JPH10216956A - Method for feeding member to be welded in flash welding - Google Patents

Method for feeding member to be welded in flash welding

Info

Publication number
JPH10216956A
JPH10216956A JP3149997A JP3149997A JPH10216956A JP H10216956 A JPH10216956 A JP H10216956A JP 3149997 A JP3149997 A JP 3149997A JP 3149997 A JP3149997 A JP 3149997A JP H10216956 A JPH10216956 A JP H10216956A
Authority
JP
Japan
Prior art keywords
welded
power
welding
phase difference
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3149997A
Other languages
Japanese (ja)
Other versions
JP3511446B2 (en
Inventor
Takamine Mukai
敬峰 向井
Tadashi Fujioka
忠志 藤岡
Makoto Doi
真 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP03149997A priority Critical patent/JP3511446B2/en
Publication of JPH10216956A publication Critical patent/JPH10216956A/en
Application granted granted Critical
Publication of JP3511446B2 publication Critical patent/JP3511446B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Generation Of Surge Voltage And Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a feeding method for member to be welded to perform the optimum flash welding without being affected by the shape of the member. SOLUTION: In a work feeding method, two members to be welded 1, 2 are held by clamping members 3, 4 which are respectively connected to each output end of a secondary side 7B of a power supply transformer 7, at least one member 2 is fed at the prescribed relative speed in the abutting direction on the other member 1, and two members 1, 2 are flash-welded at the abutting surface. The power is obtained by the voltage and the current at the primary side 7A or the secondary side 7B of the power supply transformer 7, the waveform of the power is binarized, the phase difference is obtained from the bindarized waveform, and the relative feeding speed is controlled so as to keep the phase difference to be the prescribed value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はフラッシュ溶接にお
ける被溶接部材の送り方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for feeding a member to be welded in flash welding.

【0002】[0002]

【従来の技術】給電トランスの二次側の両出力端にそれ
ぞれ接続されたクランプ部材により二つの被溶接部材を
把持し、少なくとも一方の被溶接部材を他方の被溶接部
材に対して当接方向に所定の相対送り速度で送り出し、
二つの被溶接部材を当接面でフラッシュ溶接させる方法
が知られている。
2. Description of the Related Art Two members to be welded are gripped by clamp members respectively connected to both output ends on the secondary side of a power supply transformer, and at least one member to be welded is brought into contact with the other member to be welded. At a predetermined relative feed rate,
A method of flash-welding two members to be welded on a contact surface is known.

【0003】かかるフラッシュ溶接では、二つの被溶接
部材に、低電圧(例えば5〜20V)を印加し、大電流
(例えば2,000〜100,000A)を流す。被溶
接部材同士を接触させることによってアークを発生さ
せ、その発熱によって部材端面(接触面)を溶融し、十
分端面を加熱した後に部材端面同士を急速に押しつける
(アプセット)という工程を経る。上記溶融時に火花状
に溶融金属が飛散する様子からフラッシュ溶接の名前が
ついた。
In such flash welding, a low voltage (for example, 5 to 20 V) is applied to two members to be welded, and a large current (for example, 2,000 to 100,000 A) flows. An arc is generated by bringing the members to be welded into contact with each other, and the end surfaces (contact surfaces) of the members are melted by the heat generated, and after the end surfaces are sufficiently heated, the end surfaces of the members are rapidly pressed (upset). The name of flash welding was given because the molten metal was scattered in a spark-like shape during the melting.

【0004】このフラッシュ溶接法の利点としては、短
時間溶接が可能であること、接触面の精度を必要としな
い(表面研削等が不要である)こと、溶接材料等が不要
である(溶接棒、電極などの消耗部品が無い)こと等が
挙げられる。逆に欠点としては、瞬間的に非常に大きな
電力を必要とする(電源設備が大型化する)こと、被溶
接部材をアークで飛ばすため部材の消耗が起こること等
が挙げられる。
The advantages of this flash welding method are that welding can be performed in a short time, contact surface accuracy is not required (surface grinding is not required), and welding materials are not required (welding rod). And no consumable parts such as electrodes). On the other hand, disadvantages are that very large electric power is required instantaneously (power equipment becomes large), and the members to be welded are consumed by arcs, so that the members are consumed.

