JPH10216717A - Porous ion exchanger and preparation of demineralized water - Google Patents

Porous ion exchanger and preparation of demineralized water

Info

Publication number
JPH10216717A
JPH10216717A JP9017084A JP1708497A JPH10216717A JP H10216717 A JPH10216717 A JP H10216717A JP 9017084 A JP9017084 A JP 9017084A JP 1708497 A JP1708497 A JP 1708497A JP H10216717 A JPH10216717 A JP H10216717A
Authority
JP
Japan
Prior art keywords
ion exchanger
exchange resin
ion
porous
porous ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9017084A
Other languages
Japanese (ja)
Inventor
Ichiro Terada
一郎 寺田
Kazuo Umemura
和郎 梅村
Junjiro Iwamoto
純治郎 岩元
Takeshi Komatsu
健 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP9017084A priority Critical patent/JPH10216717A/en
Publication of JPH10216717A publication Critical patent/JPH10216717A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PROBLEM TO BE SOLVED: To prepare stably highly pure demineralized water by making a fixed ion exchanger by a method wherein a porosity open to the outside of a porous ion exchanger provided wherein ion exchange particles which can be thermally formed or formed by being impregnated with solvent are bonded to each other, is set within a specific range. SOLUTION: A sulfonation product of styrene-butadiene copolymer or its hydrogenation product, or sulfonation product of styrene-isoprene copolymer or its hydrogenation product is used, an ion exchange resin which can be thermally formed or formed by being impregnated with a solvent is prepared. The ion exchange resin is bonded to each other to form a porous ion exchange sheet by thermal forming by a plate press or the like. At this time, a void ratio open to outside of the porous ion exchanger sheet is set at 5-50vol.%. Thereby, mechanical strengths can be improved, and demineralized water which is stabilized in purity can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液体透過性の多孔
質イオン交換体に関し、特には、電気透析により脱イオ
ン水を製造するための多孔質イオン交換体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid-permeable porous ion exchanger, and more particularly to a porous ion exchanger for producing deionized water by electrodialysis.

【0002】[0002]

【従来の技術】脱イオン水の製造方法としては、イオン
交換樹脂の充填床に被処理水を流し、不純物イオンをイ
オン交換樹脂に吸着させて除去し脱イオン水を得る方法
が一般的である。ここで吸着能力の低下したイオン交換
樹脂は、酸やアルカリを用いて再生する方法が採用され
ている。しかし、この方法においては再生に使用した酸
やアルカリの廃液が排出される問題があるためイオン交
換樹脂の再生の必要がない脱イオン水製造方法が望まれ
ている。
2. Description of the Related Art As a method for producing deionized water, generally, a method is used in which water to be treated is flowed through a packed bed of an ion exchange resin, and impurity ions are adsorbed and removed by the ion exchange resin to obtain deionized water. . Here, a method of regenerating an ion-exchange resin having reduced adsorption capacity using an acid or an alkali is employed. However, in this method, there is a problem that an acid or alkali waste liquid used for regeneration is discharged, so that a method for producing deionized water that does not require regeneration of an ion exchange resin is desired.

【0003】このような観点から、近年イオン交換樹脂
とイオン交換膜を組み合せた自己再生型電気透析脱イオ
ン水製造方法が注目されている。この方法は、陰イオン
交換膜と陽イオン交換膜とを交互に配置した電気透析装
置の脱塩室に陰イオン交換体と陽イオン交換体の混合物
を入れ、この脱塩室に被処理水を流しながら電圧を印加
して電気透析を行うことにより、脱塩室に入れられたイ
オン交換体の再生を伴いつつ、脱イオン水を製造する方
法である。
[0003] From such a viewpoint, a self-regeneration type electrodialysis deionized water production method using an ion exchange resin and an ion exchange membrane in recent years has attracted attention. In this method, a mixture of an anion exchanger and a cation exchanger is placed in a desalting chamber of an electrodialysis apparatus in which an anion exchange membrane and a cation exchange membrane are alternately arranged, and water to be treated is placed in the desalting chamber. This is a method for producing deionized water by applying voltage while flowing and performing electrodialysis, accompanied by regeneration of the ion exchanger contained in the demineralization chamber.

【0004】この方法に関して、脱塩室の幅と厚さを限
定する方法(特開昭61−107906)や脱塩室に充
填するイオン交換樹脂の径を均一にしたものを使用する
方法(特開平3−207487)、被処理水が最初に通
過する部分に充填するイオン交換樹脂をアニオン交換樹
脂にする方法(特開平4−71624)、脱塩室に充填
するイオン交換体をイオン交換樹脂とイオン交換繊維の
混合物とする方法(特開平5−277344)などが検
討されている。
[0004] Regarding this method, a method for limiting the width and thickness of the desalting chamber (Japanese Patent Application Laid-Open No. 61-107906) and a method using a uniform ion exchange resin filled in the desalting chamber (particularly, Japanese Unexamined Patent Publication (Kokai) No. 3-207487), a method of converting an ion exchange resin to be filled in a portion through which water to be treated first passes into an anion exchange resin (Japanese Patent Laid-Open No. 4-71624). A method of preparing a mixture of ion-exchange fibers (JP-A-5-277344) and the like have been studied.

【0005】しかし、イオン交換体である架橋イオン交
換樹脂が固定化されていないため、使用中に同符号のイ
オン交換体が凝集したり、水流によりイオン交換樹脂の
粒子又は繊維が破砕し、効率的な脱塩と再生が行われな
くなり、得られる水の純度の安定性に問題があった。
However, since the ion-exchanger cross-linked ion-exchange resin is not immobilized, the ion-exchanger of the same sign agglomerates during use, or particles or fibers of the ion-exchange resin are crushed by a water flow, resulting in an increase in efficiency. Desalination and regeneration are no longer performed, and there is a problem in the stability of the purity of the obtained water.

