JPH10219386A - Steele for structural purpose excellent in strength and toughness - Google Patents

Steele for structural purpose excellent in strength and toughness

Info

Publication number
JPH10219386A
JPH10219386A JP3439697A JP3439697A JPH10219386A JP H10219386 A JPH10219386 A JP H10219386A JP 3439697 A JP3439697 A JP 3439697A JP 3439697 A JP3439697 A JP 3439697A JP H10219386 A JPH10219386 A JP H10219386A
Authority
JP
Japan
Prior art keywords
steel
less
toughness
strength
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3439697A
Other languages
Japanese (ja)
Inventor
Akihiro Matsuzaki
明博 松崎
Takako Yamashita
孝子 山下
Shigeaki Takagi
重彰 高城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3439697A priority Critical patent/JPH10219386A/en
Publication of JPH10219386A publication Critical patent/JPH10219386A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the easy regulation of the amt. of the precipitating site of ferritic phases without particularly requiring producing equipment on a large scale and to obtain a steel for structural purpose excellent in strength and toughness by specifying the compsn. composed of C, Si, Mn, P, S, N, B and Fe. SOLUTION: 50kg class high tensile strength steel having a compsn. contg., by weight, 0.03 to 0.24% C, <=1.0% Si, <=2.0% Mn, <=0.01% P, <=0.01% S, <=0.005% N and 0.020 to 0.500% B, furthermore contg., at need, one or more among <=1.4% Ni, <=0.9% Cr, <=0.5% Mo, <=0.3% V, <=0.3% Nb, <=0.3% Ti and <=0.1% Zr, and the balance Fe with inevitable impurities and having about 200J absorbed energy in a Charpy impact test is obtd. This steel is formed by hot working to regulate the amt. of Fe2 B to form the product nucleus of ferritic phases, and the fraction of ferrite in the grains is regulated, by which the preferable balance of strength and toughness can be obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は強度および靱性に優
れた構造用鋼に係り、特にBを含有する強度および靱性
に優れた熱間圧延鋼材又は熱処理鋼材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structural steel having excellent strength and toughness, and more particularly to a hot-rolled steel or a heat-treated steel containing B and having excellent strength and toughness.

【0002】[0002]

【従来の技術】従来、土木、建築、橋梁、船舶、車両、
石油貯蔵、容器その他の構造物に使用される鋼材は、鉄
鋼JIS3106、3136などに規定されているC、
Si、Mnを主成分とする熱間圧延鋼材が多用される。
組織的にはこの種の鋼材はフェライト相を主たる構成相
とし、これにパーライトさらにはベーナイト、マルテン
サイトなどの高強度の低温変態相から成り立っている。
しかしながらこれらの低温変態相は一般に靱性が低いた
めに、これらの鋼材は構造用鋼として必須の特性である
強度と靱性を兼備させることが課題となっていた。
2. Description of the Related Art Conventionally, civil engineering, architecture, bridges, ships, vehicles,
Steel materials used for oil storage, containers and other structures are specified by C, specified in steel JIS3106, 3136, etc.
A hot rolled steel material containing Si and Mn as main components is often used.
In terms of structure, this kind of steel material mainly comprises a ferrite phase, and further comprises a pearlite and a high-strength low-temperature transformation phase such as bainite and martensite.
However, since these low-temperature transformation phases generally have low toughness, it has been an issue for these steel materials to have both strength and toughness, which are essential properties for structural steel.

【0003】この課題を解決するため、日本金属学会
報、第27巻第8号(1988)623ページに示され
ているように圧延過程における熱履歴等を制御してオー
ステナイト粒内に微細なフェライト粒を析出させるとと
もに、低温変態相の分断、微細化を図り、強度と靱性を
ともに確保する手段が提案されており、相当の成果を挙
げている。しかしながら、この手法は必ずしも全ての鋼
材に適用できず、またその実施には大規模な製造設備を
必要とし、また圧延条件の厳しい規制のために圧延材に
形状不良が発生する場合があるなどの問題があった。
[0003] In order to solve this problem, as shown in the Japan Institute of Metals, Vol. 27, No. 8 (1988), p. Means for precipitating grains, separating and refining the low-temperature transformation phase, and securing both strength and toughness have been proposed, and have achieved considerable results. However, this method is not always applicable to all steel materials, and its implementation requires large-scale manufacturing equipment, and strict regulations on rolling conditions may cause rolled materials to have defective shapes. There was a problem.