【0005】上述のごとく、フラッシュ溶接では、当接
面で溶融する二つの被溶接部材を溶接に好適な相対位置
関係に維持するために、通常送り制御装置を用いて被溶
接部材の送り速度を適正なものとなるように制御してい
る。これは適正な送り速度以外では次のような現象が起
こるからである。
As described above, in flash welding, in order to maintain the two members to be melted at the contact surface in a relative positional relationship suitable for welding, the feed speed of the member to be welded is usually adjusted using a feed control device. It is controlled to be appropriate. This is because the following phenomena occur except for the proper feed speed.

【0006】送り速度が遅すぎる場合 フラッシュ工程では、被溶接部材同士を僅かな速度で引
き合わせながら接触させ、短絡→溶断→アーク→解放と
いうサイクルを1秒間に数百〜数千回繰り返している。
被溶接部材同士が接触すると被溶接部材間に短絡電流が
流れる。この接触面積は微小であるため、短絡電流が局
所的に流れ、接触部位にてジュール発熱を生じる。発熱
により被溶接部材が融点に達すると接触部位が溶断、ア
ークが発生する。接触部位にて発生するアークによって
被溶接部材が溶融飛散し、接触部位に空隙が生じ、解放
状態となる。被溶接部材の送りによって被溶接部材が再
び接触し、短絡状態となる。被溶接部材の送り速度が遅
すぎる場合には、解放状態から短絡状態になるまでの時
間が長くなり、アークの発生回数が減少する。結果とし
てフラッシュによる被溶接部材への入熱が減少し、溶接
に要するフラッシュ時間が長くなるか、もしくは入熱不
足により溶接ができなくなる。同時に被溶接部材の端面
が冷却、酸化されるため溶接品質も悪化する。
When the feed rate is too slow In the flashing process, the members to be welded are brought into contact with each other at a small speed while contacting each other, and a cycle of short-circuit, fusing, arc, and release is repeated several hundred to several thousand times per second. .
When the members to be welded come into contact with each other, a short-circuit current flows between the members to be welded. Since this contact area is very small, a short-circuit current flows locally and Joule heat is generated at the contact portion. When the member to be welded reaches the melting point due to heat generation, the contact portion is melted and an arc is generated. The member to be welded melts and scatters due to the arc generated at the contact portion, and a gap is generated at the contact portion to be in a released state. The member to be welded comes into contact again by the feeding of the member to be welded, and a short circuit occurs. If the feed speed of the member to be welded is too slow, the time from the release state to the short circuit state becomes longer, and the number of arcs generated decreases. As a result, the heat input to the member to be welded by the flash is reduced, and the flash time required for welding becomes longer, or welding becomes impossible due to insufficient heat input. At the same time, the end face of the member to be welded is cooled and oxidized, thereby deteriorating the welding quality.

【0007】送り速度が速すぎる場合 溶融速度より送り速度が速い場合には、接触面積が急速
に増えるため接触部位が溶断せず、アークが発生しな
い。短絡通電による発熱(ジュール加熱)では、端面が
冷えてきて端面の溶融ができずフリージング(短絡しア
ークが発生しない状態)が起き溶接不能となる。また、
電源設備の容量にあまり余裕のない場合、長時間の短絡
によって電源設備が過熱・焼損する虞れがある。
When the feed speed is too high When the feed speed is higher than the melting speed, the contact area increases rapidly, so that the contact portion does not melt and no arc is generated. In the heat generated by short-circuit conduction (Joule heating), the end face cools down, the end face cannot be melted, and freezing (a state in which no short circuit occurs and no arc is generated) occurs, making welding impossible. Also,
If the capacity of the power supply equipment is not so large, there is a risk that the power supply equipment will be overheated and burned out due to a long-term short circuit.

【0008】送り速度が適正な場合 溶融速度と送り速度がほぼ釣り合うと、解放状態で生じ
る接触部位で空隙が極小になるため、再び短絡するまで
に要する時間が短くなる。その結果、アークの発生回数
が多くなり、入熱効率がよくなって溶接に要するフラッ
シュ時間が短くなる。
When the feeding speed is appropriate When the melting speed and the feeding speed are substantially balanced, the time required to short-circuit again becomes short because the gap at the contact portion generated in the released state is minimized. As a result, the number of arcs generated increases, the heat input efficiency improves, and the flash time required for welding decreases.