【0006】これらの欠点を補う方法として、ポリエチ
レンやポリプロピレン等の不織布に放射線グラフトを行
ってイオン交換基を導入する方法(特開平5−6472
6、特開平5−131120)、イオン交換ポリマーと
補強材ポリマーを海島構造の複合繊維形態とした後シー
ト状に成形したもの(特開平6−79268)が提案さ
れている。
As a method of compensating for these disadvantages, a method of introducing ion-exchange groups by performing radiation grafting on a non-woven fabric such as polyethylene or polypropylene (Japanese Patent Laid-Open No. 5-6472).
6, Japanese Unexamined Patent Publication No. 5-131120), and a sheet formed by combining an ion-exchange polymer and a reinforcing polymer into a sea-island composite fiber (Japanese Unexamined Patent Publication No. 6-79268).

【0007】これらの方法では、イオン交換体が固定化
されているが、放射線を使用する必要がある、複合繊維
を作製する工程が複雑である、機械的強度が必ずしも充
分でないなどの欠点があった。
[0007] In these methods, the ion exchanger is immobilized, but it has disadvantages such as the need to use radiation, the complicated process of producing composite fibers, and the insufficient mechanical strength. Was.

【0008】[0008]

【発明が解決しようとする課題】本発明は、イオン交換
体とイオン交換膜を組み合わせた自己再生型電気透析法
による脱イオン水の製造方法に使用される、放射線の使
用などの複雑な工程によらず固定化されたイオン交換体
を作製し、安定して高純度の脱イオン水を製造すること
を目的とする。
SUMMARY OF THE INVENTION The present invention relates to a complicated process such as the use of radiation which is used in a method for producing deionized water by a self-regenerating electrodialysis method combining an ion exchanger and an ion exchange membrane. It is an object of the present invention to produce an immobilized ion exchanger and to stably produce high-purity deionized water.

【0009】[0009]

【課題を解決するための手段】本発明は、熱成形又は溶
剤の含浸による成形が可能なイオン交換樹脂粒子どうし
が結合されてなる多孔質イオン交換体であって、多孔質
イオン交換体の外部に開放した空隙率が5〜50容量%
である多孔質イオン交換体を提供する。
SUMMARY OF THE INVENTION The present invention relates to a porous ion exchanger comprising ion-exchange resin particles which can be formed by thermoforming or impregnation with a solvent. 5 to 50% by volume porosity
Provided is a porous ion exchanger.

【0010】また、本発明は、熱成形又は溶剤の含浸に
よる成形が可能なイオン交換樹脂粒子と熱成形又は溶剤
の含浸による成形が不可能なイオン交換樹脂粒子とが結
合されてなる多孔質イオン交換体であって、前者の含有
割合が30重量%以上であり、多孔質イオン交換体の外
部に開放した空隙率が5〜50容量%である多孔質イオ
ン交換体を提供する。
The present invention also relates to a porous ion formed by bonding ion-exchange resin particles which can be formed by thermoforming or impregnation with a solvent and ion-exchange resin particles which cannot be formed by thermoforming or impregnation with a solvent. The present invention provides a porous ion exchanger, wherein the content of the former is 30% by weight or more and the porosity opened to the outside of the porous ion exchanger is 5 to 50% by volume.

【0011】本発明においては、イオン交換樹脂粒子自
体が熱成形又は溶剤の含浸による成形が可能なイオン交
換樹脂粒子を成形し、固めてなる多孔質イオン交換体を
使用することが特徴である。この方法で得られるイオン
交換体はシート状であるため取り扱いやすく、また、製
造に複雑な工程を必要としないため容易に安定した性能
のものが得られる。
The present invention is characterized by using a porous ion exchanger obtained by molding and solidifying ion exchange resin particles which can be formed by thermoforming or impregnation with a solvent. The ion exchanger obtained by this method is in the form of a sheet, so that it is easy to handle, and since it does not require a complicated process for production, a stable performance can be easily obtained.

【0012】多孔質イオン交換体における熱成形又は溶
剤の含浸による成形が可能なイオン交換樹脂粒子の含有
割合は30重量%以上である。含有割合が30重量%未
満である場合はイオン交換樹脂粒子が充分に接着しない
ので好ましくない。含有割合が40重量%以上である場
合は、接着性も充分で強度のある多孔体が得られるので
特に好ましい。
The content ratio of the ion exchange resin particles which can be formed by thermoforming or impregnation with a solvent in the porous ion exchanger is 30% by weight or more. If the content is less than 30% by weight, the ion-exchange resin particles do not adhere sufficiently, which is not preferable. When the content ratio is 40% by weight or more, it is particularly preferable since a porous body having sufficient adhesiveness and strength can be obtained.

【0013】多孔質イオン交換体の水の透過性は、圧力
0.35kg・cm-2において10kg・cm-1・h-1
以上であることが好ましい。10kg・cm-1・h-1
り小さいと処理水量が減少するか、又は運転に高い圧力
が必要となるので好ましくない。
The water permeability of the porous ion exchanger is 10 kg · cm −1 · h −1 at a pressure of 0.35 kg · cm −2 .
It is preferable that it is above. If the pressure is less than 10 kg · cm −1 · h −1 , the amount of treated water is reduced, or high pressure is required for operation, which is not preferable.