【0004】一方、たとえば、新日鐵技法第351号
(1993)64ページ以下に記載されているように鋼
中に酸化物などの介在物、析出物を分散させ、それらを
核としてオーステナイト粒内に微細なフェライト粒を析
出させる手段も提案されている。しかしこの手法では介
在物や析出物の析出条件が鋼の組成や製造条件に敏感で
あるため、適量の介在物などを適時に析出させることが
困難である。
On the other hand, for example, as described in Nippon Steel Technology No. 351 (1993), p. 64 et seq., Inclusions such as oxides and precipitates are dispersed in steel, and these are used as nuclei to form austenite grains. Means for precipitating fine ferrite grains have also been proposed. However, in this method, the precipitation conditions of inclusions and precipitates are sensitive to the composition of the steel and the production conditions, so that it is difficult to precipitate an appropriate amount of inclusions and the like in a timely manner.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記従来技
術の有する問題点を解決し、強度と靱性を兼備した構造
用鋼材を提供することを目的とするものである。具体的
には、いわゆる50kgクラスの高張力鋼(引張強さ5
10ないし550MPa)においてシャルピー衝撃試験
の吸収エネルギーが200J以上である新たな組成の構
造用鋼を提供することを目的とするものである。また本
発明は新たなフェライト生成核を提案し、これにより強
度と靭性を兼備した構造用鋼材を幅広い鋼種にわたっ
て、形状不良を発生することなく、かつフェライト核生
成量の制御可能な状態で製造可能とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a structural steel material having both strength and toughness. Specifically, a so-called 50 kg class high-strength steel (tensile strength 5
It is an object of the present invention to provide a structural steel having a new composition having an absorption energy of 200 J or more in a Charpy impact test at 10 to 550 MPa). In addition, the present invention proposes a new ferrite nucleation nucleus, which makes it possible to manufacture structural steel materials having both strength and toughness over a wide range of steel types without causing shape defects and with controllable ferrite nucleation amount. It is assumed that.

【0006】[0006]

【課題を解決するための手段】上記課題の解決のため本
発明者らは、高ボロン鋼で晶出するFe2Bがフェライ
ト核生成サイトとして優れた能力のあることを発見し、
本発明を完成させたものである。すなわち、本発明は鋼
の組成を以下のように規定することによって、鋳造時、
樹枝状晶間に晶出し、その後の圧延過程で分断、微細化
されるFe2Bをオーステナイト粒内におけるフェライ
ト相の生成サイトとして利用するとともに、固溶Bを利
用してオーステナイト粒界におけるフェライト相の生成
を抑制し、強度と靭性を具備した構造用鋼の製造を可能
にしたものである。
Means for Solving the Problems To solve the above problems, the present inventors have found that Fe 2 B crystallized from high boron steel has excellent ability as a ferrite nucleation site,
The present invention has been completed. That is, the present invention defines the composition of steel as follows, at the time of casting,
The Fe 2 B crystallized between the dendrites and separated and refined in the subsequent rolling process is used as a site for forming a ferrite phase in the austenite grains, and the ferrite phase at the austenite grain boundary is utilized using solid solution B. The production of structural steel having strength and toughness is suppressed by suppressing the formation of steel.