【0009】したがって、フラッシュ溶接にあっては送
り速度の制御がきわめて重要である。従来、この送り速
度制御の方法としては、プログラム(プリセット)制御
と電流(電力)値フィートバック制御が知られている。
Therefore, in flash welding, it is very important to control the feed rate. Conventionally, program (preset) control and current (power) value feedback control have been known as the feed speed control method.

【0010】プログラム制御は、予め実験などで、各部
材毎の適正な被溶接部材送り速度を求めておき、プログ
ラム(例えばカム、シーケンサー)にてその動きを再現
するものである。長所として、フィードバック制御を行
う装置に比べて装置構成が簡単であることが挙げられ
る。
In the program control, an appropriate feed speed of a member to be welded for each member is determined in advance by an experiment or the like, and the movement is reproduced by a program (for example, a cam or a sequencer). An advantage is that the device configuration is simpler than a device that performs feedback control.

【0011】しかし、初期端面形状などの細かな部材条
件の変化に対応できないこと、多少適正値より送り速度
が速くてもフリージングが起こらないように、大きな短
絡電流値を得るために電圧を高くする等電源設備の大型
化につながるほか、大断面積の被溶接部材は溶接トラン
スの二次電圧を例えば20V以上にしても十分な短絡電
流を得られないで、溶接できなこと、等の問題がある。
However, the voltage is increased in order to obtain a large short-circuit current value so as not to be able to cope with small changes in member conditions such as the initial end face shape and to prevent freezing even if the feed rate is slightly higher than an appropriate value. In addition to the increase in the size of the power supply equipment, there are problems in that the welded member having a large cross-sectional area cannot be welded because a sufficient short-circuit current cannot be obtained even if the secondary voltage of the welding transformer is, for example, 20 V or more. is there.

【0012】かかるプログラム制御における問題を解決
するため、フラッシュ状態を電流値(もしくは電力値)
にて監視し、この値が一定になるよう、送り速度にフィ
ードバックする電流(電力)値フィードバック制御方法
がある。
In order to solve such a problem in the program control, the flash state is changed to a current value (or power value).
There is a current (power) value feedback control method of monitoring the feed speed and feeding back to the feed speed so that this value becomes constant.

【0013】この電流(電力)値フィードバック制御に
よる方法では、電流値(もしくは電力値)を制限するこ
とができ、電源設備の小型化が図れる。また、端面の初
期状態や、部材温度など被溶接部材の状態によらず、一
定のフラッシュ状態を維持できるため溶接品質の向上に
つながる。
According to the current (power) value feedback control method, the current value (or power value) can be limited, and the power supply equipment can be downsized. In addition, a constant flash state can be maintained irrespective of the initial state of the end face or the state of the member to be welded such as the member temperature, which leads to improvement in welding quality.

【0014】[0014]

【発明が解決しようとする課題】上述の電流(電力)値
フィードバック制御による方法では、被溶接部材の形状
が多少異なっても過長な解放期間やフリージングが起こ
らないよう、送り速度を調整できる。しかし、適正電流
(電力)値が溶接装置や被溶接部材(例えば形状)によ
って異なるため、被溶接部材の材質や寸法が変わる度に
適正溶接電流もしくは電力を求める必要があり、求めら
れた電流・電力値を基準電流値・電力値として与える必
要があった。このため、工場などで被溶接部材の断面
積、材料、温度が一定でないラインなどでは、予め、断
面積など部材情報を送り制御装置に送り、適正な基準電
流値もしくは電力値に設定する必要があり手間取ってい
た。
According to the above-described method based on the current (power) value feedback control, the feed rate can be adjusted so that an excessive release period or freezing does not occur even if the shape of the member to be welded is slightly different. However, since the appropriate current (power) value differs depending on the welding device and the member to be welded (for example, shape), it is necessary to calculate the appropriate welding current or power every time the material and dimensions of the member to be welded change. The power value had to be given as a reference current value / power value. For this reason, in a line where the cross-sectional area, material, and temperature of the member to be welded are not constant in a factory or the like, it is necessary to send member information such as the cross-sectional area to a feed control device in advance and set an appropriate reference current value or electric power value. It was time-consuming.