【0014】水透過性は、互いに平行な2つの底面を有
する柱状体(たとえば角柱又は円柱)の試料を作製し、
側面から水が漏れ出ないようにして一方の底面から0.
35kg・cm-2の圧力で水を導入し、他方の底面から
流出する水の質量を測定して求める。このとき底面の面
積をA(cm2 )、柱状体の高さ、すなわち底面間の間
隔をL(cm)、1時間あたりの水の透過量をW(kg
/h)としたとき、水透過性はWL/A(kg・cm-1
・h-1)で表される。A及びLは任意に定めうるが、A
は1〜1000cm2 程度、Lは1〜100cm程度で
測定するのが好ましい。
For water permeability, a sample of a columnar body (for example, a prism or a cylinder) having two bottom surfaces parallel to each other is prepared,
To prevent water from leaking from the side surface, it is necessary to remove water from one bottom surface.
Water is introduced at a pressure of 35 kg · cm −2 and the mass of the water flowing out from the other bottom surface is measured and determined. At this time, the area of the bottom surface is A (cm 2 ), the height of the columnar body, that is, the distance between the bottom surfaces is L (cm), and the amount of permeated water per hour is W (kg).
/ H), the water permeability is WL / A (kg · cm −1).
· H -1 ). A and L can be arbitrarily determined.
Is preferably about 1 to 1000 cm 2 , and L is preferably about 1 to 100 cm.

【0015】多孔質イオン交換体の空隙率については、
液体の通過に関与する外部に開放した空隙の空隙率が5
〜50容量%である。上記空隙率が5容量%より小さい
と液体の流量が減少し、圧損が大きくなり、50容量%
より大きいと脱塩性能が低下し、多孔質イオン交換体の
強度も低下する。空隙率が10〜40%である場合は、
通水性も良好で、脱塩性能も優れ、純度の高い脱イオン
水が得られるので特に好ましい。
Regarding the porosity of the porous ion exchanger,
The porosity of the voids open to the outside involved in the passage of liquid is 5
5050% by volume. If the porosity is less than 5% by volume, the flow rate of the liquid decreases, the pressure loss increases, and 50% by volume.
If it is larger, the desalination performance will be reduced, and the strength of the porous ion exchanger will also be reduced. When the porosity is 10 to 40%,
It is particularly preferable because it has good water permeability, excellent desalination performance, and high-purity deionized water.

【0016】多孔質イオン交換体は、陽イオン交換樹脂
粒子、陰イオン交換樹脂粒子又はそれらの混合物から成
形されうる。陽イオン交換樹脂粒子と陰イオン交換樹脂
粒子の混合物を用いる場合、それらが均一に混合された
ものだけでなく、陽イオン交換樹脂粒子部分と陰イオン
交換樹脂粒子部分が海島構造又は層状構造のように層分
離構造を有するものからも形成されうる。
[0016] The porous ion exchanger can be formed from cation exchange resin particles, anion exchange resin particles or a mixture thereof. When a mixture of cation exchange resin particles and anion exchange resin particles is used, not only those obtained by uniformly mixing them, but also the cation exchange resin particles and the anion exchange resin particles have a sea-island structure or a layered structure. Can also be formed from those having a layer separation structure.

【0017】ただし、全体で使用する陽イオン交換樹脂
粒子と陰イオン交換樹脂粒子の比率は、総イオン交換容
量比で陽イオン交換樹脂/陰イオン交換樹脂=30/7
0〜70/30であるのが好ましい。総イオン交換容量
比が上記範囲外であると脱イオン水の純度が低下してし
まうおそれがあるので好ましくない。
However, the ratio of the cation exchange resin particles to the anion exchange resin particles used as a whole is cation exchange resin / anion exchange resin = 30/7 in total ion exchange capacity ratio.
It is preferably from 0 to 70/30. If the total ion exchange capacity ratio is out of the above range, the purity of deionized water may decrease, which is not preferable.

【0018】熱成形又は溶剤の含浸による成形が可能な
イオン交換樹脂のイオン交換基としては、イオン交換性
と熱化学的安定性の観点から、陽イオン交換基は強酸で
あるスルホン酸型が好ましく、陰イオン交換基は強塩基
である4級アンモニウム塩型又はピリジニウム塩型が好
ましい。
As the ion-exchange group of the ion-exchange resin which can be formed by thermoforming or impregnation with a solvent, the cation-exchange group is preferably a sulfonic acid type which is a strong acid from the viewpoint of ion exchangeability and thermochemical stability. The anion exchange group is preferably a quaternary ammonium salt type or a pyridinium salt type which is a strong base.

【0019】熱成形又は溶剤の含浸による成形が可能な
イオン交換樹脂のイオン交換容量は、0.2〜3ミリ当
量/g乾燥樹脂、特には0.5〜2ミリ当量/g乾燥樹
脂であるのが好ましい。イオン交換容量が0.2ミリ当
量/g乾燥樹脂より低いと脱塩室でのイオンの吸着、脱
塩が充分に行われず脱イオン水純度が低下するおそれが
あり、また、3ミリ当量/g乾燥樹脂より大きいと、イ
オンによる架橋的な効果が現れ、熱成形や溶剤の含浸に
よる成形ができなくなるので好ましくない。
The ion exchange capacity of the ion exchange resin that can be formed by thermoforming or impregnation with a solvent is 0.2 to 3 meq / g dry resin, particularly 0.5 to 2 meq / g dry resin. Is preferred. If the ion exchange capacity is lower than 0.2 meq / g dry resin, the adsorption and desalting of ions in the desalting chamber may not be performed sufficiently and the purity of deionized water may be reduced, and 3 meq / g. If the resin is larger than the dry resin, a crosslinking effect due to the ion appears, and molding by heat molding or impregnation with a solvent becomes impossible, which is not preferable.