【0007】具体的には、強度および靱性に優れた構造
用鋼の組成を、質量比で、C:0.03%以上、0.2
4%以下、Si:1.0%以下、Mn:2.0%以下、
P:0.01%以下、S:0.01%以下、N:0.0
05%以下、B:0.020%以上、0.500%以
下、を含有し、残部鉄および不可避不純物からなるもの
とするものである。さらに、上記組成に加え、Ni:
1.4%以下、Cr:0.9%以下、Mo:0.5%以
下、V:0.3%以下、Nb:0.3%以下、Ti:
0.3%以下、Zr:0.1%以下から選んだ1種又は
2種以上を必要に応じ選択的に含有せしめるものであ
る。
[0007] Specifically, the composition of structural steel having excellent strength and toughness is defined as a mass ratio of C: 0.03% or more, 0.2% or more.
4% or less, Si: 1.0% or less, Mn: 2.0% or less,
P: 0.01% or less, S: 0.01% or less, N: 0.0
B: 0.05% or less, B: 0.020% or more and 0.500% or less, with the balance being iron and unavoidable impurities. Further, in addition to the above composition, Ni:
1.4% or less, Cr: 0.9% or less, Mo: 0.5% or less, V: 0.3% or less, Nb: 0.3% or less, Ti:
One or more selected from 0.3% or less and Zr: 0.1% or less are selectively contained as necessary.

【0008】[0008]

【発明の実施の形態】まず本発明の構造用鋼の組成につ
いて説明する。 C:0.03%以上、0.24%以下 Cはオーステナイト相からの低温変態相の種類、量を決
定するので、0.03%以上を添加して鋼材の強度を確
保する。しかし、過剰に添加すると高温フェライト相の
生成が抑制され、Fe2Bの効果が期待出来なくなる。
したがって、その上限は0.24%とした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the composition of the structural steel of the present invention will be described. C: 0.03% or more, 0.24% or less C determines the type and amount of the low-temperature transformation phase from the austenite phase. Therefore, 0.03% or more is added to secure the strength of the steel material. However, if added excessively, the formation of a high-temperature ferrite phase is suppressed, and the effect of Fe 2 B cannot be expected.
Therefore, the upper limit is set to 0.24%.

【0009】Si:1.0%以下、Mn:2.0%以下 Siは脱酸剤として、又鋼の焼入性の調整剤として低温
変態相の分率の調整に重要な元素であり、必須の添加元
素である。しかし、1.0%を越えると鋼を脆化させる
ため、その添加量は1.0%以下とする。MnはSを無
害化し、靭性を向上させるほか、鋼の焼入性の調整、低
温変態相の生成分率の調整のため必須の添加元素であ
る。しかし、2.0%以上添加すると鋼を脆化させるの
で、上限を2.0%とした。
Si: 1.0% or less, Mn: 2.0% or less Si is an important element for adjusting the fraction of the low-temperature transformation phase as a deoxidizing agent and as a modifier for the hardenability of steel. It is an essential additive element. However, if it exceeds 1.0%, the steel is embrittled, so the amount of addition is limited to 1.0% or less. Mn is an indispensable additive element for detoxifying S, improving toughness, adjusting the hardenability of steel, and adjusting the generation fraction of the low-temperature transformation phase. However, if 2.0% or more is added, the steel is embrittled, so the upper limit is set to 2.0%.

【0010】B:0.020%以上、0.500%以下 Bは初晶としてFe2Bを生成し、それがその後の熱間
加工によって分断、微細化され、オーステナイト相中に
分散し、フェライト相の生成核として作用する。また、
オーステナイト相中からFe2Bを析出し、同様にフェ
ライト相の生成核となる。一方、Fe2Bの生成に寄与
しないBは固溶Bとしてオーステナイト結晶粒界に偏析
し粒界フェライトの生成を抑制し、オーステナイト粒内
におけるフェライト相の生成に寄与する。したがって、
Bは本発明において必須の添加元素である。その効果は
0.020%以上で現れるが、過剰に添加する場合はフ
ェライト相の生成に寄与しないFe2Bが硬質の介在物
相として鋼の加工性や靭性を劣化させるため0.500
%以下としなければならない。なお、Bの鋼中への固溶
度は極めて小さいので、鋼中に添加されるBはほぼすべ
てFe2Bを生成すると考えてよく、したがってフェラ
イト相生成核の存在量をBの添加量のみに化学量論的に
決定できることになる。
B: 0.020% or more and 0.500% or less B forms Fe 2 B as a primary crystal, which is divided and refined by the subsequent hot working, dispersed in the austenite phase, and ferrite. Acts as a phase nucleus. Also,
Fe 2 B is precipitated from the austenite phase, and also serves as a nucleus for forming a ferrite phase. On the other hand, B that does not contribute to the formation of Fe 2 B segregates at the austenite crystal grain boundary as solid solution B, suppresses the formation of grain boundary ferrite, and contributes to the formation of a ferrite phase in austenite grains. Therefore,
B is an essential additive element in the present invention. The effect appears at 0.020% or more. However, when added in excess, Fe 2 B, which does not contribute to the formation of a ferrite phase, deteriorates the workability and toughness of the steel as a hard inclusion phase, so that 0.500% or more.
% Or less. Since the solid solubility of B in steel is extremely small, it can be considered that almost all of B added to steel forms Fe 2 B. Therefore, the abundance of ferrite phase nuclei is determined only by the amount of B added. Can be determined stoichiometrically.