【0015】本発明は、かかる問題を解決し、被溶接部
材形状に影響されない送り速度制御法を提供し、最適な
送り制御法により、短時間溶接を実現し、さらには、短
絡状態の極小化によって電源設備の小型化を図ることが
できるフラッシュ溶接における被溶接部材の送り方法を
提供することを目的とする。
The present invention solves such a problem, provides a feed rate control method that is not affected by the shape of a member to be welded, realizes short-time welding by an optimum feed control method, and further minimizes a short-circuit state. It is an object of the present invention to provide a method of feeding a member to be welded in flash welding in which power supply equipment can be downsized.

【0016】[0016]

【課題を解決するための手段】本発明に係るフラッシュ
溶接では、給電トランスの二次側の両出力端にそれぞれ
接続されたクランプ部材により二つの被溶接部材を把持
し、少なくとも一方の被溶接部材を他方の被溶接部材に
対して当接方向に所定の相対送り速度で送り出し、二つ
の被溶接部材を当接面でフラッシュ溶接させる。かかる
フラッシュ溶接にあって、本発明では、給電トランスの
一次側もしくは二次側での電圧と電流から電力を求め、
該電力の波形を二値化し、該二値化された波形から位相
差を求め、該位相差を所定値に維持するように上記相対
送り速度を制御する。
In the flash welding according to the present invention, two members to be welded are gripped by clamp members respectively connected to both output ends on the secondary side of a power supply transformer, and at least one of the members to be welded is clamped. At a predetermined relative feed rate in the contact direction with respect to the other member to be welded, and the two members to be welded are flash-welded at the contact surface. In such flash welding, in the present invention, power is obtained from voltage and current on the primary side or secondary side of the power supply transformer,
The power waveform is binarized, a phase difference is obtained from the binarized waveform, and the relative feed speed is controlled so as to maintain the phase difference at a predetermined value.

【0017】上記構成の本発明について、さらに詳述す
ると、交流フラッシュ溶接では、溶接トランスの二次電
圧をV2とすると二次短絡電流I2は、I2=V2/Z
2(Z2は溶接機の短絡インピーダンスで通常数百μΩ程
度)で与えられる。Z2は抵抗R2とリアクタンスX2
2乗の和の平方根で与えられるが、R2は被溶接部材の
断面積の増大や回路の接触点数を減らすことにより減少
可能であるのに対して、X2は導体回路の形状より物理
的に決まる値であり通常のフラッシュ溶接機で100μ
Ω以下にすることは極めて困難である。回路にリアクタ
ンスX2があると、電圧V2に対して電流I2が位相遅れ
を生じる。この位相差は装置によっても異なるが、15
〜60deg程度である。この値は被溶接部材の断面積
等形状が変わっても殆ど変化せず、R2が僅かに変化す
るのみである。
The present invention having the above-mentioned structure will be described in further detail. In the AC flash welding, when the secondary voltage of the welding transformer is V 2 , the secondary short-circuit current I 2 is I 2 = V 2 / Z
2 (Z 2 is the short-circuit impedance of the welding machine, usually about several hundred μΩ). Z 2 is given by the square root of the sum of the square of the resistance R 2 and the reactance X 2 , where R 2 can be reduced by increasing the cross-sectional area of the member to be welded or reducing the number of contact points of the circuit. , X 2 are values physically determined by the shape of the conductor circuit, and are 100 μm with a normal flash welding machine.
It is extremely difficult to reduce the resistance below Ω. If there is a reactance X 2 in the circuit, the current I 2 causes a phase delay with respect to the voltage V 2 . This phase difference differs depending on the device,
It is about 60 deg. This value does not change hardly be varied cross-sectional area such as the shape of the member to be welded, only R 2 is changed slightly.