【0020】熱成形又は溶剤の含浸による成形が可能な
イオン交換樹脂粒子としては、スチレン−ブタジエン共
重合体やその水素添加物のスルホン化物、スチレン−イ
ソプレン共重合体やその水素添加物のスルホン化物、4
−ビニルピリジン−ブタジエン共重合体やその水素添加
物の4級アンモニウム化物、スチレン−イソプレン共重
合体やその水素添加物の4級アンモニウム化物、スルホ
ン酸を官能基とするパーフルオロ重合体を含有するポリ
マー又はその塩が好ましく使用できる。なかでもスルホ
ン酸を官能基とするパーフルオロ重合体は成型時に著し
い形状の変化がなく強度が低下せず、イオン交換基も安
定に保持されるので好ましい材料である。
Examples of the ion-exchange resin particles which can be formed by thermoforming or impregnation with a solvent include a styrene-butadiene copolymer or a sulfonated product of a hydrogenated product thereof, and a styrene-isoprene copolymer or a sulfonated product of a hydrogenated product thereof. , 4
-Contains a quaternary ammonium compound of a vinylpyridine-butadiene copolymer or a hydrogenated product thereof, a quaternary ammonium compound of a styrene-isoprene copolymer or a hydrogenated product thereof, and a perfluoropolymer having a sulfonic acid as a functional group. A polymer or a salt thereof can be preferably used. Above all, a perfluoropolymer having sulfonic acid as a functional group is a preferable material because it has no significant change in shape at the time of molding, does not decrease in strength, and stably retains ion-exchange groups.

【0021】本発明の熱成形又は溶剤の含浸により成形
可能なイオン交換樹脂粒子の粒径は0.1〜1mmであ
り、特には0.3〜0.6mmであるのが好ましい。粒
径が0.1mmより小さいと一般のイオン交換樹脂と混
合して使用する際、充填率が高くなりすぎて水の透過性
が著しく低下し、逆に1mmより大きいと表面積が低下
して脱塩性能が低下するので好ましくない。
The particle size of the ion-exchange resin particles which can be formed by thermoforming or impregnation with a solvent of the present invention is 0.1 to 1 mm, particularly preferably 0.3 to 0.6 mm. When the particle size is smaller than 0.1 mm, when used in a mixture with a general ion-exchange resin, the packing ratio becomes too high, and the permeability of water is significantly reduced. It is not preferable because salt performance is lowered.

【0022】多孔質イオン交換体シートの厚さは、1〜
50mmが好ましい。厚さが1mmより薄いと脱塩室の
水が流れ難く処理水量が低下するおそれがあり、50m
mより厚いと電気抵抗が高くなるおそれがあるので好ま
しくない。多孔質イオン交換体シートの厚さが7〜32
mmである場合はさらに好ましい。なお、この厚さは多
孔質イオン交換体シートを脱塩室に収容した電気透析槽
の運転時の値である。
The thickness of the porous ion exchanger sheet is 1 to
50 mm is preferred. If the thickness is less than 1 mm, the water in the desalination chamber is difficult to flow, and the amount of treated water may decrease.
When the thickness is larger than m, the electric resistance may be increased, which is not preferable. The thickness of the porous ion exchanger sheet is 7 to 32
mm is more preferable. In addition, this thickness is a value at the time of operation of the electrodialysis tank which accommodated the porous ion exchanger sheet in the desalting chamber.

【0023】多孔質イオン交換体シートを作製する方法
としては次のような方法が好ましい。すなわち、熱成形
可能なイオン交換樹脂粒子を30重量%以上含有するイ
オン交換樹脂粒子を平板プレス等の熱成形によりシート
状とする方法、溶剤の含浸による成形が可能なイオン交
換樹脂粒子を30重量%以上含有するイオン交換樹脂粒
子をならべ、溶剤に浸漬した後、乾燥させて硬化させる
方法などである。
As a method for producing a porous ion exchanger sheet, the following method is preferable. That is, a method in which ion-exchange resin particles containing at least 30% by weight of thermoformable ion-exchange resin particles are formed into a sheet by thermoforming such as a flat plate press, or the like. % Ion-exchange resin particles containing at least 10% by weight, immersed in a solvent, dried and cured.

【0024】上記熱成形時の温度は特に制限はないが、
イオン交換樹脂粒子の耐熱性と熱成形性イオン交換樹脂
の接着性と熱変形性の観点から好ましくは120〜18
0℃で成形される。
The temperature during the thermoforming is not particularly limited,
From the viewpoints of heat resistance and thermoformability of the ion-exchange resin particles and adhesion and thermal deformation properties of the ion-exchange resin, preferably 120 to 18
Molded at 0 ° C.

【0025】また、溶剤の含浸による成形方法として
は、イオン交換樹脂粒子を支持体となるメッシュや多孔
体上に並べた後、溶剤を塗布し乾燥させる方法、溶剤に
イオン交換樹脂粒子を浸漬、乾燥後加熱プレスする方法
などがある。
Further, as a molding method by impregnation with a solvent, a method of arranging ion-exchange resin particles on a mesh or a porous body serving as a support, then coating and drying the solvent, immersing the ion-exchange resin particles in a solvent, There is a method of heating and pressing after drying.