【0011】P:0.01%以下、S:0.01%以
下、N:0.005%以下 P、Sはともに粒界偏析により構造用鋼にとって重要な
特性値である靭性を低下させるほか、Bの粒界偏析と競
合し、その効果を低減させる。したがってこれらは0.
01%以下に制限しなければならない。また、Nは粒界
に偏析し、Bと反応してBNを形成し、粒界Bの効果を
低減させる。したがって、0.005%以下に制限され
なければならない。
P: 0.01% or less, S: 0.01% or less, N: 0.005% or less Both P and S reduce toughness which is an important characteristic value for structural steel due to grain boundary segregation. , B compete with the grain boundary segregation and reduce its effect. Therefore, these are 0.
Must be limited to 01% or less. N segregates at the grain boundaries and reacts with B to form BN, thereby reducing the effect of the grain boundaries B. Therefore, it must be limited to 0.005% or less.

【0012】Ni、Cr、Mo、V、Nb、Ti、Zr
は何れも焼入性を向上させる元素であり、低温変態相の
分率の調整等の目的で適宜添加することが出来る。しか
し過剰に添加してもその効果が飽和するのみでなく、か
えって鋼の脆化を招く。従って、これら元素はそれぞれ
1.4%、0.9%、0.5%、0.3%、0.3%、
0.3%、0.1%を上限として1種または2種以上を
必要に応じ選択的に添加することとする。
Ni, Cr, Mo, V, Nb, Ti, Zr
Are elements that improve the hardenability, and can be appropriately added for the purpose of adjusting the fraction of the low-temperature transformation phase. However, even if it is added excessively, not only the effect is saturated, but also the steel becomes brittle. Therefore, these elements are 1.4%, 0.9%, 0.5%, 0.3%, 0.3%,
One or two or more kinds are selectively added as necessary, with the upper limit being 0.3% or 0.1%.

【0013】本発明鋼の組織は、フェライト相と炭化物
を含む第二相とからなる。これらの相の存在割合は本発
明の構造用鋼に要求される強度、靭性などによって適宜
決定すればよいが、オーステナイト相からFe2Bを核
として析出するいわゆる粒内フェライトの分率を10な
いし60%とするのが強度と靭性とのバランス上好まし
い。かかるフェライト分率を得るために前述のようにB
添加が行われるが、その添加量はC、Mn等の低温変態
相生成促進元素の量、熱延条件など鋼の製造条件によっ
て定められる。
The structure of the steel according to the present invention comprises a ferrite phase and a second phase containing carbide. The proportion of these phases may be appropriately determined depending on the strength and toughness required for the structural steel of the present invention. The fraction of so-called intragranular ferrite which precipitates from the austenitic phase with Fe 2 B as a nucleus is 10 to 10%. It is preferable to be 60% in terms of balance between strength and toughness. To obtain such a ferrite fraction, B
The addition is performed, and the amount of addition is determined by the amount of the element for promoting the formation of the low-temperature transformation phase such as C and Mn, and the steel production conditions such as hot rolling conditions.