【0018】フラッシュ面にアークが発生した瞬間を考
えると、アークはほぼ純抵抗と見なせ、またその抵抗値
が大きい(数百〜千数百μΩ)ため、上記位相差も5〜
10deg程度となる。実際のアークは交流波形1サイ
クル中に十数回発生し、位相差も複雑に変化するが、電
力Pとの関係から力率を求める式φ=P/(V・I)よ
り力率を求め、位相差ψ=cos-1φにより位相差を求
めると、アークの発生数(積算の発生時間)に応じて位
相差が変化している。このことから、フラッシュ中の電
圧と電流の位相差を求めることによって、アークの発生
状況を観察することが可能であることが判る。本発明で
は、上記電圧と電流との積から電力を求め、該電力の波
形を二値化し、その二値化された波形から位相差を求め
ることとしている。この電圧、電流は溶接トランスの一
次側、二次側どちらでも良いが、電流の測定し易い一次
側で計測することが望ましい。
Considering the moment when an arc is generated on the flash surface, the arc can be regarded as substantially pure resistance, and its resistance value is large (several hundred to several hundreds of μΩ).
It is about 10 deg. The actual arc occurs more than ten times in one cycle of the AC waveform, and the phase difference also changes in a complicated manner. However, the power factor is calculated from the equation φ = P / (VI) obtained from the relationship with the power P. When the phase difference is determined from the phase difference ψ = cos −1 φ, the phase difference changes according to the number of arcs generated (the time when the integration occurs). From this, it is understood that the arc generation state can be observed by obtaining the phase difference between the voltage and the current during the flash. In the present invention, power is obtained from the product of the voltage and the current, the power waveform is binarized, and the phase difference is obtained from the binarized waveform. The voltage and the current may be on either the primary side or the secondary side of the welding transformer, but it is preferable to measure the voltage and the current on the primary side where the current can be easily measured.

【0019】被溶接部材の送り速度が速すぎるときに短
絡、すなわち位相差が大きくなり、逆に送り速度が遅す
ぎると解放、すなわち位相差が小さくなる。つまり、短
絡の比率により電圧と電流の位相差が変化するため、位
相差を監視しながら送り速度を調整することにより、ア
ークの発生状況を制御することが可能となる。
When the feed speed of the member to be welded is too high, the short circuit, that is, the phase difference becomes large, and when the feed speed is too low, release, that is, the phase difference becomes small. That is, since the phase difference between the voltage and the current changes depending on the ratio of the short circuit, it is possible to control the state of arc generation by adjusting the feed rate while monitoring the phase difference.

【0020】[0020]

【発明の実施の形態】以下、添付図面にもとづいて本発
明の実施の形態を説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0021】図1において、被溶接部材としての棒状の
鋼材1,2がそれぞれクランプ部材3,4にて解放可能
に把持されている。クランプ部材3はシリンダ装置5の
シリンダ本体5Aに取りつけられており、もう一方のク
ランプ部材4は上記シリンダ装置5のロッド5Bの先端
部に取りつけられていて軸方向に可動となっている。
In FIG. 1, bar-shaped steel materials 1 and 2 as members to be welded are releasably gripped by clamp members 3 and 4, respectively. The clamp member 3 is attached to the cylinder body 5A of the cylinder device 5, and the other clamp member 4 is attached to the tip of the rod 5B of the cylinder device 5 and is movable in the axial direction.

【0022】上記クランプ部材3,4には溶接トランス
(給電トランス)7の二次側7Bが接続されている。交
流電源8に接続されている一次側7Aには、電圧Vそし
て電流Iを検出する検出手段9が接続されており、その
出力が制御装置10に送られるようになっている。
A secondary side 7B of a welding transformer (feeding transformer) 7 is connected to the clamp members 3 and 4. Detection means 9 for detecting the voltage V and the current I is connected to the primary side 7A connected to the AC power supply 8, and the output is sent to the control device 10.