【0026】上記溶剤の種類については、溶剤の含浸に
より成形可能なイオン交換樹脂粒子が溶解可能なもので
あれば特に制限はないが、水やアルコール類、ケトン類
やエステル類等の通常用いられる有機溶媒が使用され
る。
The type of the above-mentioned solvent is not particularly limited as long as the ion-exchange resin particles which can be formed by impregnation with the solvent can be dissolved, and water, alcohols, ketones, esters and the like are usually used. Organic solvents are used.

【0027】本発明の脱イオン水を製造するための電気
透析装置としては、具体的には次のような構成を有する
ことが好ましい。すなわち、陽極を備える陽極室と陰極
を備える陰極室との間に、複数枚の陽イオン交換膜と陰
イオン交換膜とを交互に配列して、陽極側が陰イオン交
換膜で区画され、陰極側が陽イオン交換膜で区画された
脱塩室と、陽極側が陽イオン交換膜で区画され、陰極側
が陰イオン交換膜で区画された濃縮室とを交互に、2〜
300組程度直列に配置する。脱塩室には被処理水を流
し、濃縮室には濃縮された塩類を排出するための水を流
しながら、電流を流すことにより脱塩を行うことができ
る。各ユニットセルには、脱塩室において水解離が生じ
る4V程度の電圧を印加することが好ましい。
The electrodialysis apparatus for producing deionized water of the present invention preferably has the following configuration. That is, a plurality of cation exchange membranes and anion exchange membranes are alternately arranged between an anode chamber provided with an anode and a cathode chamber provided with a cathode, and the anode side is partitioned by the anion exchange membrane, and the cathode side is provided. A desalting chamber partitioned by a cation exchange membrane, and a concentration chamber partitioned by a cation exchange membrane on the anode side and an anion exchange membrane on the cathode side, alternately, 2 to
About 300 sets are arranged in series. Desalination can be performed by flowing current while flowing water to be treated into the desalting chamber and flowing water for discharging concentrated salts into the concentration chamber. It is preferable to apply a voltage of about 4 V at which water dissociation occurs in the desalting chamber to each unit cell.

【0028】本発明の多孔質イオン交換体を上記電気透
析槽の脱塩室に配置する場合は、自己再生型電気透析法
による脱イオン水の製造ができる。多孔質イオン交換体
は脱塩室の大きさに合わせて成形しておくことにより、
容易に脱塩室内にイオン交換体が充填された装置を組み
立てうる。通常の電気透析装置の場合、組み込む多孔質
イオン交換体は板状になる。電気透析装置の場合、電流
の方向は膜面に垂直、すなわち板状のイオン交換体の厚
さ方向に流れ、水はそれに垂直な方向に流れる。
When the porous ion exchanger of the present invention is disposed in the desalting chamber of the electrodialysis tank, deionized water can be produced by a self-regenerating electrodialysis method. By forming the porous ion exchanger according to the size of the desalting chamber,
It is possible to easily assemble a device in which a deionization chamber is filled with an ion exchanger. In the case of a normal electrodialysis apparatus, the porous ion exchanger to be incorporated has a plate shape. In the case of an electrodialyzer, the direction of the current flows perpendicular to the membrane surface, ie in the direction of the thickness of the plate-like ion exchanger, and the water flows in a direction perpendicular thereto.

【0029】イオン交換樹脂粒子は水中に浸漬したとき
に膨潤する場合があるので、電気透析装置などに組み入
れる際には、その膨潤量を勘案して多孔質イオン交換体
を成形する必要がある。逆に、膨潤を利用して多孔質イ
オン交換体を流路に密着させて、不必要な側流の発生も
防止できる。
Since the ion exchange resin particles may swell when immersed in water, it is necessary to form a porous ion exchanger in consideration of the amount of swelling when incorporating the particles into an electrodialyzer or the like. Conversely, by using the swelling to bring the porous ion exchanger into close contact with the flow channel, it is possible to prevent the occurrence of unnecessary side flow.

【0030】[0030]

【実施例】【Example】

[例1]アゾビスイソブチロニトリルを開始剤として
0.2Mのテトラフルオロエチレンと0.045MのC
2 =CFOCF2 CF(CF3 )O(CF22 SO
2Fとを、1,1,2,2,3−ペンタフルオロ−1,
3−ジクロロプロパン中で重合温度70℃、重合時間5
時間の条件下で共重合し、イオン交換容量1.1ミリ当
量/gの共重合体を得た。得られた共重合体スラリーを
イオン交換水中に入れ撹拌しながら温度70℃で減圧に
して溶媒を除去しパーフルオロスルホン酸ポリマーの球
状イオン交換樹脂を調製した。得られたイオン交換樹脂
を20%KOH水溶液中で90℃で16時間かけて加水
分解した後、室温で1Nの塩酸に16時間浸漬して酸型
に変換した。50℃で温風乾燥して得られたパーフルオ
ロスルホン酸陽イオン交換樹脂の平均粒径は0.6mm
であった。
[Example 1] 0.2 M tetrafluoroethylene and 0.045 M C starting from azobisisobutyronitrile
F 2 = CFOCF 2 CF (CF 3 ) O (CF 2 ) 2 SO
2 F and 1,1,2,2,3-pentafluoro-1,
Polymerization temperature 70 ° C, polymerization time 5 in 3-dichloropropane
The copolymer was copolymerized under the conditions of time to obtain a copolymer having an ion exchange capacity of 1.1 meq / g. The obtained copolymer slurry was placed in ion-exchanged water, and the pressure was reduced at a temperature of 70 ° C. while stirring to remove the solvent to prepare a spherical ion-exchange resin of a perfluorosulfonic acid polymer. The obtained ion-exchange resin was hydrolyzed in a 20% aqueous KOH solution at 90 ° C. for 16 hours, and then immersed in 1N hydrochloric acid at room temperature for 16 hours to convert to an acid form. The average particle size of the perfluorosulfonic acid cation exchange resin obtained by drying with hot air at 50 ° C. is 0.6 mm.
Met.