【0014】[0014]

【実施例】以下、本発明の実施例を比較例と対比して示
す。表1に示す鋼を溶製し、連続鋳造法によってスラブ
を得、1100℃に加熱後、板厚20mmの厚鋼板に熱
間圧延をした後、空冷し熱延板を得た。表1において鋼
AないしDは本発明に規定する組成を有する鋼である
が、EないしJは本発明の範囲を逸脱する鋼である。す
なわち、鋼E、FはBを含有せず、鋼G、Hはそれぞれ
C含有量が本発明の範囲より低すぎ、あるいは高すぎる
鋼である。鋼HJはそれぞれMn、N含有量が高すぎる
鋼である。
EXAMPLES Examples of the present invention will be shown below in comparison with comparative examples. A steel shown in Table 1 was melted, a slab was obtained by a continuous casting method, heated to 1100 ° C., hot-rolled to a thick steel plate having a thickness of 20 mm, and air-cooled to obtain a hot-rolled plate. In Table 1, steels A to D are steels having the composition specified in the present invention, while E to J are steels which deviate from the scope of the present invention. That is, steels E and F do not contain B, and steels G and H are steels each having a C content that is too low or too high in the range of the present invention. Steel HJ is a steel having too high Mn and N contents, respectively.

【0015】上記により得た熱延ままの状態の熱延板か
ら引張試験片(JIS5号:板状引張試験片)ならびに
シャルピー試験片(JIS4号:Vノッチフルサイズ、
サイドノッチ、L方向)を切り出し、JIS Z 22
41ならびにJIS Z 2242に準拠して室温の引
張破断試験ならびに0℃の衝撃試験を実施した。また粒
内フェライト相分率も評価した。ここにに粒内フェライ
ト相分率とは旧オーステナイト粒界から生成したフェラ
イト相の分率をいう。
From the hot-rolled sheet obtained as described above, a tensile test piece (JIS No. 5: plate-like tensile test piece) and a Charpy test piece (JIS No. 4: V notch full size)
Cut out side notch, L direction), JIS Z22
A room temperature tensile break test and an impact test at 0 ° C. were performed in accordance with No. 41 and JIS Z 2242. The intragranular ferrite fraction was also evaluated. Here, the intragranular ferrite phase fraction refers to the fraction of the ferrite phase generated from the prior austenite grain boundaries.

【0016】上記試験によって得られた強度、靱性なら
びに粒内フェライト相分率の値を表1に併せて示す。本
発明の鋼組成を有するAないしD鋼は30ないし40%
の適度の粒内フェライト相分率を有しそれにより優れた
強度および靱性を有するが、E、F、I、J鋼の粒内フ
ェライト相分率は著しく低く(高々10%)、そのため
靱性において劣っている。すなわち、Bを含有しないE
鋼、F鋼は粒内フェライト相が形成されず、そのため強
度は確保されるものの靱性値が著しく低く構造用部材と
して適さない。I鋼はMnが高すぎ、いわゆる焼き入れ
性が高すぎるため、B含有量の条件は満たしてもFe2
Bによるフェライト相生成効果は発揮されず、強度が著
しく高く靱性の低いものとなり構造用鋼として適さな
い。J鋼はNが高すぎるため粒界に偏析したBがNと結
合してBNを形成し粒界フェライトを生成しやすくする
ために、十分な粒内フェライト相の形成が行われず靱性
が低い。G鋼はBは添加されているもののC量が低すぎ
るため硬質相の形成が行われず、そのため構造用鋼とし
て必要な強度が得られない。またH鋼はCが高すぎるた
め、Bが十分添加されていても硬質相の量が多くなりす
ぎ強度が著しく高くて靱性が低く、やはり構造用部材に
用いるには不適当である。
The values of the strength, toughness and intragranular ferrite phase fraction obtained by the above test are also shown in Table 1. A to D steel having the steel composition of the present invention is 30 to 40%
Has a moderate intragranular ferrite phase fraction and thus has excellent strength and toughness, but the E, F, I, and J steels have a significantly low intragranular ferrite phase fraction (at most 10%), so that Inferior. That is, E not containing B
Steel and F steel do not have an intragranular ferrite phase, and therefore have high strength, but are extremely low in toughness and are not suitable as structural members. Steel I has too high Mn, so-called hardenability, so that even if the B content condition is satisfied, Fe 2
The effect of ferrite phase formation by B is not exhibited, and the strength is extremely high and the toughness is low, so that the steel is not suitable as a structural steel. J steel has too high N, so that B segregated at the grain boundary is combined with N to form BN to easily generate intergranular ferrite, so that a sufficient intragranular ferrite phase is not formed and the toughness is low. In steel G, although B is added, the amount of carbon is too low to form a hard phase, so that the strength required for structural steel cannot be obtained. In addition, since H steel has too high C, even if B is sufficiently added, the amount of the hard phase is too large, the strength is remarkably high, and the toughness is low, which is also unsuitable for use as a structural member.