【0023】制御装置10は電力演算手段11を有して
おり、上記検出手段9で検出された電圧Vそして電流I
から電力P=V・Iの関係を用いて電力Pを求めるよう
になっている。電力演算手段11は二値化手段12に接
続されており、該電力演算手段11で得られた電力は電
流と電圧の積であるので正値と負値の部分を有してお
り、これが上記二値化手段12にて正値間を0そして負
値間を1として二値化される。二値化手段12には位相
差算出手段13が接続されていて上記二値化手段12か
らの出力にもとづき位相差fが算出される。即ち、位相
差fは、二値化手段の出力をNp、その平均値をN p,av
とするとf=N p,av×π(rad)で求められる。位相
差算出手段13の出力側には、設定された基準位相差f
refが外部から入力され、次に積分回路14Aと乗算回
路14Bから成る基準送り速度算出手段14に接続され
ている。積分回路14Aは位相差の差分f−frefを算
出してこれを積分して∫(f−fref)dtを求め、乗
算回路14Bはこの積分値にゲインkを乗ずるようにな
っていて、その積により基準送り速度Vref=k・∫
(f−fref)dtとして算出する。
The control device 10 has power calculating means 11
The voltage V and the current I detected by the detection means 9
To obtain the power P using the relationship of power P = VI
It has become. The power calculation means 11 is connected to the binarization means 12.
The power obtained by the power calculation means 11 is
Since it is a product of current and voltage, it has
This means that the value between the positive value is 0 and the value is
Binarization is performed with the value between the values as 1. The binarizing means 12 has a phase
The difference calculating means 13 is connected and the binarizing means 12
The phase difference f is calculated based on these outputs. That is, the phase
The difference f is obtained by calculating the output of the binarizing means as Np and the average value thereof as N p, av
Then f = N p, av× π (rad). phase
On the output side of the difference calculating means 13, the set reference phase difference f
refIs input from the outside, and then multiplied by the integrating circuit 14A.
Connected to the reference feed speed calculating means 14 comprising a path 14B.
ing. The integrating circuit 14A calculates the phase difference ffrefIs calculated
And integrate this to obtain ∫ (ffref) Find dt and square
The arithmetic circuit 14B multiplies the integrated value by a gain k.
And the product is the reference feed speed Vref= k ・ ∫
(Ffref) Calculated as dt.

【0024】上記二値化手段12の出力側は分枝されて
いて切替手段15にも接続されている。本例において
は、瞬時電力値が正の場合(上記二値化波形が0の区
間)に、予め設定してある前進速度Vfwdで部材同士を
引き寄せ、瞬時電力値が負の場合(上記二値化波形が1
の区間)に予め設定してある後退速度Vrvsで部材同士
を引き離すが、上記切替手段15では上記基準送り速度
算出手段14からの出力である基準送り速度Vrefの修
正量ΔVrefとして、上記VfwdもしくはVrvsを出す。
その結果、上記制御装置10の出力VplはVpl=ΔV
ref+Vrefとなる。
The output side of the binarizing means 12 is branched and connected to the switching means 15. In this example, when the instantaneous power value is positive (the section where the binarized waveform is 0), the members are attracted to each other at the preset forward speed V fwd , and when the instantaneous power value is negative ( 1 digitized waveform
The members are separated from each other at the retreat speed V rvs set in advance in the section (3), but the switching means 15 sets the correction amount ΔV ref of the reference feed speed V ref output from the reference feed speed calculating means 14 as the correction amount ΔV ref . Issue V fwd or V rvs .
As a result, the output V pl of the control device 10 becomes V pl = ΔV
ref + V ref .

【0025】この場合、VfwdとVrvsとの関係は次のよ
うに設定される。二値化された電力の波形と上記Vfwd
及びVrvsとの関係は図2のごとくである。位相差fが
適正で基準位相差frefと等しいときにはVrefは補正す
る必要がない訳であるから、ΔVref=0とせねばなら
ない。仮りにVfwd=Vrvsと設定してしまうと、図2の
関係からΔVref>0となってしまい不都合が生ずる。
そこで、図2においてaとbとの面積、すなわち前進と
後退の距離が等しくなるように設定する。すると、 −m・Vfwd=n・Vrvs ‥‥‥‥‥‥‥‥‥ となる。また、 π・n/(m+n)=fref ‥‥‥‥‥‥‥‥ であるから、これらの関係より Vrvs=(1−π/fref)Vfwd ‥‥‥‥‥‥ を得る。
In this case, the relationship between V fwd and V rvs is set as follows. The binarized power waveform and the above V fwd
2 and V rvs are as shown in FIG. When the phase difference f is appropriate and equal to the reference phase difference f ref , it is not necessary to correct V ref , so that ΔV ref = 0. If V fwd = V rvs is set, then ΔV ref > 0 from the relationship shown in FIG.
Therefore, in FIG. 2, the area between a and b, that is, the distance between the forward movement and the backward movement is set to be equal. Then, −m · V fwd = n · V rvs ‥‥‥‥‥‥‥‥‥. Since π · n / (m + n) = f ref 、, V rvs = (1−π / f ref ) V fwdよ り is obtained from these relationships.

【0026】上記制御装置10は出力Vplがシリンダ装
置5のPI(比例・積分)制御のための基準値として入
力されるように上記シリンダ装置5に接続されている。
The control device 10 is connected to the cylinder device 5 so that the output V pl is input as a reference value for PI (proportional / integral) control of the cylinder device 5.