【0031】一方、平均粒径が0.5mm、イオン交換
容量が3.5ミリ当量/g乾燥樹脂の4級アンモニウム
塩型陰イオン交換樹脂(三菱化学社製品名:ダイヤイオ
ンSA−10A)を50℃で温風乾燥した。
On the other hand, a quaternary ammonium salt type anion exchange resin having an average particle size of 0.5 mm and an ion exchange capacity of 3.5 meq / g dry resin (Mitsubishi Chemical Corporation product name: Diaion SA-10A) was used. It was dried with hot air at 50 ° C.

【0032】次に上記のパーフルオロスルホン酸陽イオ
ン交換樹脂と4級アンモニウム塩型陰イオン交換樹脂を
70/30(乾燥状態での重量比)の割合で混合し、イ
オン交換容量比が42/58の混合物とした。この混合
物を平板プレスを用いて130℃で熱成形し、0.8c
m×13cm×40cmの直方体に切断して多孔質イオ
ン交換体を得た。
Next, the above-mentioned perfluorosulfonic acid cation exchange resin and a quaternary ammonium salt type anion exchange resin were mixed at a ratio of 70/30 (weight ratio in a dry state), and the ion exchange capacity ratio was 42/30. 58 were obtained. This mixture was thermoformed at 130 ° C. using a flat plate press to obtain 0.8 c
It was cut into a rectangular parallelepiped of mx 13 cm x 40 cm to obtain a porous ion exchanger.

【0033】この多孔質イオン交換体の0.8cm×1
3cmの面の間の水透過性は圧力0.35kg・cm-2
において80kg・cm-1・h-1、外部に開放した空隙
の空隙率は20容量%であった。
0.8 cm × 1 of this porous ion exchanger
Water permeability between 3 cm surfaces is 0.35 kg · cm -2 pressure.
In 80kg · cm -1 · h -1, the void ratio of the void which is open to the outside was 20 volume%.

【0034】一方、カチオン交換樹脂(三菱化学社製品
名:ダイヤイオンSK−1B)を60℃で24時間温風
乾燥後、粉砕機(ターボ工業社製品名:ターボミル)に
て粉砕を行った。粉砕した粒子はステンレスメッシュで
ふるい、150μm以上の粒子を除いた。このイオン交
換樹脂粒子と低密度ポリエチレン/エチレン−プロピレ
ン−ジエンゴム混合物を混合比60/40(重量比)で
混合し、混練機(東洋精機製作所製品名:ラボプラスト
ミル)で130℃、50rpm、20分混練した。得ら
れた混練物を平板プレスにより160℃で加熱溶融プレ
スし、厚さ500μmの陽イオン交換膜を得た。また、
同様にしてアニオン交換樹脂(三菱化学社製品名:ダイ
ヤイオンSA−10A)より厚さ500μmの陰イオン
交換膜を得た。
On the other hand, the cation exchange resin (Mitsubishi Chemical Co., Ltd. product name: Diaion SK-1B) was dried with hot air at 60 ° C. for 24 hours, and then pulverized by a pulverizer (Turbo Kogyo product name: Turbo Mill). The pulverized particles were sieved with a stainless mesh to remove particles having a size of 150 μm or more. The ion-exchange resin particles and the low-density polyethylene / ethylene-propylene-diene rubber mixture are mixed at a mixing ratio of 60/40 (weight ratio), and the resulting mixture is kneaded with a kneader (Toyo Seiki Seisakusho, product name: Labo Plastomill) at 130 ° C., 50 rpm, 20 rpm. Kneaded for a minute. The obtained kneaded material was heated and melt-pressed at 160 ° C. by a flat plate press to obtain a cation exchange membrane having a thickness of 500 μm. Also,
Similarly, an anion exchange membrane having a thickness of 500 μm was obtained from an anion exchange resin (Mitsubishi Chemical Corporation product name: Diaion SA-10A).

【0035】次に多孔質シート状イオン交換体を、電気
透析装置の脱塩室に組んで脱イオン水試験を行った。電
気透析装置は、上記の陽イオン交換膜と陰イオン交換膜
からなる有効面積500cm2 ×5対のものを用いた。
原水として電導度5μS・cm-1の水を用い、ユニット
セルあたり4Vの電圧を印加して脱塩を行ったところ、
電導度0.07μS・cm-1の脱イオン水が安定して得
られた。
Next, the porous sheet ion exchanger was assembled in a desalting chamber of an electrodialyzer and a deionized water test was performed. The electrodialysis apparatus used had an effective area of 500 cm 2 × 5 pairs consisting of the above cation exchange membrane and anion exchange membrane.
Desalination was performed using water having an electric conductivity of 5 μS · cm −1 as raw water and applying a voltage of 4 V per unit cell.
Deionized water having an electric conductivity of 0.07 μS · cm −1 was obtained stably.

