173376A (en) Oxide-based ceramic fiber/oxide-based ceramic composite material and method of producing the same
JPH08501266A (en) Ceramic composites used especially at temperatures above 1400 ° C
Rice Processing of ceramic composites
Wendorff et al. Sapphire‐Fiber Reinforced RBAO
US6624105B2 (en) Oxide ceramic fiber/oxide ceramic composite material and process for production thereof
JP2738176B2 (en) Manufacturing method of ceramic coated C / C composite
JP2675187B2 (en) Gradient silicon nitride composite material and method of manufacturing the same
JP2570739B2 (en) Fiber reinforced silicon carbide ceramics and method for producing the same
Hirata et al. Microstructures of and crack extension in laminated Si–Ti–C–O fabrics/mullite matrix composites
JP3224601B2 (en) Oxidation resistant carbon-based materials
JPH1160357A (en) Oxidation resistant c/c composite material and its production
Minet et al. Thermomechanical properties and oxidation resistance of zirconia CVI-matrix composites: 1—Mechanical behavior
JP4427914B2 (en) Interlayer direction reinforced inorganic fiber-bonded ceramics and method for producing the same
JPS63201075A (en) Surface strengthened ceramic parts and manufacture
JPH05170522A (en) Alumina-based composite ceramic sintered body
JPH08143375A (en) Ceramic-based fiber composite material
JPH11263668A (en) Ceramic matrix-fiber composite material parts and their production