【0027】かかる本発明にあっては、検知された電圧
と電流との位相差ψは電力波形と一定の関係があり、そ
して位相差と送り速度とも所定の関係があることから、
最適な送り速度は二値化された電力波形によって決定で
きる。すなわち、上記本実施形態の装置では、最適な位
相差frefを予め設定しておき、実際の溶接時に検出手
段9にて検出された位相差との差から、基準送り速度算
出手段14と切替手段15とによりPI制御のための出
力Vplを算出し、これをシリンダ装置5へ基準値として
入力し、シリンダ装置5のロッド5B、すなわちクラン
プ部材4のクランプ部材3に対する相対速度が上記基準
値に追従するように制御される。その結果、電圧と電流
の位相差、すなわち力率が設定値に追従し、最適の溶接
条件が維持される。
According to the present invention, the detected phase difference 検 知 between the voltage and the current has a fixed relationship with the power waveform, and the phase difference and the feed speed have a predetermined relationship.
The optimum feed rate can be determined by the binarized power waveform. That is, in the apparatus of the present embodiment, the optimal phase difference f ref is set in advance, and the difference between the phase difference detected by the detection unit 9 during actual welding and the reference feed speed calculation unit 14 is switched. The output V pl for PI control is calculated by the means 15 and input to the cylinder device 5 as a reference value, and the relative speed of the rod 5B of the cylinder device 5, that is, the clamp member 4 to the clamp member 3 is determined by the reference value. Is controlled to follow. As a result, the phase difference between the voltage and the current, that is, the power factor follows the set value, and the optimum welding conditions are maintained.

【0028】図3は、かかる制御のもとにおける具体的
な一例での、電圧、電流そして電力の状態を示してい
る。この場合は、図中の位相差が一定となり、短絡状態
とならず、常にフラッシュが発生した状態になる。
FIG. 3 shows the state of voltage, current and power in a specific example under such control. In this case, the phase difference in the figure becomes constant, and a short-circuit state does not occur, and a flash state always occurs.

【0029】[0029]

【発明の効果】本発明は以上のごとく、検出された電圧
と電流との位相差をほぼ一定に保つことにより、アーク
発生比率がほぼ一定に保たれるため、簡単な構成のもと
で、同じ溶接条件設定で、部材形状によらず種々の形状
の被溶接部材を最適に溶接することができ、又、アーク
発生比率を一定にし部材の端面への入熱効率を高めるこ
とによって、溶接時間の短縮化が図れ、さらには、大き
な電力を要する短絡時間を極小にできるため、電源設備
の小型化等運転費の低減につながるという効果を得る。
As described above, according to the present invention, by maintaining the phase difference between the detected voltage and current substantially constant, the arc generation ratio can be kept substantially constant. The same welding conditions can be used to optimally weld members of various shapes regardless of the member shape.Also, by maintaining a constant arc generation ratio and increasing the heat input efficiency to the end faces of the members, the welding time can be reduced. Shortening can be achieved, and furthermore, the short-circuit time requiring a large amount of power can be minimized, so that the effect of reducing the operating costs such as downsizing of the power supply equipment can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法の実施のための装置の概要構成を示
す図である。
FIG. 1 is a diagram showing a schematic configuration of an apparatus for carrying out a method of the present invention.

【図2】適正位相差時におけるVfwdとVrvsとの関係を
示す図である。
FIG. 2 is a diagram illustrating a relationship between V fwd and V rvs at an appropriate phase difference.

【図3】図1装置による実施の具体例を示す図である。FIG. 3 is a diagram showing a specific example of an implementation by the apparatus in FIG. 1;

【符号の説明】[Explanation of symbols]

1 被溶接部材(鋼材) 2 被溶接部材(鋼材) 3 クランプ部材 4 クランプ部材 7 給電トランス(溶接トランス) 7A 一次側 7B 二次側 Reference Signs List 1 welded member (steel material) 2 welded member (steel material) 3 clamp member 4 clamp member 7 power supply transformer (welding transformer) 7A primary side 7B secondary side