【0036】[例2]多孔質イオン交換体を調製するた
めのイオン交換樹脂として、平均粒径が0.5mm、イ
オン交換容量が3.5ミリ当量/g乾燥樹脂の4級アン
モニウム塩型陰イオン交換樹脂(三菱化学社製品名:ダ
イヤイオンSA−10A)を40重量%、平均粒径が
0.5mm、イオン交換容量が4.5ミリ当量/g乾燥
樹脂のスルホン酸ナトリウム型陽イオン交換樹脂(三菱
化学社製品名:ダイヤイオンSK−1B)を20重量
%、例1と同じパーフルオロスルホン酸陽イオン交換樹
脂40重量%で混合し、陽イオン交換容量/陰イオン交
換容量比が49/51の混合物とした以外は例1と同様
にして多孔質イオン交換体を成形し、評価を行った。
Example 2 A quaternary ammonium salt type of dry resin having an average particle diameter of 0.5 mm and an ion exchange capacity of 3.5 meq / g was used as an ion exchange resin for preparing a porous ion exchanger. 40% by weight of ion exchange resin (Mitsubishi Chemical Corporation product name: Diaion SA-10A), average particle size of 0.5 mm, ion exchange capacity of 4.5 meq / g, sodium sulfonate type cation exchange of dry resin A resin (Mitsubishi Chemical Corporation product name: Diaion SK-1B) was mixed with 20% by weight and 40% by weight of the same perfluorosulfonic acid cation exchange resin as in Example 1, and the cation exchange capacity / anion exchange capacity ratio was 49. A porous ion exchanger was molded and evaluated in the same manner as in Example 1 except that the mixture of / 51 was used.

【0037】この多孔質イオン交換体の0.8cm×1
3cmの面の間の水透過性は圧力0.35kg・cm-2
において95kg・cm-1・h-1、外部に開放した空隙
の空隙率は22容量%であった。
0.8 cm × 1 of this porous ion exchanger
Water permeability between 3 cm surfaces is 0.35 kg · cm -2 pressure.
At 95 kg · cm −1 · h −1 , and the void ratio opened to the outside was 22% by volume.

【0038】また、多孔質シート状イオン交換体を、例
1と同様にして電気透析装置の脱塩室に組んで脱イオン
水試験を行った。原水として電導度5μS・cm-1の水
を用い、ユニットセルあたり4Vの電圧を印加して脱塩
を行ったところ、電導度0.06μS・cm-1の脱イオ
ン水が安定して得られた。
Further, a porous sheet-like ion exchanger was assembled in a desalting chamber of an electrodialyzer in the same manner as in Example 1, and a deionized water test was performed. When water having a conductivity of 5 μS · cm −1 was used as raw water and deionization was performed by applying a voltage of 4 V per unit cell, deionized water having a conductivity of 0.06 μS · cm −1 was obtained stably. Was.

【0039】[0039]

【発明の効果】本発明の多孔質イオン交換体は、イオン
交換体の機械的強度が高く、イオン交換性能にも優れる
ため、純度の安定した脱イオン水が得られる。この方法
で得られるイオン交換体はシート状であるため取扱いや
すく、また、製造に複雑な工程を必要としないため容易
に安定した性能のものが得られる。
The porous ion exchanger of the present invention has high mechanical strength and excellent ion exchange performance, so that deionized water having a stable purity can be obtained. The ion exchanger obtained by this method is in the form of a sheet, so that it is easy to handle, and since it does not require a complicated process for production, a product having stable performance can be easily obtained.

【0040】本発明の脱イオン水の製造方法は、長期間
安定して高純度の脱イオン水を連続的に製造できる。ま
た、多孔質イオン交換体を使用しているため、容易に電
気透析装置を組み立てうるという特長も有する。
The method for producing deionized water of the present invention can continuously produce high-purity deionized water stably for a long period of time. In addition, since a porous ion exchanger is used, the electrodialysis apparatus can be easily assembled.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C08J 9/24 CEW C02F 1/46 103 (72)発明者 小松 健 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C08J 9/24 CEW C02F 1/46 103 (72) Inventor Takeshi Ken Komatsu 1150 Hazawa-cho, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture Asahi Glass Co., Ltd. Inside

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】熱成形又は溶剤の含浸による成形が可能な
イオン交換樹脂粒子どうしが結合されてなる多孔質イオ
ン交換体であって、多孔質イオン交換体の外部に開放し
た空隙率が5〜50容量%であることを特徴とする多孔
質イオン交換体。
1. A porous ion exchanger comprising ion exchange resin particles which can be formed by thermoforming or impregnation with a solvent, wherein the porosity of the porous ion exchanger opened to the outside of the porous ion exchanger is 5 to 5. A porous ion exchanger characterized by being 50% by volume.
【請求項2】熱成形又は溶剤の含浸による成形が可能な
イオン交換樹脂粒子と熱成形又は溶剤の含浸による成形
が不可能なイオン交換樹脂粒子とが結合されてなる多孔
質イオン交換体であって、前者の含有割合が30重量%
以上であり、多孔質イオン交換体の外部に開放した空隙
率が5〜50容量%であることを特徴とする多孔質イオ
ン交換体。
2. A porous ion exchanger comprising ion-exchange resin particles that can be formed by thermoforming or solvent impregnation and ion-exchange resin particles that cannot be formed by thermoforming or solvent impregnation. The content ratio of the former is 30% by weight
As described above, the porosity open to the outside of the porous ion exchanger is 5 to 50% by volume.
【請求項3】圧力0.35kg・cm-2における水透過
性が10kg・cm-1・h-1以上である請求項1又は2
の多孔質イオン交換体。
3. The water permeability at a pressure of 0.35 kg · cm −2 is 10 kg · cm −1 · h −1 or more.
Porous ion exchanger.
【請求項4】熱成形又は溶剤の含浸による成形が可能な
イオン交換樹脂粒子が、スルホン酸を官能基とするパー
フルオロ重合体からなる陽イオン交換樹脂粒子である請
求項1、2又は3の多孔質イオン交換体。
4. The cation exchange resin particle according to claim 1, wherein the ion exchange resin particle which can be formed by thermoforming or impregnation with a solvent is a cation exchange resin particle comprising a perfluoropolymer having a sulfonic acid functional group. Porous ion exchanger.
【請求項5】陰極と陽極の間に陽イオン交換膜と陰イオ
ン交換膜とを交互に配列させた電気透析装置の脱塩室に
イオン交換体を収容してなる脱イオン水製造装置の脱塩
室に被処理水を流しながら通電することにより脱イオン
水を製造する方法において、上記イオン交換体として、
請求項1、2、3又は4の多孔質イオン交換体を用いる
脱イオン水の製造方法。
5. A deionized water producing apparatus in which an ion exchanger is accommodated in a desalting chamber of an electrodialysis apparatus in which a cation exchange membrane and an anion exchange membrane are alternately arranged between a cathode and an anode. In the method of producing deionized water by energizing while flowing the water to be treated in the salt chamber, as the ion exchanger,
A method for producing deionized water using the porous ion exchanger according to claim 1, 2, 3, or 4.
JP9017084A 1997-01-30 1997-01-30 Porous ion exchanger and preparation of demineralized water Pending JPH10216717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9017084A JPH10216717A (en) 1997-01-30 1997-01-30 Porous ion exchanger and preparation of demineralized water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9017084A JPH10216717A (en) 1997-01-30 1997-01-30 Porous ion exchanger and preparation of demineralized water