【0017】[0017]

【表1】 [Table 1]

【0018】なお、A鋼は請求項1に該当する例であ
り、一方B鋼ないしD鋼はNi、Crなどの合金元素を
選択的に含む請求項2に該当する例であり、これらにお
いてもB含有の効果が現れ、十分な粒内フェライト相の
形成とそれによる強度−靱性バランスの優れた鋼の得ら
れることが実証されている。また、上記実施例では熱間
圧延ままの鋼についての特性値を示したが、熱延後必要
により熱処理を施しても本発明の効果が現れることはも
ちろんである。
Steel A is an example corresponding to claim 1, while steels B to D are examples corresponding to claim 2, which selectively contains alloying elements such as Ni and Cr. It has been demonstrated that the effect of B content appears and that a steel having an excellent balance between strength and toughness due to formation of a sufficient intragranular ferrite phase can be obtained. Further, in the above embodiment, the characteristic values of the steel as hot rolled are shown. However, the effect of the present invention can be obviously obtained even if a heat treatment is performed as necessary after hot rolling.

【0019】[0019]

【発明の効果】以上のように本発明の鋼組成により、構
造用鋼として極めて適切な強度、靱性を具備する鋼を、
特に大規模な製造設備を要することなく、またフェライ
ト相の析出サイトの量を極めて容易に制御して製造する
ことができる。
As described above, according to the steel composition of the present invention, a steel having extremely suitable strength and toughness as a structural steel can be obtained.
In particular, the production can be performed without requiring a large-scale production facility, and extremely easily controlling the amount of precipitation sites of the ferrite phase.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 質量比でC:0.03%以上、0.24
%以下、Si:1.0%以下、Mn:2.0%以下、
P:0.01%以下、S:0.01%以下、N:0.0
05%以下、B:0.020%以上、0.500%以
下、を含有し、残部鉄および不可避不純物からなる強度
および靱性に優れた構造用鋼。
1. A mass ratio of C: 0.03% or more, 0.24 or more.
% Or less, Si: 1.0% or less, Mn: 2.0% or less,
P: 0.01% or less, S: 0.01% or less, N: 0.0
Structural steel containing 0.05% or less and B: 0.020% or more and 0.500% or less, and is excellent in strength and toughness composed of the balance of iron and unavoidable impurities.
【請求項2】 質量比でC:0.03%以上、0.24
%以下、Si:1.0%以下、Mn:2.0%以下、
P:0.01%以下、S:0.01%以下、N:0.0
05%以下、B:0.020%以上、0.500%以
下、を含有しさらにNi:1.4%以下、Cr:0.9
%以下、Mo:0.5%以下、V:0.3%以下、N
b:0.3%以下、Ti:0.3%以下、Zr:0.1
%以下から選んだ1種又は2種以上を含有し、残部鉄お
よび不可避不純物からなる強度および靱性に優れた構造
用鋼。
2. A mass ratio of C: 0.03% or more, 0.24 or more.
% Or less, Si: 1.0% or less, Mn: 2.0% or less,
P: 0.01% or less, S: 0.01% or less, N: 0.0
B: 0.020% or more, 0.500% or less, Ni: 1.4% or less, Cr: 0.9%
%, Mo: 0.5% or less, V: 0.3% or less, N
b: 0.3% or less, Ti: 0.3% or less, Zr: 0.1
% Or more, selected from the group consisting of iron and unavoidable impurities and having excellent strength and toughness.
JP3439697A 1997-02-03 1997-02-03 Steele for structural purpose excellent in strength and toughness Pending JPH10219386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3439697A JPH10219386A (en) 1997-02-03 1997-02-03 Steele for structural purpose excellent in strength and toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3439697A JPH10219386A (en) 1997-02-03 1997-02-03 Steele for structural purpose excellent in strength and toughness