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 給電トランスの二次側の両出力端にそれ
ぞれ接続されたクランプ部材により二つの被溶接部材を
把持し、少なくとも一方の被溶接部材を他方の被溶接部
材に対して当接方向に所定の相対送り速度で送り出し、
二つの被溶接部材を当接面でフラッシュ溶接させる方法
において、給電トランスの一次側もしくは二次側での電
圧と電流から電力を求め、該電力の波形を二値化し、該
二値化された波形から位相差を求め、該位相差を所定値
に維持するように上記相対送り速度を制御することを特
徴とするフラッシュ溶接における被溶接部材の送り方
法。
A clamp member connected to each of two output terminals on a secondary side of a power supply transformer grips two workpieces, and at least one of the workpieces is brought into contact with the other workpiece. At a predetermined relative feed rate,
In the method of flash-welding two members to be welded on a contact surface, power is obtained from a voltage and a current on a primary side or a secondary side of a power supply transformer, the waveform of the power is binarized, and the binarization is performed. A method for feeding a workpiece in flash welding, comprising: obtaining a phase difference from a waveform; and controlling the relative feed speed so as to maintain the phase difference at a predetermined value.
JP03149997A 1997-01-31 1997-01-31 Feeding method of welded parts in flash welding Expired - Fee Related JP3511446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03149997A JP3511446B2 (en) 1997-01-31 1997-01-31 Feeding method of welded parts in flash welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03149997A JP3511446B2 (en) 1997-01-31 1997-01-31 Feeding method of welded parts in flash welding

Publications (2)

Publication Number Publication Date
JPH10216956A true JPH10216956A (en) 1998-08-18
JP3511446B2 JP3511446B2 (en) 2004-03-29

Family

ID=12332938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03149997A Expired - Fee Related JP3511446B2 (en) 1997-01-31 1997-01-31 Feeding method of welded parts in flash welding

Country Status (1)

Country Link
JP (1) JP3511446B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104607781A (en) * 2014-12-15 2015-05-13 贵州安大航空锻造有限责任公司 Flash welding forming method for stainless steel large-section ring piece
CN104607782A (en) * 2014-12-15 2015-05-13 贵州安大航空锻造有限责任公司 Flash welding forming method for cobalt-based high-temperature alloy large-section annular piece

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104607781A (en) * 2014-12-15 2015-05-13 贵州安大航空锻造有限责任公司 Flash welding forming method for stainless steel large-section ring piece
CN104607782A (en) * 2014-12-15 2015-05-13 贵州安大航空锻造有限责任公司 Flash welding forming method for cobalt-based high-temperature alloy large-section annular piece

Also Published As

Publication number Publication date
JP3511446B2 (en) 2004-03-29

Similar Documents

Publication Publication Date Title
KR100493125B1 (en) Short circuit arc welder and method of controlling same
JP3200613U (en) System for induction heating of consumables during the laser arc hybrid process
US6995338B2 (en) Method and apparatus for short circuit welding
JP2005238329A (en) Short circuit arc welder and method of controlling the same
KR20140144730A (en) Improved process for surface tension transfer short circuit welding
JPH11267835A (en) Welding device and method
JP5558881B2 (en) Plasma MIG welding method
EP1103331A2 (en) Joining apparatus
JPH04284980A (en) Method for spot resistance welding and its welding electrode
JPH0459178A (en) Arc welding power unit
US6423950B2 (en) Reflow soldering apparatus
US20020190097A1 (en) Method and arrangement for a martensite-free brazing process
JPH10216956A (en) Method for feeding member to be welded in flash welding
JP4151777B2 (en) Hot wire welding method and apparatus
JPH10216951A (en) Method for feeding work to be welded in flash welding
JPH10263835A (en) Feeding method for member to be welded in flash welding
JPH0371982A (en) Resistance welding method
JP3489760B2 (en) Joining method
JPS6348633B2 (en)
EP4070902A1 (en) Improved method and arrangement for a martensite-free brazing process
JP5926589B2 (en) Plasma MIG welding method
JP5511462B2 (en) Plasma MIG welding method
JP3163037B2 (en) Automatic heat input control system and control method for high frequency electric resistance welding equipment
US3912897A (en) Method and apparatus for welding electrically conductive wires
JP2614644B2 (en) Hot wire welding equipment

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20031224

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20031225

Free format text: JAPANESE INTERMEDIATE CODE: A61

LAPS Cancellation because of no payment of annual fees