Publications (1)

Publication Number Publication Date
JPH10216717A true JPH10216717A (en) 1998-08-18

Family

ID=11934125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9017084A Pending JPH10216717A (en) 1997-01-30 1997-01-30 Porous ion exchanger and preparation of demineralized water

Country Status (1)

Country Link
JP (1) JPH10216717A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003014205A1 (en) * 2001-08-02 2003-02-20 Asahi Kasei Chemicals Corporation Sinter, resin particles, and process for producing the same
US6951609B2 (en) 2002-03-18 2005-10-04 Organo Corporation High-purity water producing apparatus
JP2006015260A (en) * 2004-07-02 2006-01-19 Japan Organo Co Ltd Electric deionized water manufacturing apparatus
US7294265B2 (en) 2002-08-28 2007-11-13 Organo Corporation Ion adsorption module and method for water treatment
JP2012236171A (en) * 2011-05-13 2012-12-06 Panasonic Corp Water softening device
JP2012236172A (en) * 2011-05-13 2012-12-06 Panasonic Corp Regenerative water softening device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003014205A1 (en) * 2001-08-02 2003-02-20 Asahi Kasei Chemicals Corporation Sinter, resin particles, and process for producing the same
JP2009235417A (en) * 2001-08-02 2009-10-15 Asahi Kasei Chemicals Corp Process for producing sintered body and resin particles
US7758953B2 (en) 2001-08-02 2010-07-20 Asahi Kasei Chemicals Corporation Sintered body, resin particles, and method for producing the same
US8110289B2 (en) 2001-08-02 2012-02-07 Asahi Kasei Chemicals Corporation Sintered body, resin particles and method for producing the same
US6951609B2 (en) 2002-03-18 2005-10-04 Organo Corporation High-purity water producing apparatus
US7294265B2 (en) 2002-08-28 2007-11-13 Organo Corporation Ion adsorption module and method for water treatment
JP2006015260A (en) * 2004-07-02 2006-01-19 Japan Organo Co Ltd Electric deionized water manufacturing apparatus
JP4609924B2 (en) * 2004-07-02 2011-01-12 オルガノ株式会社 Electric deionized water production equipment
JP2012236171A (en) * 2011-05-13 2012-12-06 Panasonic Corp Water softening device
JP2012236172A (en) * 2011-05-13 2012-12-06 Panasonic Corp Regenerative water softening device

Similar Documents

Publication Publication Date Title
CA1321450C (en) Bipolar membranes and methods of making same
US5759373A (en) Porous ion exchanger and method for producing deionized water
US6334941B1 (en) Apparatus for producing deionized water
US5961805A (en) Method and apparatus for producing deionized water
US4116889A (en) Bipolar membranes and method of making same
JPH08252579A (en) Porous ion exchanger and production of deionized water
US20010003329A1 (en) Electro-regenerating type apparatus for producing deionized water
JPH10258289A (en) Apparatus for producing deionized water
JP4049170B2 (en) Method for producing deionized water production apparatus
US6338784B1 (en) Apparatus for producing deionized water
JPH10216717A (en) Porous ion exchanger and preparation of demineralized water
JP3261047B2 (en) Charged mosaic film, method of manufacturing the same, method of using the charged mosaic film, and apparatus provided with the charged mosaic film
JPH10192716A (en) Porous ion exchanger and production of demineralized water
JP5233798B2 (en) Electric regenerative pure water production equipment
JPH10244169A (en) Porous ion exchanger and production of demineralized water
JP2001049009A (en) Heterogeneous multi-layered ion exchange film, method and device for manufacturing deionized water using the same
JP3800706B2 (en) Deionized water production equipment
JPH10192717A (en) Porous ion exchanger and production of demineralized water
JP2001062312A (en) Production of porous ion exchanger
JPH11165175A (en) Manufacturing apparatus for deionized water
JP3513955B2 (en) Electrodialysis type deionized water production method
JP3906540B2 (en) Method for producing deionized water
JPH08197062A (en) Apparatus for electrodialytically producing deionized water
WO1987007624A2 (en) Bipolar membranes and methods of making same
JPH05214123A (en) Production of bipolar film