Publications (1)

Publication Number Publication Date
JPH10219386A true JPH10219386A (en) 1998-08-18

Family

ID=12413034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3439697A Pending JPH10219386A (en) 1997-02-03 1997-02-03 Steele for structural purpose excellent in strength and toughness

Country Status (1)

Country Link
JP (1) JPH10219386A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101167388B1 (en) 2010-02-26 2012-07-19 현대제철 주식회사 Steel Marine, and method for producing the same
CN104630640A (en) * 2015-01-15 2015-05-20 西安交通大学 Liquid-zinc-corrosive-wear-resistant monolithic material and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101167388B1 (en) 2010-02-26 2012-07-19 현대제철 주식회사 Steel Marine, and method for producing the same
CN104630640A (en) * 2015-01-15 2015-05-20 西安交通大学 Liquid-zinc-corrosive-wear-resistant monolithic material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4644076B2 (en) High strength thin steel sheet with excellent elongation and hole expansibility and manufacturing method thereof
JP4681690B2 (en) Manufacturing method of thick high strength steel plate with excellent heat input heat affected zone toughness, and thick high strength steel plate with high heat input heat affected zone toughness
JPH11140582A (en) High toughness thick steel plate excellent in toughness in weld heat-affected zone, and its production
JPH11140580A (en) Continuously cast slab for high strength steel excellent in toughness at low temperature, its production, and high strength steel excellent in toughness at low temperature
JP5114743B2 (en) High strength rolled steel for fireproofing and method for producing the same
JP2008088547A (en) Fire-resistant steel having excellent high-temperature strength, toughness and reheat embrittlement resistance and process for production of the same
JP4514150B2 (en) High strength steel plate and manufacturing method thereof
CN109943771B (en) High-toughness weldable steel plate with fine grain structure and production method thereof
JP2007284712A (en) Method for producing thick high-strength steel plate excellent in toughness and thick high-strength steel plate excellent in toughness
JP2002256379A (en) Steel for high heat input welding
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP4757858B2 (en) Refractory steel material excellent in high temperature strength, toughness and reheat embrittlement resistance, and production method thereof
JPH10219386A (en) Steele for structural purpose excellent in strength and toughness
JP2000104116A (en) Production of steel excellent in strength and toughness
JP4144121B2 (en) Non-tempered high strength steel with excellent toughness of base metal and weld heat affected zone
JP3468168B2 (en) High-strength steel sheet with excellent economy and toughness
JP3635803B2 (en) Method for producing high-tensile steel with excellent toughness
JP4757857B2 (en) Refractory steel material excellent in high temperature strength, toughness and reheat embrittlement resistance, and production method thereof
JP3472017B2 (en) Refractory rolled steel and method for producing the same
JPH08283900A (en) Rolled shape steel for refractory use and its production
JP4762450B2 (en) Method for producing high strength welded structural steel with excellent base metal toughness and weld zone HAZ toughness
JP2000096182A (en) High tensile strength steel for welding excellent in toughness of weld heat-affected zone and production thereof
JP2000054065A (en) High tensile strength steel material for welding, excellent in toughness in weld heat-affected zone, and its production
JP5895780B2 (en) Steel plate excellent in toughness of heat-affected zone with high heat input welding and manufacturing method thereof
JPH05279735A (en) Manufacture of building fire resistant steel plate excellent in toughness in high heat input weld heat-affected zone